1 /* Copyright (c) 2023, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/base.h>
16
17 #include <assert.h>
18 #include <stdlib.h>
19
20 #include "../internal.h"
21 #include "./internal.h"
22
23
24 // keccak_f implements the Keccak-1600 permutation as described at
25 // https://keccak.team/keccak_specs_summary.html. Each lane is represented as a
26 // 64-bit value and the 5×5 lanes are stored as an array in row-major order.
keccak_f(uint64_t state[25])27 static void keccak_f(uint64_t state[25]) {
28 static const int kNumRounds = 24;
29 for (int round = 0; round < kNumRounds; round++) {
30 // θ step
31 uint64_t c[5];
32 for (int x = 0; x < 5; x++) {
33 c[x] = state[x] ^ state[x + 5] ^ state[x + 10] ^ state[x + 15] ^
34 state[x + 20];
35 }
36
37 for (int x = 0; x < 5; x++) {
38 const uint64_t d = c[(x + 4) % 5] ^ CRYPTO_rotl_u64(c[(x + 1) % 5], 1);
39 for (int y = 0; y < 5; y++) {
40 state[y * 5 + x] ^= d;
41 }
42 }
43
44 // ρ and π steps.
45 //
46 // These steps involve a mapping of the state matrix. Each input point,
47 // (x,y), is rotated and written to the point (y, 2x + 3y). In the Keccak
48 // pseudo-code a separate array is used because an in-place operation would
49 // overwrite some values that are subsequently needed. However, the mapping
50 // forms a trail through 24 of the 25 values so we can do it in place with
51 // only a single temporary variable.
52 //
53 // Start with (1, 0). The value here will be mapped and end up at (0, 2).
54 // That value will end up at (2, 1), then (1, 2), and so on. After 24
55 // steps, 24 of the 25 values have been hit (as this mapping is injective)
56 // and the sequence will repeat. All that remains is to handle the element
57 // at (0, 0), but the rotation for that element is zero, and it goes to (0,
58 // 0), so we can ignore it.
59 static const uint8_t kIndexes[24] = {10, 7, 11, 17, 18, 3, 5, 16,
60 8, 21, 24, 4, 15, 23, 19, 13,
61 12, 2, 20, 14, 22, 9, 6, 1};
62 static const uint8_t kRotations[24] = {1, 3, 6, 10, 15, 21, 28, 36,
63 45, 55, 2, 14, 27, 41, 56, 8,
64 25, 43, 62, 18, 39, 61, 20, 44};
65 uint64_t prev_value = state[1];
66 for (int i = 0; i < 24; i++) {
67 const uint64_t value = CRYPTO_rotl_u64(prev_value, kRotations[i]);
68 const size_t index = kIndexes[i];
69 prev_value = state[index];
70 state[index] = value;
71 }
72
73 // χ step
74 for (int y = 0; y < 5; y++) {
75 const int row_index = 5 * y;
76 const uint64_t orig_x0 = state[row_index];
77 const uint64_t orig_x1 = state[row_index + 1];
78 state[row_index] ^= ~orig_x1 & state[row_index + 2];
79 state[row_index + 1] ^= ~state[row_index + 2] & state[row_index + 3];
80 state[row_index + 2] ^= ~state[row_index + 3] & state[row_index + 4];
81 state[row_index + 3] ^= ~state[row_index + 4] & orig_x0;
82 state[row_index + 4] ^= ~orig_x0 & orig_x1;
83 }
84
85 // ι step
86 //
87 // From https://keccak.team/files/Keccak-reference-3.0.pdf, section
88 // 1.2, the round constants are based on the output of a LFSR. Thus, as
89 // suggested in the appendix of of
90 // https://keccak.team/keccak_specs_summary.html, the values are
91 // simply encoded here.
92 static const uint64_t kRoundConstants[24] = {
93 0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
94 0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
95 0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
96 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
97 0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
98 0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
99 0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
100 0x8000000000008080, 0x0000000080000001, 0x8000000080008008,
101 };
102
103 state[0] ^= kRoundConstants[round];
104 }
105 }
106
keccak_init(struct BORINGSSL_keccak_st * ctx,size_t * out_required_out_len,const uint8_t * in,size_t in_len,enum boringssl_keccak_config_t config)107 static void keccak_init(struct BORINGSSL_keccak_st *ctx,
108 size_t *out_required_out_len, const uint8_t *in,
109 size_t in_len, enum boringssl_keccak_config_t config) {
110 size_t capacity_bytes;
111 uint8_t terminator;
112 switch (config) {
113 case boringssl_sha3_256:
114 capacity_bytes = 512 / 8;
115 *out_required_out_len = 32;
116 terminator = 0x06;
117 break;
118 case boringssl_sha3_512:
119 capacity_bytes = 1024 / 8;
120 *out_required_out_len = 64;
121 terminator = 0x06;
122 break;
123 case boringssl_shake128:
124 capacity_bytes = 256 / 8;
125 *out_required_out_len = 0;
126 terminator = 0x1f;
127 break;
128 case boringssl_shake256:
129 capacity_bytes = 512 / 8;
130 *out_required_out_len = 0;
131 terminator = 0x1f;
132 break;
133 default:
134 abort();
135 }
136
137 OPENSSL_memset(ctx, 0, sizeof(*ctx));
138 ctx->rate_bytes = 200 - capacity_bytes;
139 assert(ctx->rate_bytes % 8 == 0);
140 const size_t rate_words = ctx->rate_bytes / 8;
141
142 while (in_len >= ctx->rate_bytes) {
143 for (size_t i = 0; i < rate_words; i++) {
144 ctx->state[i] ^= CRYPTO_load_u64_le(in + 8 * i);
145 }
146 keccak_f(ctx->state);
147 in += ctx->rate_bytes;
148 in_len -= ctx->rate_bytes;
149 }
150
151 // XOR the final block. Accessing |ctx->state| as a |uint8_t*| is allowed by
152 // strict aliasing because we require |uint8_t| to be a character type.
153 uint8_t *state_bytes = (uint8_t *)ctx->state;
154 assert(in_len < ctx->rate_bytes);
155 for (size_t i = 0; i < in_len; i++) {
156 state_bytes[i] ^= in[i];
157 }
158 state_bytes[in_len] ^= terminator;
159 state_bytes[ctx->rate_bytes - 1] ^= 0x80;
160 keccak_f(ctx->state);
161 }
162
BORINGSSL_keccak(uint8_t * out,size_t out_len,const uint8_t * in,size_t in_len,enum boringssl_keccak_config_t config)163 void BORINGSSL_keccak(uint8_t *out, size_t out_len, const uint8_t *in,
164 size_t in_len, enum boringssl_keccak_config_t config) {
165 struct BORINGSSL_keccak_st ctx;
166 size_t required_out_len;
167 keccak_init(&ctx, &required_out_len, in, in_len, config);
168 if (required_out_len != 0 && out_len != required_out_len) {
169 abort();
170 }
171 BORINGSSL_keccak_squeeze(&ctx, out, out_len);
172 }
173
BORINGSSL_keccak_init(struct BORINGSSL_keccak_st * ctx,const uint8_t * in,size_t in_len,enum boringssl_keccak_config_t config)174 void BORINGSSL_keccak_init(struct BORINGSSL_keccak_st *ctx, const uint8_t *in,
175 size_t in_len,
176 enum boringssl_keccak_config_t config) {
177 size_t required_out_len;
178 keccak_init(ctx, &required_out_len, in, in_len, config);
179 if (required_out_len != 0) {
180 abort();
181 }
182 }
183
BORINGSSL_keccak_squeeze(struct BORINGSSL_keccak_st * ctx,uint8_t * out,size_t out_len)184 void BORINGSSL_keccak_squeeze(struct BORINGSSL_keccak_st *ctx, uint8_t *out,
185 size_t out_len) {
186 // Accessing |ctx->state| as a |uint8_t*| is allowed by strict aliasing
187 // because we require |uint8_t| to be a character type.
188 const uint8_t *state_bytes = (const uint8_t *)ctx->state;
189 while (out_len) {
190 size_t remaining = ctx->rate_bytes - ctx->offset;
191 size_t todo = out_len;
192 if (todo > remaining) {
193 todo = remaining;
194 }
195 OPENSSL_memcpy(out, &state_bytes[ctx->offset], todo);
196 out += todo;
197 out_len -= todo;
198 ctx->offset += todo;
199 if (ctx->offset == ctx->rate_bytes) {
200 keccak_f(ctx->state);
201 ctx->offset = 0;
202 }
203 }
204 }
205