1 /* ====================================================================
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #include <openssl/cmac.h>
50
51 #include <assert.h>
52 #include <limits.h>
53 #include <string.h>
54
55 #include <openssl/aes.h>
56 #include <openssl/cipher.h>
57 #include <openssl/mem.h>
58
59 #include "../../internal.h"
60 #include "../service_indicator/internal.h"
61
62
63 struct cmac_ctx_st {
64 EVP_CIPHER_CTX cipher_ctx;
65 // k1 and k2 are the CMAC subkeys. See
66 // https://tools.ietf.org/html/rfc4493#section-2.3
67 uint8_t k1[AES_BLOCK_SIZE];
68 uint8_t k2[AES_BLOCK_SIZE];
69 // Last (possibly partial) scratch
70 uint8_t block[AES_BLOCK_SIZE];
71 // block_used contains the number of valid bytes in |block|.
72 unsigned block_used;
73 };
74
CMAC_CTX_init(CMAC_CTX * ctx)75 static void CMAC_CTX_init(CMAC_CTX *ctx) {
76 EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
77 }
78
CMAC_CTX_cleanup(CMAC_CTX * ctx)79 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
80 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
81 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
82 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
83 OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
84 }
85
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)86 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
87 const uint8_t *in, size_t in_len) {
88 const EVP_CIPHER *cipher;
89 switch (key_len) {
90 // WARNING: this code assumes that all supported key sizes are FIPS
91 // Approved.
92 case 16:
93 cipher = EVP_aes_128_cbc();
94 break;
95 case 32:
96 cipher = EVP_aes_256_cbc();
97 break;
98 default:
99 return 0;
100 }
101
102 size_t scratch_out_len;
103 CMAC_CTX ctx;
104 CMAC_CTX_init(&ctx);
105
106 // We have to verify that all the CMAC services actually succeed before
107 // updating the indicator state, so we lock the state here.
108 FIPS_service_indicator_lock_state();
109 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
110 CMAC_Update(&ctx, in, in_len) &&
111 CMAC_Final(&ctx, out, &scratch_out_len);
112 FIPS_service_indicator_unlock_state();
113
114 if (ok) {
115 FIPS_service_indicator_update_state();
116 }
117 CMAC_CTX_cleanup(&ctx);
118 return ok;
119 }
120
CMAC_CTX_new(void)121 CMAC_CTX *CMAC_CTX_new(void) {
122 CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
123 if (ctx != NULL) {
124 CMAC_CTX_init(ctx);
125 }
126 return ctx;
127 }
128
CMAC_CTX_free(CMAC_CTX * ctx)129 void CMAC_CTX_free(CMAC_CTX *ctx) {
130 if (ctx == NULL) {
131 return;
132 }
133
134 CMAC_CTX_cleanup(ctx);
135 OPENSSL_free(ctx);
136 }
137
CMAC_CTX_copy(CMAC_CTX * out,const CMAC_CTX * in)138 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) {
139 if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) {
140 return 0;
141 }
142 OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE);
143 OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE);
144 OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE);
145 out->block_used = in->block_used;
146 return 1;
147 }
148
149 // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸)
150 // with a hard-coded reduction polynomial and sets |out| as x times the input.
151 //
152 // See https://tools.ietf.org/html/rfc4493#section-2.3
binary_field_mul_x_128(uint8_t out[16],const uint8_t in[16])153 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) {
154 unsigned i;
155
156 // Shift |in| to left, including carry.
157 for (i = 0; i < 15; i++) {
158 out[i] = (in[i] << 1) | (in[i+1] >> 7);
159 }
160
161 // If MSB set fixup with R.
162 const uint8_t carry = in[0] >> 7;
163 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
164 }
165
166 // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an
167 // element of GF(2⁶⁴).
168 //
169 // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
binary_field_mul_x_64(uint8_t out[8],const uint8_t in[8])170 static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) {
171 unsigned i;
172
173 // Shift |in| to left, including carry.
174 for (i = 0; i < 7; i++) {
175 out[i] = (in[i] << 1) | (in[i+1] >> 7);
176 }
177
178 // If MSB set fixup with R.
179 const uint8_t carry = in[0] >> 7;
180 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b);
181 }
182
183 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
184
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)185 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
186 const EVP_CIPHER *cipher, ENGINE *engine) {
187 int ret = 0;
188 uint8_t scratch[AES_BLOCK_SIZE];
189
190 // We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the
191 // indicator state, so we lock the state here.
192 FIPS_service_indicator_lock_state();
193
194 size_t block_size = EVP_CIPHER_block_size(cipher);
195 if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) ||
196 EVP_CIPHER_key_length(cipher) != key_len ||
197 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
198 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) ||
199 // Reset context again ready for first data.
200 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
201 goto out;
202 }
203
204 if (block_size == AES_BLOCK_SIZE) {
205 binary_field_mul_x_128(ctx->k1, scratch);
206 binary_field_mul_x_128(ctx->k2, ctx->k1);
207 } else {
208 binary_field_mul_x_64(ctx->k1, scratch);
209 binary_field_mul_x_64(ctx->k2, ctx->k1);
210 }
211 ctx->block_used = 0;
212 ret = 1;
213
214 out:
215 FIPS_service_indicator_unlock_state();
216 return ret;
217 }
218
CMAC_Reset(CMAC_CTX * ctx)219 int CMAC_Reset(CMAC_CTX *ctx) {
220 ctx->block_used = 0;
221 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
222 }
223
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)224 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
225 int ret = 0;
226
227 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
228 // indicator state, so we lock the state here.
229 FIPS_service_indicator_lock_state();
230
231 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
232 assert(block_size <= AES_BLOCK_SIZE);
233 uint8_t scratch[AES_BLOCK_SIZE];
234
235 if (ctx->block_used > 0) {
236 size_t todo = block_size - ctx->block_used;
237 if (in_len < todo) {
238 todo = in_len;
239 }
240
241 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
242 in += todo;
243 in_len -= todo;
244 ctx->block_used += todo;
245
246 // If |in_len| is zero then either |ctx->block_used| is less than
247 // |block_size|, in which case we can stop here, or |ctx->block_used| is
248 // exactly |block_size| but there's no more data to process. In the latter
249 // case we don't want to process this block now because it might be the last
250 // block and that block is treated specially.
251 if (in_len == 0) {
252 ret = 1;
253 goto out;
254 }
255
256 assert(ctx->block_used == block_size);
257
258 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) {
259 goto out;
260 }
261 }
262
263 // Encrypt all but one of the remaining blocks.
264 while (in_len > block_size) {
265 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) {
266 goto out;
267 }
268 in += block_size;
269 in_len -= block_size;
270 }
271
272 OPENSSL_memcpy(ctx->block, in, in_len);
273 // |in_len| is bounded by |block_size|, which fits in |unsigned|.
274 static_assert(EVP_MAX_BLOCK_LENGTH < UINT_MAX,
275 "EVP_MAX_BLOCK_LENGTH is too large");
276 ctx->block_used = (unsigned)in_len;
277 ret = 1;
278
279 out:
280 FIPS_service_indicator_unlock_state();
281 return ret;
282 }
283
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)284 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
285 int ret = 0;
286 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
287 assert(block_size <= AES_BLOCK_SIZE);
288
289 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
290 // indicator state, so we lock the state here.
291 FIPS_service_indicator_lock_state();
292
293 *out_len = block_size;
294 if (out == NULL) {
295 ret = 1;
296 goto out;
297 }
298
299 const uint8_t *mask = ctx->k1;
300
301 if (ctx->block_used != block_size) {
302 // If the last block is incomplete, terminate it with a single 'one' bit
303 // followed by zeros.
304 ctx->block[ctx->block_used] = 0x80;
305 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
306 block_size - (ctx->block_used + 1));
307
308 mask = ctx->k2;
309 }
310
311 for (unsigned i = 0; i < block_size; i++) {
312 out[i] = ctx->block[i] ^ mask[i];
313 }
314 ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size);
315
316 out:
317 FIPS_service_indicator_unlock_state();
318 if (ret) {
319 FIPS_service_indicator_update_state();
320 }
321 return ret;
322 }
323