• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <iostream>
16 #include <memory>
17 #include <set>
18 
19 #include "source/cfa.h"
20 #include "source/opt/dominator_tree.h"
21 #include "source/opt/ir_context.h"
22 
23 // Calculates the dominator or postdominator tree for a given function.
24 // 1 - Compute the successors and predecessors for each BasicBlock. We add a
25 // placeholder node for the start node or for postdominators the exit. This node
26 // will point to all entry or all exit nodes.
27 // 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of
28 // all BasicBlocks. Using the successors (or for postdominator, predecessors)
29 // calculated in step 1 to traverse the tree.
30 // 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using
31 // the predecessors list (or for postdominator, successors). This will give us a
32 // vector of BB pairs. Each BB and its immediate dominator.
33 // 4 - Using the list from 3 use those edges to build a tree of
34 // DominatorTreeNodes. Each node containing a link to the parent dominator and
35 // children which are dominated.
36 // 5 - Using the tree from 4, perform a depth first traversal to calculate the
37 // preorder and postorder index of each node. We use these indexes to compare
38 // nodes against each other for domination checks.
39 
40 namespace spvtools {
41 namespace opt {
42 namespace {
43 
44 // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
45 // depth first search on generic BasicBlock types. Will call post and pre order
46 // user defined functions during traversal
47 //
48 // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
49 // SuccessorLambda - Lamdba matching the signature of 'const
50 // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
51 // succeeding BasicBlock A.
52 // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
53 // called on each node traversed AFTER their children.
54 // PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be
55 // called on each node traversed BEFORE their children.
56 template <typename BBType, typename SuccessorLambda, typename PreLambda,
57           typename PostLambda>
DepthFirstSearch(const BBType * bb,SuccessorLambda successors,PreLambda pre,PostLambda post)58 static void DepthFirstSearch(const BBType* bb, SuccessorLambda successors,
59                              PreLambda pre, PostLambda post) {
60   auto no_terminal_blocks = [](const BBType*) { return false; };
61   CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post,
62                                    no_terminal_blocks);
63 }
64 
65 // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
66 // depth first search on generic BasicBlock types. This overload is for only
67 // performing user defined post order.
68 //
69 // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
70 // SuccessorLambda - Lamdba matching the signature of 'const
71 // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
72 // succeeding BasicBlock A.
73 // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
74 // called on each node traversed after their children.
75 template <typename BBType, typename SuccessorLambda, typename PostLambda>
DepthFirstSearchPostOrder(const BBType * bb,SuccessorLambda successors,PostLambda post)76 static void DepthFirstSearchPostOrder(const BBType* bb,
77                                       SuccessorLambda successors,
78                                       PostLambda post) {
79   // Ignore preorder operation.
80   auto nop_preorder = [](const BBType*) {};
81   DepthFirstSearch(bb, successors, nop_preorder, post);
82 }
83 
84 // Small type trait to get the function class type.
85 template <typename BBType>
86 struct GetFunctionClass {
87   using FunctionType = Function;
88 };
89 
90 // Helper class to compute predecessors and successors for each Basic Block in a
91 // function. Through GetPredFunctor and GetSuccessorFunctor it provides an
92 // interface to get the successor and predecessor lists for each basic
93 // block. This is required by the DepthFirstTraversal and ComputeDominator
94 // functions which take as parameter an std::function returning the successors
95 // and predecessors respectively.
96 //
97 // When computing the post-dominator tree, all edges are inverted. So successors
98 // returned by this class will be predecessors in the original CFG.
99 template <typename BBType>
100 class BasicBlockSuccessorHelper {
101   // This should eventually become const BasicBlock.
102   using BasicBlock = BBType;
103   using Function = typename GetFunctionClass<BBType>::FunctionType;
104 
105   using BasicBlockListTy = std::vector<BasicBlock*>;
106   using BasicBlockMapTy =
107       std::unordered_map<const BasicBlock*, BasicBlockListTy>;
108 
109  public:
110   // For compliance with the dominance tree computation, entry nodes are
111   // connected to a single placeholder node.
112   BasicBlockSuccessorHelper(Function& func,
113                             const BasicBlock* placeholder_start_node,
114                             bool post);
115 
116   // CFA::CalculateDominators requires std::vector<BasicBlock*>.
117   using GetBlocksFunction =
118       std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>;
119 
120   // Returns the list of predecessor functions.
GetPredFunctor()121   GetBlocksFunction GetPredFunctor() {
122     return [this](const BasicBlock* bb) {
123       BasicBlockListTy* v = &this->predecessors_[bb];
124       return v;
125     };
126   }
127 
128   // Returns a vector of the list of successor nodes from a given node.
GetSuccessorFunctor()129   GetBlocksFunction GetSuccessorFunctor() {
130     return [this](const BasicBlock* bb) {
131       BasicBlockListTy* v = &this->successors_[bb];
132       return v;
133     };
134   }
135 
136  private:
137   bool invert_graph_;
138   BasicBlockMapTy successors_;
139   BasicBlockMapTy predecessors_;
140 
141   // Build the successors and predecessors map for each basic blocks |f|.
142   // If |invert_graph_| is true, all edges are reversed (successors becomes
143   // predecessors and vice versa).
144   // For convenience, the start of the graph is |placeholder_start_node|.
145   // The dominator tree construction requires a unique entry node, which cannot
146   // be guaranteed for the postdominator graph. The |placeholder_start_node| BB
147   // is here to gather all entry nodes.
148   void CreateSuccessorMap(Function& f,
149                           const BasicBlock* placeholder_start_node);
150 };
151 
152 template <typename BBType>
BasicBlockSuccessorHelper(Function & func,const BasicBlock * placeholder_start_node,bool invert)153 BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper(
154     Function& func, const BasicBlock* placeholder_start_node, bool invert)
155     : invert_graph_(invert) {
156   CreateSuccessorMap(func, placeholder_start_node);
157 }
158 
159 template <typename BBType>
CreateSuccessorMap(Function & f,const BasicBlock * placeholder_start_node)160 void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap(
161     Function& f, const BasicBlock* placeholder_start_node) {
162   IRContext* context = f.DefInst().context();
163 
164   if (invert_graph_) {
165     // For the post dominator tree, we see the inverted graph.
166     // successors_ in the inverted graph are the predecessors in the CFG.
167     // The tree construction requires 1 entry point, so we add a placeholder
168     // node that is connected to all function exiting basic blocks. An exiting
169     // basic block is a block with an OpKill, OpUnreachable, OpReturn,
170     // OpReturnValue, or OpTerminateInvocation  as terminator instruction.
171     for (BasicBlock& bb : f) {
172       if (bb.hasSuccessor()) {
173         BasicBlockListTy& pred_list = predecessors_[&bb];
174         const auto& const_bb = bb;
175         const_bb.ForEachSuccessorLabel(
176             [this, &pred_list, &bb, context](const uint32_t successor_id) {
177               BasicBlock* succ = context->get_instr_block(successor_id);
178               // Inverted graph: our successors in the CFG
179               // are our predecessors in the inverted graph.
180               this->successors_[succ].push_back(&bb);
181               pred_list.push_back(succ);
182             });
183       } else {
184         successors_[placeholder_start_node].push_back(&bb);
185         predecessors_[&bb].push_back(
186             const_cast<BasicBlock*>(placeholder_start_node));
187       }
188     }
189   } else {
190     successors_[placeholder_start_node].push_back(f.entry().get());
191     predecessors_[f.entry().get()].push_back(
192         const_cast<BasicBlock*>(placeholder_start_node));
193     for (BasicBlock& bb : f) {
194       BasicBlockListTy& succ_list = successors_[&bb];
195 
196       const auto& const_bb = bb;
197       const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) {
198         BasicBlock* succ = context->get_instr_block(successor_id);
199         succ_list.push_back(succ);
200         predecessors_[succ].push_back(&bb);
201       });
202     }
203   }
204 }
205 
206 }  // namespace
207 
StrictlyDominates(uint32_t a,uint32_t b) const208 bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const {
209   if (a == b) return false;
210   return Dominates(a, b);
211 }
212 
StrictlyDominates(const BasicBlock * a,const BasicBlock * b) const213 bool DominatorTree::StrictlyDominates(const BasicBlock* a,
214                                       const BasicBlock* b) const {
215   return DominatorTree::StrictlyDominates(a->id(), b->id());
216 }
217 
StrictlyDominates(const DominatorTreeNode * a,const DominatorTreeNode * b) const218 bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a,
219                                       const DominatorTreeNode* b) const {
220   if (a == b) return false;
221   return Dominates(a, b);
222 }
223 
Dominates(uint32_t a,uint32_t b) const224 bool DominatorTree::Dominates(uint32_t a, uint32_t b) const {
225   // Check that both of the inputs are actual nodes.
226   const DominatorTreeNode* a_node = GetTreeNode(a);
227   const DominatorTreeNode* b_node = GetTreeNode(b);
228   if (!a_node || !b_node) return false;
229 
230   return Dominates(a_node, b_node);
231 }
232 
Dominates(const DominatorTreeNode * a,const DominatorTreeNode * b) const233 bool DominatorTree::Dominates(const DominatorTreeNode* a,
234                               const DominatorTreeNode* b) const {
235   if (!a || !b) return false;
236   // Node A dominates node B if they are the same.
237   if (a == b) return true;
238 
239   return a->dfs_num_pre_ < b->dfs_num_pre_ &&
240          a->dfs_num_post_ > b->dfs_num_post_;
241 }
242 
Dominates(const BasicBlock * A,const BasicBlock * B) const243 bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const {
244   return Dominates(A->id(), B->id());
245 }
246 
ImmediateDominator(const BasicBlock * A) const247 BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const {
248   return ImmediateDominator(A->id());
249 }
250 
ImmediateDominator(uint32_t a) const251 BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const {
252   // Check that A is a valid node in the tree.
253   auto a_itr = nodes_.find(a);
254   if (a_itr == nodes_.end()) return nullptr;
255 
256   const DominatorTreeNode* node = &a_itr->second;
257 
258   if (node->parent_ == nullptr) {
259     return nullptr;
260   }
261 
262   return node->parent_->bb_;
263 }
264 
GetOrInsertNode(BasicBlock * bb)265 DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) {
266   DominatorTreeNode* dtn = nullptr;
267 
268   std::map<uint32_t, DominatorTreeNode>::iterator node_iter =
269       nodes_.find(bb->id());
270   if (node_iter == nodes_.end()) {
271     dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb}))
272                .first->second;
273   } else {
274     dtn = &node_iter->second;
275   }
276 
277   return dtn;
278 }
279 
GetDominatorEdges(const Function * f,const BasicBlock * placeholder_start_node,std::vector<std::pair<BasicBlock *,BasicBlock * >> * edges)280 void DominatorTree::GetDominatorEdges(
281     const Function* f, const BasicBlock* placeholder_start_node,
282     std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) {
283   // Each time the depth first traversal calls the postorder callback
284   // std::function we push that node into the postorder vector to create our
285   // postorder list.
286   std::vector<const BasicBlock*> postorder;
287   auto postorder_function = [&](const BasicBlock* b) {
288     postorder.push_back(b);
289   };
290 
291   // CFA::CalculateDominators requires std::vector<BasicBlock*>
292   // BB are derived from F, so we need to const cast it at some point
293   // no modification is made on F.
294   BasicBlockSuccessorHelper<BasicBlock> helper{
295       *const_cast<Function*>(f), placeholder_start_node, postdominator_};
296 
297   // The successor function tells DepthFirstTraversal how to move to successive
298   // nodes by providing an interface to get a list of successor nodes from any
299   // given node.
300   auto successor_functor = helper.GetSuccessorFunctor();
301 
302   // The predecessor functor does the same as the successor functor
303   // but for all nodes preceding a given node.
304   auto predecessor_functor = helper.GetPredFunctor();
305 
306   // If we're building a post dominator tree we traverse the tree in reverse
307   // using the predecessor function in place of the successor function and vice
308   // versa.
309   DepthFirstSearchPostOrder(placeholder_start_node, successor_functor,
310                             postorder_function);
311   *edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor);
312 }
313 
InitializeTree(const CFG & cfg,const Function * f)314 void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) {
315   ClearTree();
316 
317   // Skip over empty functions.
318   if (f->cbegin() == f->cend()) {
319     return;
320   }
321 
322   const BasicBlock* placeholder_start_node =
323       postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block();
324 
325   // Get the immediate dominator for each node.
326   std::vector<std::pair<BasicBlock*, BasicBlock*>> edges;
327   GetDominatorEdges(f, placeholder_start_node, &edges);
328 
329   // Transform the vector<pair> into the tree structure which we can use to
330   // efficiently query dominance.
331   for (auto edge : edges) {
332     DominatorTreeNode* first = GetOrInsertNode(edge.first);
333 
334     if (edge.first == edge.second) {
335       if (std::find(roots_.begin(), roots_.end(), first) == roots_.end())
336         roots_.push_back(first);
337       continue;
338     }
339 
340     DominatorTreeNode* second = GetOrInsertNode(edge.second);
341 
342     first->parent_ = second;
343     second->children_.push_back(first);
344   }
345   ResetDFNumbering();
346 }
347 
ResetDFNumbering()348 void DominatorTree::ResetDFNumbering() {
349   int index = 0;
350   auto preFunc = [&index](const DominatorTreeNode* node) {
351     const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index;
352   };
353 
354   auto postFunc = [&index](const DominatorTreeNode* node) {
355     const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index;
356   };
357 
358   auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; };
359 
360   for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc);
361 }
362 
DumpTreeAsDot(std::ostream & out_stream) const363 void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const {
364   out_stream << "digraph {\n";
365   Visit([&out_stream](const DominatorTreeNode* node) {
366     // Print the node.
367     if (node->bb_) {
368       out_stream << node->bb_->id() << "[label=\"" << node->bb_->id()
369                  << "\"];\n";
370     }
371 
372     // Print the arrow from the parent to this node. Entry nodes will not have
373     // parents so draw them as children from the placeholder node.
374     if (node->parent_) {
375       out_stream << node->parent_->bb_->id() << " -> " << node->bb_->id()
376                  << ";\n";
377     }
378 
379     // Return true to continue the traversal.
380     return true;
381   });
382   out_stream << "}\n";
383 }
384 
385 }  // namespace opt
386 }  // namespace spvtools
387