• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    licensing@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/cmac.h>
50 
51 #include <assert.h>
52 #include <limits.h>
53 #include <string.h>
54 
55 #include <openssl/aes.h>
56 #include <openssl/cipher.h>
57 #include <openssl/mem.h>
58 
59 #include "../../internal.h"
60 #include "../service_indicator/internal.h"
61 
62 
63 struct cmac_ctx_st {
64   EVP_CIPHER_CTX cipher_ctx;
65   // k1 and k2 are the CMAC subkeys. See
66   // https://tools.ietf.org/html/rfc4493#section-2.3
67   uint8_t k1[AES_BLOCK_SIZE];
68   uint8_t k2[AES_BLOCK_SIZE];
69   // Last (possibly partial) scratch
70   uint8_t block[AES_BLOCK_SIZE];
71   // block_used contains the number of valid bytes in |block|.
72   unsigned block_used;
73 };
74 
CMAC_CTX_init(CMAC_CTX * ctx)75 static void CMAC_CTX_init(CMAC_CTX *ctx) {
76   EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
77 }
78 
CMAC_CTX_cleanup(CMAC_CTX * ctx)79 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
80   EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
81   OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
82   OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
83   OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
84 }
85 
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)86 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
87              const uint8_t *in, size_t in_len) {
88   const EVP_CIPHER *cipher;
89   switch (key_len) {
90     // WARNING: this code assumes that all supported key sizes are FIPS
91     // Approved.
92     case 16:
93       cipher = EVP_aes_128_cbc();
94       break;
95     case 32:
96       cipher = EVP_aes_256_cbc();
97       break;
98     default:
99       return 0;
100   }
101 
102   size_t scratch_out_len;
103   CMAC_CTX ctx;
104   CMAC_CTX_init(&ctx);
105 
106   // We have to verify that all the CMAC services actually succeed before
107   // updating the indicator state, so we lock the state here.
108   FIPS_service_indicator_lock_state();
109   const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
110                  CMAC_Update(&ctx, in, in_len) &&
111                  CMAC_Final(&ctx, out, &scratch_out_len);
112   FIPS_service_indicator_unlock_state();
113 
114   if (ok) {
115     FIPS_service_indicator_update_state();
116   }
117   CMAC_CTX_cleanup(&ctx);
118   return ok;
119 }
120 
CMAC_CTX_new(void)121 CMAC_CTX *CMAC_CTX_new(void) {
122   CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
123   if (ctx != NULL) {
124     CMAC_CTX_init(ctx);
125   }
126   return ctx;
127 }
128 
CMAC_CTX_free(CMAC_CTX * ctx)129 void CMAC_CTX_free(CMAC_CTX *ctx) {
130   if (ctx == NULL) {
131     return;
132   }
133 
134   CMAC_CTX_cleanup(ctx);
135   OPENSSL_free(ctx);
136 }
137 
CMAC_CTX_copy(CMAC_CTX * out,const CMAC_CTX * in)138 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) {
139   if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) {
140     return 0;
141   }
142   OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE);
143   OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE);
144   OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE);
145   out->block_used = in->block_used;
146   return 1;
147 }
148 
149 // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸)
150 // with a hard-coded reduction polynomial and sets |out| as x times the input.
151 //
152 // See https://tools.ietf.org/html/rfc4493#section-2.3
binary_field_mul_x_128(uint8_t out[16],const uint8_t in[16])153 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) {
154   unsigned i;
155 
156   // Shift |in| to left, including carry.
157   for (i = 0; i < 15; i++) {
158     out[i] = (in[i] << 1) | (in[i+1] >> 7);
159   }
160 
161   // If MSB set fixup with R.
162   const uint8_t carry = in[0] >> 7;
163   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
164 }
165 
166 // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an
167 // element of GF(2⁶⁴).
168 //
169 // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
binary_field_mul_x_64(uint8_t out[8],const uint8_t in[8])170 static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) {
171   unsigned i;
172 
173   // Shift |in| to left, including carry.
174   for (i = 0; i < 7; i++) {
175     out[i] = (in[i] << 1) | (in[i+1] >> 7);
176   }
177 
178   // If MSB set fixup with R.
179   const uint8_t carry = in[0] >> 7;
180   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b);
181 }
182 
183 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
184 
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)185 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
186               const EVP_CIPHER *cipher, ENGINE *engine) {
187   int ret = 0;
188   uint8_t scratch[AES_BLOCK_SIZE];
189 
190   // We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the
191   // indicator state, so we lock the state here.
192   FIPS_service_indicator_lock_state();
193 
194   size_t block_size = EVP_CIPHER_block_size(cipher);
195   if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) ||
196       EVP_CIPHER_key_length(cipher) != key_len ||
197       !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
198       !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) ||
199       // Reset context again ready for first data.
200       !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
201     goto out;
202   }
203 
204   if (block_size == AES_BLOCK_SIZE) {
205     binary_field_mul_x_128(ctx->k1, scratch);
206     binary_field_mul_x_128(ctx->k2, ctx->k1);
207   } else {
208     binary_field_mul_x_64(ctx->k1, scratch);
209     binary_field_mul_x_64(ctx->k2, ctx->k1);
210   }
211   ctx->block_used = 0;
212   ret = 1;
213 
214 out:
215   FIPS_service_indicator_unlock_state();
216   return ret;
217 }
218 
CMAC_Reset(CMAC_CTX * ctx)219 int CMAC_Reset(CMAC_CTX *ctx) {
220   ctx->block_used = 0;
221   return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
222 }
223 
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)224 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
225   int ret = 0;
226 
227   // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
228   // indicator state, so we lock the state here.
229   FIPS_service_indicator_lock_state();
230 
231   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
232   assert(block_size <= AES_BLOCK_SIZE);
233   uint8_t scratch[AES_BLOCK_SIZE];
234 
235   if (ctx->block_used > 0) {
236     size_t todo = block_size - ctx->block_used;
237     if (in_len < todo) {
238       todo = in_len;
239     }
240 
241     OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
242     in += todo;
243     in_len -= todo;
244     ctx->block_used += todo;
245 
246     // If |in_len| is zero then either |ctx->block_used| is less than
247     // |block_size|, in which case we can stop here, or |ctx->block_used| is
248     // exactly |block_size| but there's no more data to process. In the latter
249     // case we don't want to process this block now because it might be the last
250     // block and that block is treated specially.
251     if (in_len == 0) {
252       ret = 1;
253       goto out;
254     }
255 
256     assert(ctx->block_used == block_size);
257 
258     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) {
259       goto out;
260     }
261   }
262 
263   // Encrypt all but one of the remaining blocks.
264   while (in_len > block_size) {
265     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) {
266       goto out;
267     }
268     in += block_size;
269     in_len -= block_size;
270   }
271 
272   OPENSSL_memcpy(ctx->block, in, in_len);
273   // |in_len| is bounded by |block_size|, which fits in |unsigned|.
274   static_assert(EVP_MAX_BLOCK_LENGTH < UINT_MAX,
275                 "EVP_MAX_BLOCK_LENGTH is too large");
276   ctx->block_used = (unsigned)in_len;
277   ret = 1;
278 
279 out:
280   FIPS_service_indicator_unlock_state();
281   return ret;
282 }
283 
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)284 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
285   int ret = 0;
286   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
287   assert(block_size <= AES_BLOCK_SIZE);
288 
289   // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
290   // indicator state, so we lock the state here.
291   FIPS_service_indicator_lock_state();
292 
293   *out_len = block_size;
294   if (out == NULL) {
295     ret = 1;
296     goto out;
297   }
298 
299   const uint8_t *mask = ctx->k1;
300 
301   if (ctx->block_used != block_size) {
302     // If the last block is incomplete, terminate it with a single 'one' bit
303     // followed by zeros.
304     ctx->block[ctx->block_used] = 0x80;
305     OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
306                    block_size - (ctx->block_used + 1));
307 
308     mask = ctx->k2;
309   }
310 
311   for (unsigned i = 0; i < block_size; i++) {
312     out[i] = ctx->block[i] ^ mask[i];
313   }
314   ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size);
315 
316 out:
317   FIPS_service_indicator_unlock_state();
318   if (ret) {
319     FIPS_service_indicator_update_state();
320   }
321   return ret;
322 }
323