1 // Copyright 2022 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 //! Implementation of the EDID specification provided by software.
6 //! EDID spec: <https://glenwing.github.io/docs/VESA-EEDID-A2.pdf>
7
8 use std::fmt;
9 use std::fmt::Debug;
10
11 use super::protocol::GpuResponse::*;
12 use super::protocol::VirtioGpuResult;
13 use crate::virtio::gpu::GpuDisplayParameters;
14
15 const EDID_DATA_LENGTH: usize = 128;
16 const DEFAULT_HORIZONTAL_BLANKING: u16 = 560;
17 const DEFAULT_VERTICAL_BLANKING: u16 = 50;
18 const DEFAULT_HORIZONTAL_FRONT_PORCH: u16 = 64;
19 const DEFAULT_VERTICAL_FRONT_PORCH: u16 = 1;
20 const DEFAULT_HORIZONTAL_SYNC_PULSE: u16 = 192;
21 const DEFAULT_VERTICAL_SYNC_PULSE: u16 = 3;
22 const MILLIMETERS_PER_INCH: f32 = 25.4;
23
24 /// This class is used to create the Extended Display Identification Data (EDID), which will be
25 /// exposed to the guest system.
26 ///
27 /// We ignore most of the spec, the point here being for us to provide enough for graphics to work
28 /// and to allow us to configure the resolution and refresh rate (via the preferred timing mode
29 /// pixel clock).
30 ///
31 /// The EDID spec defines a number of methods to provide mode information, but in priority order the
32 /// "detailed" timing information is first, so we provide a single block of detailed timing
33 /// information and no other form of timing information.
34 #[repr(C)]
35 pub struct EdidBytes {
36 bytes: [u8; EDID_DATA_LENGTH],
37 }
38
39 impl EdidBytes {
40 /// Creates a virtual EDID block.
new(info: &DisplayInfo) -> VirtioGpuResult41 pub fn new(info: &DisplayInfo) -> VirtioGpuResult {
42 let mut edid: [u8; EDID_DATA_LENGTH] = [0; EDID_DATA_LENGTH];
43
44 populate_header(&mut edid);
45 populate_edid_version(&mut edid);
46 populate_size(&mut edid, info);
47 populate_standard_timings(&mut edid)?;
48
49 // 4 available descriptor blocks
50 let block0 = &mut edid[54..72];
51 populate_detailed_timing(block0, info);
52
53 let block1 = &mut edid[72..90];
54 populate_display_name(block1);
55
56 calculate_checksum(&mut edid);
57
58 Ok(OkEdid(Box::new(Self { bytes: edid })))
59 }
60
len(&self) -> usize61 pub fn len(&self) -> usize {
62 self.bytes.len()
63 }
64
as_bytes(&self) -> &[u8]65 pub fn as_bytes(&self) -> &[u8] {
66 &self.bytes
67 }
68 }
69
70 impl Debug for EdidBytes {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result71 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
72 self.bytes[..].fmt(f)
73 }
74 }
75
76 impl PartialEq for EdidBytes {
eq(&self, other: &EdidBytes) -> bool77 fn eq(&self, other: &EdidBytes) -> bool {
78 self.bytes[..] == other.bytes[..]
79 }
80 }
81
82 #[derive(Copy, Clone)]
83 pub struct Resolution {
84 width: u32,
85 height: u32,
86 }
87
88 impl Resolution {
new(width: u32, height: u32) -> Resolution89 fn new(width: u32, height: u32) -> Resolution {
90 Resolution { width, height }
91 }
92
get_aspect_ratio(&self) -> (u32, u32)93 fn get_aspect_ratio(&self) -> (u32, u32) {
94 let divisor = gcd(self.width, self.height);
95 (self.width / divisor, self.height / divisor)
96 }
97 }
98
gcd(x: u32, y: u32) -> u3299 fn gcd(x: u32, y: u32) -> u32 {
100 match y {
101 0 => x,
102 _ => gcd(y, x % y),
103 }
104 }
105
106 #[derive(Copy, Clone)]
107 pub struct DisplayInfo {
108 resolution: Resolution,
109 refresh_rate: u32,
110 horizontal_blanking: u16,
111 vertical_blanking: u16,
112 horizontal_front: u16,
113 vertical_front: u16,
114 horizontal_sync: u16,
115 vertical_sync: u16,
116 width_millimeters: u16,
117 height_millimeters: u16,
118 }
119
120 impl DisplayInfo {
121 /// Only width, height and refresh rate are required for the graphics stack to work, so instead
122 /// of pulling actual numbers from the system, we just use some typical values to populate other
123 /// fields for now.
new(params: &GpuDisplayParameters) -> Self124 pub fn new(params: &GpuDisplayParameters) -> Self {
125 let (width, height) = params.get_virtual_display_size();
126
127 let width_millimeters = if params.horizontal_dpi() != 0 {
128 ((width as f32 / params.horizontal_dpi() as f32) * MILLIMETERS_PER_INCH) as u16
129 } else {
130 0
131 };
132 let height_millimeters = if params.vertical_dpi() != 0 {
133 ((height as f32 / params.vertical_dpi() as f32) * MILLIMETERS_PER_INCH) as u16
134 } else {
135 0
136 };
137
138 Self {
139 resolution: Resolution::new(width, height),
140 refresh_rate: params.refresh_rate,
141 horizontal_blanking: DEFAULT_HORIZONTAL_BLANKING,
142 vertical_blanking: DEFAULT_VERTICAL_BLANKING,
143 horizontal_front: DEFAULT_HORIZONTAL_FRONT_PORCH,
144 vertical_front: DEFAULT_VERTICAL_FRONT_PORCH,
145 horizontal_sync: DEFAULT_HORIZONTAL_SYNC_PULSE,
146 vertical_sync: DEFAULT_VERTICAL_SYNC_PULSE,
147 width_millimeters,
148 height_millimeters,
149 }
150 }
151
width(&self) -> u32152 pub fn width(&self) -> u32 {
153 self.resolution.width
154 }
155
height(&self) -> u32156 pub fn height(&self) -> u32 {
157 self.resolution.height
158 }
159
width_centimeters(&self) -> u8160 pub fn width_centimeters(&self) -> u8 {
161 (self.width_millimeters / 10) as u8
162 }
163
height_centimeters(&self) -> u8164 pub fn height_centimeters(&self) -> u8 {
165 (self.height_millimeters / 10) as u8
166 }
167 }
168
populate_display_name(edid_block: &mut [u8])169 fn populate_display_name(edid_block: &mut [u8]) {
170 // Display Product Name String Descriptor Tag
171 edid_block[0..5].clone_from_slice(&[0x00, 0x00, 0x00, 0xFC, 0x00]);
172 edid_block[5..].clone_from_slice("CrosvmDisplay".as_bytes());
173 }
174
populate_detailed_timing(edid_block: &mut [u8], info: &DisplayInfo)175 fn populate_detailed_timing(edid_block: &mut [u8], info: &DisplayInfo) {
176 assert_eq!(edid_block.len(), 18);
177
178 // Detailed timings
179 //
180 // 18 Byte Descriptors - 72 Bytes
181 // The 72 bytes in this section are divided into four data fields. Each of the four data fields
182 // are 18 bytes in length. These 18 byte data fields shall contain either detailed timing data
183 // as described in Section 3.10.2 or other types of data as described in Section 3.10.3. The
184 // addresses and the contents of the four 18 byte descriptors are shown in Table 3.20.
185 //
186 // We leave the bottom 6 bytes of this block purposefully empty.
187 let horizontal_blanking_lsb: u8 = (info.horizontal_blanking & 0xFF) as u8;
188 let horizontal_blanking_msb: u8 = ((info.horizontal_blanking >> 8) & 0x0F) as u8;
189
190 let vertical_blanking_lsb: u8 = (info.vertical_blanking & 0xFF) as u8;
191 let vertical_blanking_msb: u8 = ((info.vertical_blanking >> 8) & 0x0F) as u8;
192
193 // The pixel clock is what controls the refresh timing information.
194 //
195 // The formula for getting refresh rate out of this value is:
196 // refresh_rate = clk * 10000 / (htotal * vtotal)
197 // Solving for clk:
198 // clk = (refresh_rate * htotal * votal) / 10000
199 //
200 // where:
201 // clk - The setting here
202 // vtotal - Total lines
203 // htotal - Total pixels per line
204 //
205 // Value here is pixel clock + 10,000, in 10khz steps.
206 //
207 // Pseudocode of kernel logic for vrefresh:
208 // vtotal := mode->vtotal;
209 // calc_val := (clock * 1000) / htotal
210 // refresh := (calc_val + vtotal / 2) / vtotal
211 // if flags & INTERLACE: refresh *= 2
212 // if flags & DBLSCAN: refresh /= 2
213 // if vscan > 1: refresh /= vscan
214 //
215 let htotal = info.width() + (info.horizontal_blanking as u32);
216 let vtotal = info.height() + (info.vertical_blanking as u32);
217 let mut clock: u16 = ((info.refresh_rate * htotal * vtotal) / 10000) as u16;
218 // Round to nearest 10khz.
219 clock = ((clock + 5) / 10) * 10;
220 edid_block[0..2].copy_from_slice(&clock.to_le_bytes());
221
222 let width_lsb: u8 = (info.width() & 0xFF) as u8;
223 let width_msb: u8 = ((info.width() >> 8) & 0x0F) as u8;
224
225 // Horizointal Addressable Video in pixels.
226 edid_block[2] = width_lsb;
227 // Horizontal blanking in pixels.
228 edid_block[3] = horizontal_blanking_lsb;
229 // Upper bits of the two above vals.
230 edid_block[4] = horizontal_blanking_msb | (width_msb << 4) as u8;
231
232 let vertical_active: u32 = info.height();
233 let vertical_active_lsb: u8 = (vertical_active & 0xFF) as u8;
234 let vertical_active_msb: u8 = ((vertical_active >> 8) & 0x0F) as u8;
235
236 // Vertical addressable video in *lines*
237 edid_block[5] = vertical_active_lsb;
238 // Vertical blanking in lines
239 edid_block[6] = vertical_blanking_lsb;
240 // Sigbits of the above.
241 edid_block[7] = vertical_blanking_msb | (vertical_active_msb << 4);
242
243 let horizontal_front_lsb: u8 = (info.horizontal_front & 0xFF) as u8; // least sig 8 bits
244 let horizontal_front_msb: u8 = ((info.horizontal_front >> 8) & 0x03) as u8; // most sig 2 bits
245 let horizontal_sync_lsb: u8 = (info.horizontal_sync & 0xFF) as u8; // least sig 8 bits
246 let horizontal_sync_msb: u8 = ((info.horizontal_sync >> 8) & 0x03) as u8; // most sig 2 bits
247
248 let vertical_front_lsb: u8 = (info.vertical_front & 0x0F) as u8; // least sig 4 bits
249 let vertical_front_msb: u8 = ((info.vertical_front >> 8) & 0x0F) as u8; // most sig 2 bits
250 let vertical_sync_lsb: u8 = (info.vertical_sync & 0xFF) as u8; // least sig 4 bits
251 let vertical_sync_msb: u8 = ((info.vertical_sync >> 8) & 0x0F) as u8; // most sig 2 bits
252
253 // Horizontal front porch in pixels.
254 edid_block[8] = horizontal_front_lsb;
255 // Horizontal sync pulse width in pixels.
256 edid_block[9] = horizontal_sync_lsb;
257 // LSB of vertical front porch and sync pulse
258 edid_block[10] = vertical_sync_lsb | (vertical_front_lsb << 4);
259 // Upper 2 bits of these values.
260 edid_block[11] = vertical_sync_msb
261 | (vertical_front_msb << 2)
262 | (horizontal_sync_msb << 4)
263 | (horizontal_front_msb << 6);
264
265 let width_millimeters_lsb: u8 = (info.width_millimeters & 0xFF) as u8; // least sig 8 bits
266 let width_millimeters_msb: u8 = ((info.width_millimeters >> 8) & 0xF) as u8; // most sig 4 bits
267
268 let height_millimeters_lsb: u8 = (info.height_millimeters & 0xFF) as u8; // least sig 8 bits
269 let height_millimeters_msb: u8 = ((info.height_millimeters >> 8) & 0xF) as u8; // most sig 4 bits
270
271 edid_block[12] = width_millimeters_lsb;
272 edid_block[13] = height_millimeters_lsb;
273 edid_block[14] = height_millimeters_msb | (width_millimeters_msb << 4);
274 }
275
276 // The EDID header. This is defined by the EDID spec.
populate_header(edid: &mut [u8])277 fn populate_header(edid: &mut [u8]) {
278 edid[0] = 0x00;
279 edid[1] = 0xFF;
280 edid[2] = 0xFF;
281 edid[3] = 0xFF;
282 edid[4] = 0xFF;
283 edid[5] = 0xFF;
284 edid[6] = 0xFF;
285 edid[7] = 0x00;
286
287 let manufacturer_name: [char; 3] = ['G', 'G', 'L'];
288 // 00001 -> A, 00010 -> B, etc
289 let manufacturer_id: u16 = manufacturer_name
290 .iter()
291 .map(|c| (*c as u8 - b'A' + 1) & 0x1F)
292 .fold(0u16, |res, lsb| (res << 5) | (lsb as u16));
293 edid[8..10].copy_from_slice(&manufacturer_id.to_be_bytes());
294
295 let manufacture_product_id: u16 = 1;
296 edid[10..12].copy_from_slice(&manufacture_product_id.to_le_bytes());
297
298 let serial_id: u32 = 1;
299 edid[12..16].copy_from_slice(&serial_id.to_le_bytes());
300
301 let manufacture_week: u8 = 8;
302 edid[16] = manufacture_week;
303
304 let manufacture_year: u32 = 2022;
305 edid[17] = (manufacture_year - 1990u32) as u8;
306 }
307
308 // The standard timings are 8 timing modes with a lower priority (and different data format)
309 // than the 4 detailed timing modes.
populate_standard_timings(edid: &mut [u8]) -> VirtioGpuResult310 fn populate_standard_timings(edid: &mut [u8]) -> VirtioGpuResult {
311 let resolutions = [
312 Resolution::new(1440, 900),
313 Resolution::new(1600, 900),
314 Resolution::new(800, 600),
315 Resolution::new(1680, 1050),
316 Resolution::new(1856, 1392),
317 Resolution::new(1280, 1024),
318 Resolution::new(1400, 1050),
319 Resolution::new(1920, 1200),
320 ];
321
322 // Index 0 is horizontal pixels / 8 - 31
323 // Index 1 is a combination of the refresh_rate - 60 (so we are setting to 0, for now) and two
324 // bits for the aspect ratio.
325 for (index, r) in resolutions.iter().enumerate() {
326 edid[0x26 + (index * 2)] = (r.width / 8 - 31) as u8;
327 let ar_bits = match r.get_aspect_ratio() {
328 (8, 5) => 0x0,
329 (4, 3) => 0x1,
330 (5, 4) => 0x2,
331 (16, 9) => 0x3,
332 (x, y) => return Err(ErrEdid(format!("Unsupported aspect ratio: {} {}", x, y))),
333 };
334 edid[0x27 + (index * 2)] = ar_bits;
335 }
336 Ok(OkNoData)
337 }
338
339 // Per the EDID spec, needs to be 1 and 4.
populate_edid_version(edid: &mut [u8])340 fn populate_edid_version(edid: &mut [u8]) {
341 edid[18] = 1;
342 edid[19] = 4;
343 }
344
populate_size(edid: &mut [u8], info: &DisplayInfo)345 fn populate_size(edid: &mut [u8], info: &DisplayInfo) {
346 edid[21] = info.width_centimeters();
347 edid[22] = info.height_centimeters();
348 }
349
calculate_checksum(edid: &mut [u8])350 fn calculate_checksum(edid: &mut [u8]) {
351 let mut checksum: u8 = 0;
352 for byte in edid.iter().take(EDID_DATA_LENGTH - 1) {
353 checksum = checksum.wrapping_add(*byte);
354 }
355
356 if checksum != 0 {
357 checksum = 255 - checksum + 1;
358 }
359
360 edid[127] = checksum;
361 }
362