• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: inlined_vector.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file contains the declaration and definition of an "inlined
20 // vector" which behaves in an equivalent fashion to a `std::vector`, except
21 // that storage for small sequences of the vector are provided inline without
22 // requiring any heap allocation.
23 //
24 // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
25 // its template parameters. Instances where `size() <= N` hold contained
26 // elements in inline space. Typically `N` is very small so that sequences that
27 // are expected to be short do not require allocations.
28 //
29 // An `absl::InlinedVector` does not usually require a specific allocator. If
30 // the inlined vector grows beyond its initial constraints, it will need to
31 // allocate (as any normal `std::vector` would). This is usually performed with
32 // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
33 // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
34 
35 #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
36 #define ABSL_CONTAINER_INLINED_VECTOR_H_
37 
38 #include <algorithm>
39 #include <cstddef>
40 #include <cstdlib>
41 #include <cstring>
42 #include <initializer_list>
43 #include <iterator>
44 #include <memory>
45 #include <type_traits>
46 #include <utility>
47 
48 #include "absl/algorithm/algorithm.h"
49 #include "absl/base/internal/throw_delegate.h"
50 #include "absl/base/macros.h"
51 #include "absl/base/optimization.h"
52 #include "absl/base/port.h"
53 #include "absl/container/internal/inlined_vector.h"
54 #include "absl/memory/memory.h"
55 #include "absl/meta/type_traits.h"
56 
57 namespace absl {
58 ABSL_NAMESPACE_BEGIN
59 // -----------------------------------------------------------------------------
60 // InlinedVector
61 // -----------------------------------------------------------------------------
62 //
63 // An `absl::InlinedVector` is designed to be a drop-in replacement for
64 // `std::vector` for use cases where the vector's size is sufficiently small
65 // that it can be inlined. If the inlined vector does grow beyond its estimated
66 // capacity, it will trigger an initial allocation on the heap, and will behave
67 // as a `std::vector`. The API of the `absl::InlinedVector` within this file is
68 // designed to cover the same API footprint as covered by `std::vector`.
69 template <typename T, size_t N, typename A = std::allocator<T>>
70 class InlinedVector {
71   static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
72 
73   using Storage = inlined_vector_internal::Storage<T, N, A>;
74 
75   template <typename TheA>
76   using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>;
77   template <typename TheA>
78   using MoveIterator = inlined_vector_internal::MoveIterator<TheA>;
79   template <typename TheA>
80   using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk<TheA>;
81 
82   template <typename TheA, typename Iterator>
83   using IteratorValueAdapter =
84       inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>;
85   template <typename TheA>
86   using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>;
87   template <typename TheA>
88   using DefaultValueAdapter =
89       inlined_vector_internal::DefaultValueAdapter<TheA>;
90 
91   template <typename Iterator>
92   using EnableIfAtLeastForwardIterator = absl::enable_if_t<
93       inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
94   template <typename Iterator>
95   using DisableIfAtLeastForwardIterator = absl::enable_if_t<
96       !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
97 
98   using MemcpyPolicy = typename Storage::MemcpyPolicy;
99   using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy;
100   using ElementwiseConstructPolicy =
101       typename Storage::ElementwiseConstructPolicy;
102   using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy;
103 
104  public:
105   using allocator_type = A;
106   using value_type = inlined_vector_internal::ValueType<A>;
107   using pointer = inlined_vector_internal::Pointer<A>;
108   using const_pointer = inlined_vector_internal::ConstPointer<A>;
109   using size_type = inlined_vector_internal::SizeType<A>;
110   using difference_type = inlined_vector_internal::DifferenceType<A>;
111   using reference = inlined_vector_internal::Reference<A>;
112   using const_reference = inlined_vector_internal::ConstReference<A>;
113   using iterator = inlined_vector_internal::Iterator<A>;
114   using const_iterator = inlined_vector_internal::ConstIterator<A>;
115   using reverse_iterator = inlined_vector_internal::ReverseIterator<A>;
116   using const_reverse_iterator =
117       inlined_vector_internal::ConstReverseIterator<A>;
118 
119   // ---------------------------------------------------------------------------
120   // InlinedVector Constructors and Destructor
121   // ---------------------------------------------------------------------------
122 
123   // Creates an empty inlined vector with a value-initialized allocator.
noexcept(noexcept (allocator_type ()))124   InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
125 
126   // Creates an empty inlined vector with a copy of `allocator`.
InlinedVector(const allocator_type & allocator)127   explicit InlinedVector(const allocator_type& allocator) noexcept
128       : storage_(allocator) {}
129 
130   // Creates an inlined vector with `n` copies of `value_type()`.
131   explicit InlinedVector(size_type n,
132                          const allocator_type& allocator = allocator_type())
storage_(allocator)133       : storage_(allocator) {
134     storage_.Initialize(DefaultValueAdapter<A>(), n);
135   }
136 
137   // Creates an inlined vector with `n` copies of `v`.
138   InlinedVector(size_type n, const_reference v,
139                 const allocator_type& allocator = allocator_type())
storage_(allocator)140       : storage_(allocator) {
141     storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n);
142   }
143 
144   // Creates an inlined vector with copies of the elements of `list`.
145   InlinedVector(std::initializer_list<value_type> list,
146                 const allocator_type& allocator = allocator_type())
147       : InlinedVector(list.begin(), list.end(), allocator) {}
148 
149   // Creates an inlined vector with elements constructed from the provided
150   // forward iterator range [`first`, `last`).
151   //
152   // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
153   // this constructor with two integral arguments and a call to the above
154   // `InlinedVector(size_type, const_reference)` constructor.
155   template <typename ForwardIterator,
156             EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
157   InlinedVector(ForwardIterator first, ForwardIterator last,
158                 const allocator_type& allocator = allocator_type())
storage_(allocator)159       : storage_(allocator) {
160     storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first),
161                         static_cast<size_t>(std::distance(first, last)));
162   }
163 
164   // Creates an inlined vector with elements constructed from the provided input
165   // iterator range [`first`, `last`).
166   template <typename InputIterator,
167             DisableIfAtLeastForwardIterator<InputIterator> = 0>
168   InlinedVector(InputIterator first, InputIterator last,
169                 const allocator_type& allocator = allocator_type())
storage_(allocator)170       : storage_(allocator) {
171     std::copy(first, last, std::back_inserter(*this));
172   }
173 
174   // Creates an inlined vector by copying the contents of `other` using
175   // `other`'s allocator.
InlinedVector(const InlinedVector & other)176   InlinedVector(const InlinedVector& other)
177       : InlinedVector(other, other.storage_.GetAllocator()) {}
178 
179   // Creates an inlined vector by copying the contents of `other` using the
180   // provided `allocator`.
InlinedVector(const InlinedVector & other,const allocator_type & allocator)181   InlinedVector(const InlinedVector& other, const allocator_type& allocator)
182       : storage_(allocator) {
183     // Fast path: if the other vector is empty, there's nothing for us to do.
184     if (other.empty()) {
185       return;
186     }
187 
188     // Fast path: if the value type is trivially copy constructible, we know the
189     // allocator doesn't do anything fancy, and there is nothing on the heap
190     // then we know it is legal for us to simply memcpy the other vector's
191     // inlined bytes to form our copy of its elements.
192     if (absl::is_trivially_copy_constructible<value_type>::value &&
193         std::is_same<A, std::allocator<value_type>>::value &&
194         !other.storage_.GetIsAllocated()) {
195       storage_.MemcpyFrom(other.storage_);
196       return;
197     }
198 
199     storage_.InitFrom(other.storage_);
200   }
201 
202   // Creates an inlined vector by moving in the contents of `other` without
203   // allocating. If `other` contains allocated memory, the newly-created inlined
204   // vector will take ownership of that memory. However, if `other` does not
205   // contain allocated memory, the newly-created inlined vector will perform
206   // element-wise move construction of the contents of `other`.
207   //
208   // NOTE: since no allocation is performed for the inlined vector in either
209   // case, the `noexcept(...)` specification depends on whether moving the
210   // underlying objects can throw. It is assumed assumed that...
211   //  a) move constructors should only throw due to allocation failure.
212   //  b) if `value_type`'s move constructor allocates, it uses the same
213   //     allocation function as the inlined vector's allocator.
214   // Thus, the move constructor is non-throwing if the allocator is non-throwing
215   // or `value_type`'s move constructor is specified as `noexcept`.
216   InlinedVector(InlinedVector&& other) noexcept(
217       absl::allocator_is_nothrow<allocator_type>::value ||
218       std::is_nothrow_move_constructible<value_type>::value)
219       : storage_(other.storage_.GetAllocator()) {
220     // Fast path: if the value type can be trivially relocated (i.e. moved from
221     // and destroyed), and we know the allocator doesn't do anything fancy, then
222     // it's safe for us to simply adopt the contents of the storage for `other`
223     // and remove its own reference to them. It's as if we had individually
224     // move-constructed each value and then destroyed the original.
225     if (absl::is_trivially_relocatable<value_type>::value &&
226         std::is_same<A, std::allocator<value_type>>::value) {
227       storage_.MemcpyFrom(other.storage_);
228       other.storage_.SetInlinedSize(0);
229       return;
230     }
231 
232     // Fast path: if the other vector is on the heap, we can simply take over
233     // its allocation.
234     if (other.storage_.GetIsAllocated()) {
235       storage_.SetAllocation({other.storage_.GetAllocatedData(),
236                               other.storage_.GetAllocatedCapacity()});
237       storage_.SetAllocatedSize(other.storage_.GetSize());
238 
239       other.storage_.SetInlinedSize(0);
240       return;
241     }
242 
243     // Otherwise we must move each element individually.
244     IteratorValueAdapter<A, MoveIterator<A>> other_values(
245         MoveIterator<A>(other.storage_.GetInlinedData()));
246 
247     inlined_vector_internal::ConstructElements<A>(
248         storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
249         other.storage_.GetSize());
250 
251     storage_.SetInlinedSize(other.storage_.GetSize());
252   }
253 
254   // Creates an inlined vector by moving in the contents of `other` with a copy
255   // of `allocator`.
256   //
257   // NOTE: if `other`'s allocator is not equal to `allocator`, even if `other`
258   // contains allocated memory, this move constructor will still allocate. Since
259   // allocation is performed, this constructor can only be `noexcept` if the
260   // specified allocator is also `noexcept`.
InlinedVector(InlinedVector && other,const allocator_type & allocator)261   InlinedVector(
262       InlinedVector&& other,
263       const allocator_type&
264           allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
265       : storage_(allocator) {
266     // Fast path: if the value type can be trivially relocated (i.e. moved from
267     // and destroyed), and we know the allocator doesn't do anything fancy, then
268     // it's safe for us to simply adopt the contents of the storage for `other`
269     // and remove its own reference to them. It's as if we had individually
270     // move-constructed each value and then destroyed the original.
271     if (absl::is_trivially_relocatable<value_type>::value &&
272         std::is_same<A, std::allocator<value_type>>::value) {
273       storage_.MemcpyFrom(other.storage_);
274       other.storage_.SetInlinedSize(0);
275       return;
276     }
277 
278     // Fast path: if the other vector is on the heap and shared the same
279     // allocator, we can simply take over its allocation.
280     if ((storage_.GetAllocator() == other.storage_.GetAllocator()) &&
281         other.storage_.GetIsAllocated()) {
282       storage_.SetAllocation({other.storage_.GetAllocatedData(),
283                               other.storage_.GetAllocatedCapacity()});
284       storage_.SetAllocatedSize(other.storage_.GetSize());
285 
286       other.storage_.SetInlinedSize(0);
287       return;
288     }
289 
290     // Otherwise we must move each element individually.
291     storage_.Initialize(
292         IteratorValueAdapter<A, MoveIterator<A>>(MoveIterator<A>(other.data())),
293         other.size());
294   }
295 
~InlinedVector()296   ~InlinedVector() {}
297 
298   // ---------------------------------------------------------------------------
299   // InlinedVector Member Accessors
300   // ---------------------------------------------------------------------------
301 
302   // `InlinedVector::empty()`
303   //
304   // Returns whether the inlined vector contains no elements.
empty()305   bool empty() const noexcept { return !size(); }
306 
307   // `InlinedVector::size()`
308   //
309   // Returns the number of elements in the inlined vector.
size()310   size_type size() const noexcept { return storage_.GetSize(); }
311 
312   // `InlinedVector::max_size()`
313   //
314   // Returns the maximum number of elements the inlined vector can hold.
max_size()315   size_type max_size() const noexcept {
316     // One bit of the size storage is used to indicate whether the inlined
317     // vector contains allocated memory. As a result, the maximum size that the
318     // inlined vector can express is the minimum of the limit of how many
319     // objects we can allocate and std::numeric_limits<size_type>::max() / 2.
320     return (std::min)(AllocatorTraits<A>::max_size(storage_.GetAllocator()),
321                       (std::numeric_limits<size_type>::max)() / 2);
322   }
323 
324   // `InlinedVector::capacity()`
325   //
326   // Returns the number of elements that could be stored in the inlined vector
327   // without requiring a reallocation.
328   //
329   // NOTE: for most inlined vectors, `capacity()` should be equal to the
330   // template parameter `N`. For inlined vectors which exceed this capacity,
331   // they will no longer be inlined and `capacity()` will equal the capactity of
332   // the allocated memory.
capacity()333   size_type capacity() const noexcept {
334     return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
335                                      : storage_.GetInlinedCapacity();
336   }
337 
338   // `InlinedVector::data()`
339   //
340   // Returns a `pointer` to the elements of the inlined vector. This pointer
341   // can be used to access and modify the contained elements.
342   //
343   // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()344   pointer data() noexcept {
345     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
346                                      : storage_.GetInlinedData();
347   }
348 
349   // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
350   // elements of the inlined vector. This pointer can be used to access but not
351   // modify the contained elements.
352   //
353   // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()354   const_pointer data() const noexcept {
355     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
356                                      : storage_.GetInlinedData();
357   }
358 
359   // `InlinedVector::operator[](...)`
360   //
361   // Returns a `reference` to the `i`th element of the inlined vector.
362   reference operator[](size_type i) {
363     ABSL_HARDENING_ASSERT(i < size());
364     return data()[i];
365   }
366 
367   // Overload of `InlinedVector::operator[](...)` that returns a
368   // `const_reference` to the `i`th element of the inlined vector.
369   const_reference operator[](size_type i) const {
370     ABSL_HARDENING_ASSERT(i < size());
371     return data()[i];
372   }
373 
374   // `InlinedVector::at(...)`
375   //
376   // Returns a `reference` to the `i`th element of the inlined vector.
377   //
378   // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
379   // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)380   reference at(size_type i) {
381     if (ABSL_PREDICT_FALSE(i >= size())) {
382       base_internal::ThrowStdOutOfRange(
383           "`InlinedVector::at(size_type)` failed bounds check");
384     }
385     return data()[i];
386   }
387 
388   // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
389   // the `i`th element of the inlined vector.
390   //
391   // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
392   // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)393   const_reference at(size_type i) const {
394     if (ABSL_PREDICT_FALSE(i >= size())) {
395       base_internal::ThrowStdOutOfRange(
396           "`InlinedVector::at(size_type) const` failed bounds check");
397     }
398     return data()[i];
399   }
400 
401   // `InlinedVector::front()`
402   //
403   // Returns a `reference` to the first element of the inlined vector.
front()404   reference front() {
405     ABSL_HARDENING_ASSERT(!empty());
406     return data()[0];
407   }
408 
409   // Overload of `InlinedVector::front()` that returns a `const_reference` to
410   // the first element of the inlined vector.
front()411   const_reference front() const {
412     ABSL_HARDENING_ASSERT(!empty());
413     return data()[0];
414   }
415 
416   // `InlinedVector::back()`
417   //
418   // Returns a `reference` to the last element of the inlined vector.
back()419   reference back() {
420     ABSL_HARDENING_ASSERT(!empty());
421     return data()[size() - 1];
422   }
423 
424   // Overload of `InlinedVector::back()` that returns a `const_reference` to the
425   // last element of the inlined vector.
back()426   const_reference back() const {
427     ABSL_HARDENING_ASSERT(!empty());
428     return data()[size() - 1];
429   }
430 
431   // `InlinedVector::begin()`
432   //
433   // Returns an `iterator` to the beginning of the inlined vector.
begin()434   iterator begin() noexcept { return data(); }
435 
436   // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
437   // the beginning of the inlined vector.
begin()438   const_iterator begin() const noexcept { return data(); }
439 
440   // `InlinedVector::end()`
441   //
442   // Returns an `iterator` to the end of the inlined vector.
end()443   iterator end() noexcept { return data() + size(); }
444 
445   // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
446   // end of the inlined vector.
end()447   const_iterator end() const noexcept { return data() + size(); }
448 
449   // `InlinedVector::cbegin()`
450   //
451   // Returns a `const_iterator` to the beginning of the inlined vector.
cbegin()452   const_iterator cbegin() const noexcept { return begin(); }
453 
454   // `InlinedVector::cend()`
455   //
456   // Returns a `const_iterator` to the end of the inlined vector.
cend()457   const_iterator cend() const noexcept { return end(); }
458 
459   // `InlinedVector::rbegin()`
460   //
461   // Returns a `reverse_iterator` from the end of the inlined vector.
rbegin()462   reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
463 
464   // Overload of `InlinedVector::rbegin()` that returns a
465   // `const_reverse_iterator` from the end of the inlined vector.
rbegin()466   const_reverse_iterator rbegin() const noexcept {
467     return const_reverse_iterator(end());
468   }
469 
470   // `InlinedVector::rend()`
471   //
472   // Returns a `reverse_iterator` from the beginning of the inlined vector.
rend()473   reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
474 
475   // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
476   // from the beginning of the inlined vector.
rend()477   const_reverse_iterator rend() const noexcept {
478     return const_reverse_iterator(begin());
479   }
480 
481   // `InlinedVector::crbegin()`
482   //
483   // Returns a `const_reverse_iterator` from the end of the inlined vector.
crbegin()484   const_reverse_iterator crbegin() const noexcept { return rbegin(); }
485 
486   // `InlinedVector::crend()`
487   //
488   // Returns a `const_reverse_iterator` from the beginning of the inlined
489   // vector.
crend()490   const_reverse_iterator crend() const noexcept { return rend(); }
491 
492   // `InlinedVector::get_allocator()`
493   //
494   // Returns a copy of the inlined vector's allocator.
get_allocator()495   allocator_type get_allocator() const { return storage_.GetAllocator(); }
496 
497   // ---------------------------------------------------------------------------
498   // InlinedVector Member Mutators
499   // ---------------------------------------------------------------------------
500 
501   // `InlinedVector::operator=(...)`
502   //
503   // Replaces the elements of the inlined vector with copies of the elements of
504   // `list`.
505   InlinedVector& operator=(std::initializer_list<value_type> list) {
506     assign(list.begin(), list.end());
507 
508     return *this;
509   }
510 
511   // Overload of `InlinedVector::operator=(...)` that replaces the elements of
512   // the inlined vector with copies of the elements of `other`.
513   InlinedVector& operator=(const InlinedVector& other) {
514     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
515       const_pointer other_data = other.data();
516       assign(other_data, other_data + other.size());
517     }
518 
519     return *this;
520   }
521 
522   // Overload of `InlinedVector::operator=(...)` that moves the elements of
523   // `other` into the inlined vector.
524   //
525   // NOTE: as a result of calling this overload, `other` is left in a valid but
526   // unspecified state.
527   InlinedVector& operator=(InlinedVector&& other) {
528     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
529       MoveAssignment(MoveAssignmentPolicy{}, std::move(other));
530     }
531 
532     return *this;
533   }
534 
535   // `InlinedVector::assign(...)`
536   //
537   // Replaces the contents of the inlined vector with `n` copies of `v`.
assign(size_type n,const_reference v)538   void assign(size_type n, const_reference v) {
539     storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n);
540   }
541 
542   // Overload of `InlinedVector::assign(...)` that replaces the contents of the
543   // inlined vector with copies of the elements of `list`.
assign(std::initializer_list<value_type> list)544   void assign(std::initializer_list<value_type> list) {
545     assign(list.begin(), list.end());
546   }
547 
548   // Overload of `InlinedVector::assign(...)` to replace the contents of the
549   // inlined vector with the range [`first`, `last`).
550   //
551   // NOTE: this overload is for iterators that are "forward" category or better.
552   template <typename ForwardIterator,
553             EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
assign(ForwardIterator first,ForwardIterator last)554   void assign(ForwardIterator first, ForwardIterator last) {
555     storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first),
556                     static_cast<size_t>(std::distance(first, last)));
557   }
558 
559   // Overload of `InlinedVector::assign(...)` to replace the contents of the
560   // inlined vector with the range [`first`, `last`).
561   //
562   // NOTE: this overload is for iterators that are "input" category.
563   template <typename InputIterator,
564             DisableIfAtLeastForwardIterator<InputIterator> = 0>
assign(InputIterator first,InputIterator last)565   void assign(InputIterator first, InputIterator last) {
566     size_type i = 0;
567     for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
568       data()[i] = *first;
569     }
570 
571     erase(data() + i, data() + size());
572     std::copy(first, last, std::back_inserter(*this));
573   }
574 
575   // `InlinedVector::resize(...)`
576   //
577   // Resizes the inlined vector to contain `n` elements.
578   //
579   // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n`
580   // is larger than `size()`, new elements are value-initialized.
resize(size_type n)581   void resize(size_type n) {
582     ABSL_HARDENING_ASSERT(n <= max_size());
583     storage_.Resize(DefaultValueAdapter<A>(), n);
584   }
585 
586   // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
587   // contain `n` elements.
588   //
589   // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
590   // is larger than `size()`, new elements are copied-constructed from `v`.
resize(size_type n,const_reference v)591   void resize(size_type n, const_reference v) {
592     ABSL_HARDENING_ASSERT(n <= max_size());
593     storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n);
594   }
595 
596   // `InlinedVector::insert(...)`
597   //
598   // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
599   // inserted element.
insert(const_iterator pos,const_reference v)600   iterator insert(const_iterator pos, const_reference v) {
601     return emplace(pos, v);
602   }
603 
604   // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
605   // move semantics, returning an `iterator` to the newly inserted element.
insert(const_iterator pos,value_type && v)606   iterator insert(const_iterator pos, value_type&& v) {
607     return emplace(pos, std::move(v));
608   }
609 
610   // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
611   // of `v` starting at `pos`, returning an `iterator` pointing to the first of
612   // the newly inserted elements.
insert(const_iterator pos,size_type n,const_reference v)613   iterator insert(const_iterator pos, size_type n, const_reference v) {
614     ABSL_HARDENING_ASSERT(pos >= begin());
615     ABSL_HARDENING_ASSERT(pos <= end());
616 
617     if (ABSL_PREDICT_TRUE(n != 0)) {
618       value_type dealias = v;
619       // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
620       // It appears that GCC thinks that since `pos` is a const pointer and may
621       // point to uninitialized memory at this point, a warning should be
622       // issued. But `pos` is actually only used to compute an array index to
623       // write to.
624 #if !defined(__clang__) && defined(__GNUC__)
625 #pragma GCC diagnostic push
626 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
627 #endif
628       return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)),
629                              n);
630 #if !defined(__clang__) && defined(__GNUC__)
631 #pragma GCC diagnostic pop
632 #endif
633     } else {
634       return const_cast<iterator>(pos);
635     }
636   }
637 
638   // Overload of `InlinedVector::insert(...)` that inserts copies of the
639   // elements of `list` starting at `pos`, returning an `iterator` pointing to
640   // the first of the newly inserted elements.
insert(const_iterator pos,std::initializer_list<value_type> list)641   iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
642     return insert(pos, list.begin(), list.end());
643   }
644 
645   // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
646   // `last`) starting at `pos`, returning an `iterator` pointing to the first
647   // of the newly inserted elements.
648   //
649   // NOTE: this overload is for iterators that are "forward" category or better.
650   template <typename ForwardIterator,
651             EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
insert(const_iterator pos,ForwardIterator first,ForwardIterator last)652   iterator insert(const_iterator pos, ForwardIterator first,
653                   ForwardIterator last) {
654     ABSL_HARDENING_ASSERT(pos >= begin());
655     ABSL_HARDENING_ASSERT(pos <= end());
656 
657     if (ABSL_PREDICT_TRUE(first != last)) {
658       return storage_.Insert(
659           pos, IteratorValueAdapter<A, ForwardIterator>(first),
660           static_cast<size_type>(std::distance(first, last)));
661     } else {
662       return const_cast<iterator>(pos);
663     }
664   }
665 
666   // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
667   // `last`) starting at `pos`, returning an `iterator` pointing to the first
668   // of the newly inserted elements.
669   //
670   // NOTE: this overload is for iterators that are "input" category.
671   template <typename InputIterator,
672             DisableIfAtLeastForwardIterator<InputIterator> = 0>
insert(const_iterator pos,InputIterator first,InputIterator last)673   iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
674     ABSL_HARDENING_ASSERT(pos >= begin());
675     ABSL_HARDENING_ASSERT(pos <= end());
676 
677     size_type index = static_cast<size_type>(std::distance(cbegin(), pos));
678     for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
679       insert(data() + i, *first);
680     }
681 
682     return iterator(data() + index);
683   }
684 
685   // `InlinedVector::emplace(...)`
686   //
687   // Constructs and inserts an element using `args...` in the inlined vector at
688   // `pos`, returning an `iterator` pointing to the newly emplaced element.
689   template <typename... Args>
emplace(const_iterator pos,Args &&...args)690   iterator emplace(const_iterator pos, Args&&... args) {
691     ABSL_HARDENING_ASSERT(pos >= begin());
692     ABSL_HARDENING_ASSERT(pos <= end());
693 
694     value_type dealias(std::forward<Args>(args)...);
695     // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
696     // It appears that GCC thinks that since `pos` is a const pointer and may
697     // point to uninitialized memory at this point, a warning should be
698     // issued. But `pos` is actually only used to compute an array index to
699     // write to.
700 #if !defined(__clang__) && defined(__GNUC__)
701 #pragma GCC diagnostic push
702 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
703 #endif
704     return storage_.Insert(pos,
705                            IteratorValueAdapter<A, MoveIterator<A>>(
706                                MoveIterator<A>(std::addressof(dealias))),
707                            1);
708 #if !defined(__clang__) && defined(__GNUC__)
709 #pragma GCC diagnostic pop
710 #endif
711   }
712 
713   // `InlinedVector::emplace_back(...)`
714   //
715   // Constructs and inserts an element using `args...` in the inlined vector at
716   // `end()`, returning a `reference` to the newly emplaced element.
717   template <typename... Args>
emplace_back(Args &&...args)718   reference emplace_back(Args&&... args) {
719     return storage_.EmplaceBack(std::forward<Args>(args)...);
720   }
721 
722   // `InlinedVector::push_back(...)`
723   //
724   // Inserts a copy of `v` in the inlined vector at `end()`.
push_back(const_reference v)725   void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
726 
727   // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
728   // using move semantics.
push_back(value_type && v)729   void push_back(value_type&& v) {
730     static_cast<void>(emplace_back(std::move(v)));
731   }
732 
733   // `InlinedVector::pop_back()`
734   //
735   // Destroys the element at `back()`, reducing the size by `1`.
pop_back()736   void pop_back() noexcept {
737     ABSL_HARDENING_ASSERT(!empty());
738 
739     AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1));
740     storage_.SubtractSize(1);
741   }
742 
743   // `InlinedVector::erase(...)`
744   //
745   // Erases the element at `pos`, returning an `iterator` pointing to where the
746   // erased element was located.
747   //
748   // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator pos)749   iterator erase(const_iterator pos) {
750     ABSL_HARDENING_ASSERT(pos >= begin());
751     ABSL_HARDENING_ASSERT(pos < end());
752 
753     return storage_.Erase(pos, pos + 1);
754   }
755 
756   // Overload of `InlinedVector::erase(...)` that erases every element in the
757   // range [`from`, `to`), returning an `iterator` pointing to where the first
758   // erased element was located.
759   //
760   // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator from,const_iterator to)761   iterator erase(const_iterator from, const_iterator to) {
762     ABSL_HARDENING_ASSERT(from >= begin());
763     ABSL_HARDENING_ASSERT(from <= to);
764     ABSL_HARDENING_ASSERT(to <= end());
765 
766     if (ABSL_PREDICT_TRUE(from != to)) {
767       return storage_.Erase(from, to);
768     } else {
769       return const_cast<iterator>(from);
770     }
771   }
772 
773   // `InlinedVector::clear()`
774   //
775   // Destroys all elements in the inlined vector, setting the size to `0` and
776   // deallocating any held memory.
clear()777   void clear() noexcept {
778     inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
779         storage_.GetAllocator(), data(), size());
780     storage_.DeallocateIfAllocated();
781 
782     storage_.SetInlinedSize(0);
783   }
784 
785   // `InlinedVector::reserve(...)`
786   //
787   // Ensures that there is enough room for at least `n` elements.
reserve(size_type n)788   void reserve(size_type n) { storage_.Reserve(n); }
789 
790   // `InlinedVector::shrink_to_fit()`
791   //
792   // Attempts to reduce memory usage by moving elements to (or keeping elements
793   // in) the smallest available buffer sufficient for containing `size()`
794   // elements.
795   //
796   // If `size()` is sufficiently small, the elements will be moved into (or kept
797   // in) the inlined space.
shrink_to_fit()798   void shrink_to_fit() {
799     if (storage_.GetIsAllocated()) {
800       storage_.ShrinkToFit();
801     }
802   }
803 
804   // `InlinedVector::swap(...)`
805   //
806   // Swaps the contents of the inlined vector with `other`.
swap(InlinedVector & other)807   void swap(InlinedVector& other) {
808     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
809       storage_.Swap(std::addressof(other.storage_));
810     }
811   }
812 
813  private:
814   template <typename H, typename TheT, size_t TheN, typename TheA>
815   friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
816 
MoveAssignment(MemcpyPolicy,InlinedVector && other)817   void MoveAssignment(MemcpyPolicy, InlinedVector&& other) {
818     // Assumption check: we shouldn't be told to use memcpy to implement move
819     // asignment unless we have trivially destructible elements and an allocator
820     // that does nothing fancy.
821     static_assert(absl::is_trivially_destructible<value_type>::value, "");
822     static_assert(std::is_same<A, std::allocator<value_type>>::value, "");
823 
824     // Throw away our existing heap allocation, if any. There is no need to
825     // destroy the existing elements one by one because we know they are
826     // trivially destructible.
827     storage_.DeallocateIfAllocated();
828 
829     // Adopt the other vector's inline elements or heap allocation.
830     storage_.MemcpyFrom(other.storage_);
831     other.storage_.SetInlinedSize(0);
832   }
833 
834   // Destroy our existing elements, if any, and adopt the heap-allocated
835   // elements of the other vector.
836   //
837   // REQUIRES: other.storage_.GetIsAllocated()
DestroyExistingAndAdopt(InlinedVector && other)838   void DestroyExistingAndAdopt(InlinedVector&& other) {
839     ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated());
840 
841     inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
842         storage_.GetAllocator(), data(), size());
843     storage_.DeallocateIfAllocated();
844 
845     storage_.MemcpyFrom(other.storage_);
846     other.storage_.SetInlinedSize(0);
847   }
848 
MoveAssignment(ElementwiseAssignPolicy,InlinedVector && other)849   void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) {
850     // Fast path: if the other vector is on the heap then we don't worry about
851     // actually move-assigning each element. Instead we only throw away our own
852     // existing elements and adopt the heap allocation of the other vector.
853     if (other.storage_.GetIsAllocated()) {
854       DestroyExistingAndAdopt(std::move(other));
855       return;
856     }
857 
858     storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>(
859                         MoveIterator<A>(other.storage_.GetInlinedData())),
860                     other.size());
861   }
862 
MoveAssignment(ElementwiseConstructPolicy,InlinedVector && other)863   void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) {
864     // Fast path: if the other vector is on the heap then we don't worry about
865     // actually move-assigning each element. Instead we only throw away our own
866     // existing elements and adopt the heap allocation of the other vector.
867     if (other.storage_.GetIsAllocated()) {
868       DestroyExistingAndAdopt(std::move(other));
869       return;
870     }
871 
872     inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
873         storage_.GetAllocator(), data(), size());
874     storage_.DeallocateIfAllocated();
875 
876     IteratorValueAdapter<A, MoveIterator<A>> other_values(
877         MoveIterator<A>(other.storage_.GetInlinedData()));
878     inlined_vector_internal::ConstructElements<A>(
879         storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
880         other.storage_.GetSize());
881     storage_.SetInlinedSize(other.storage_.GetSize());
882   }
883 
884   Storage storage_;
885 };
886 
887 // -----------------------------------------------------------------------------
888 // InlinedVector Non-Member Functions
889 // -----------------------------------------------------------------------------
890 
891 // `swap(...)`
892 //
893 // Swaps the contents of two inlined vectors.
894 template <typename T, size_t N, typename A>
swap(absl::InlinedVector<T,N,A> & a,absl::InlinedVector<T,N,A> & b)895 void swap(absl::InlinedVector<T, N, A>& a,
896           absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
897   a.swap(b);
898 }
899 
900 // `operator==(...)`
901 //
902 // Tests for value-equality of two inlined vectors.
903 template <typename T, size_t N, typename A>
904 bool operator==(const absl::InlinedVector<T, N, A>& a,
905                 const absl::InlinedVector<T, N, A>& b) {
906   auto a_data = a.data();
907   auto b_data = b.data();
908   return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
909 }
910 
911 // `operator!=(...)`
912 //
913 // Tests for value-inequality of two inlined vectors.
914 template <typename T, size_t N, typename A>
915 bool operator!=(const absl::InlinedVector<T, N, A>& a,
916                 const absl::InlinedVector<T, N, A>& b) {
917   return !(a == b);
918 }
919 
920 // `operator<(...)`
921 //
922 // Tests whether the value of an inlined vector is less than the value of
923 // another inlined vector using a lexicographical comparison algorithm.
924 template <typename T, size_t N, typename A>
925 bool operator<(const absl::InlinedVector<T, N, A>& a,
926                const absl::InlinedVector<T, N, A>& b) {
927   auto a_data = a.data();
928   auto b_data = b.data();
929   return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
930                                       b_data + b.size());
931 }
932 
933 // `operator>(...)`
934 //
935 // Tests whether the value of an inlined vector is greater than the value of
936 // another inlined vector using a lexicographical comparison algorithm.
937 template <typename T, size_t N, typename A>
938 bool operator>(const absl::InlinedVector<T, N, A>& a,
939                const absl::InlinedVector<T, N, A>& b) {
940   return b < a;
941 }
942 
943 // `operator<=(...)`
944 //
945 // Tests whether the value of an inlined vector is less than or equal to the
946 // value of another inlined vector using a lexicographical comparison algorithm.
947 template <typename T, size_t N, typename A>
948 bool operator<=(const absl::InlinedVector<T, N, A>& a,
949                 const absl::InlinedVector<T, N, A>& b) {
950   return !(b < a);
951 }
952 
953 // `operator>=(...)`
954 //
955 // Tests whether the value of an inlined vector is greater than or equal to the
956 // value of another inlined vector using a lexicographical comparison algorithm.
957 template <typename T, size_t N, typename A>
958 bool operator>=(const absl::InlinedVector<T, N, A>& a,
959                 const absl::InlinedVector<T, N, A>& b) {
960   return !(a < b);
961 }
962 
963 // `AbslHashValue(...)`
964 //
965 // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
966 // call this directly.
967 template <typename H, typename T, size_t N, typename A>
AbslHashValue(H h,const absl::InlinedVector<T,N,A> & a)968 H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
969   auto size = a.size();
970   return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
971 }
972 
973 ABSL_NAMESPACE_END
974 }  // namespace absl
975 
976 #endif  // ABSL_CONTAINER_INLINED_VECTOR_H_
977