1 // Copyright (c) 2018 Google LLC. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef SOURCE_OPT_SSA_REWRITE_PASS_H_ 16 #define SOURCE_OPT_SSA_REWRITE_PASS_H_ 17 18 #include <queue> 19 #include <string> 20 #include <unordered_map> 21 #include <unordered_set> 22 #include <utility> 23 #include <vector> 24 25 #include "source/opt/basic_block.h" 26 #include "source/opt/ir_context.h" 27 #include "source/opt/mem_pass.h" 28 29 namespace spvtools { 30 namespace opt { 31 32 // Utility class for passes that need to rewrite a function into SSA. This 33 // converts load/store operations on function-local variables into SSA IDs, 34 // which allows them to be the target of optimizing transformations. 35 // 36 // Store and load operations to these variables are converted into 37 // operations on SSA IDs. Phi instructions are added when needed. See the 38 // SSA construction paper for algorithmic details 39 // (https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6) 40 class SSARewriter { 41 public: SSARewriter(MemPass * pass)42 SSARewriter(MemPass* pass) : pass_(pass) {} 43 44 // Rewrites SSA-target variables in function |fp| into SSA. This is the 45 // entry point for the SSA rewrite algorithm. SSA-target variables are 46 // locally defined variables that meet the criteria set by IsSSATargetVar. 47 // 48 // Returns whether the function was modified or not, and whether or not the 49 // rewrite was successful. 50 Pass::Status RewriteFunctionIntoSSA(Function* fp); 51 52 private: 53 class PhiCandidate { 54 public: PhiCandidate(uint32_t var,uint32_t result,BasicBlock * block)55 explicit PhiCandidate(uint32_t var, uint32_t result, BasicBlock* block) 56 : var_id_(var), 57 result_id_(result), 58 bb_(block), 59 phi_args_(), 60 copy_of_(0), 61 is_complete_(false), 62 users_() {} 63 var_id()64 uint32_t var_id() const { return var_id_; } result_id()65 uint32_t result_id() const { return result_id_; } bb()66 BasicBlock* bb() const { return bb_; } phi_args()67 std::vector<uint32_t>& phi_args() { return phi_args_; } phi_args()68 const std::vector<uint32_t>& phi_args() const { return phi_args_; } copy_of()69 uint32_t copy_of() const { return copy_of_; } is_complete()70 bool is_complete() const { return is_complete_; } users()71 std::vector<uint32_t>& users() { return users_; } users()72 const std::vector<uint32_t>& users() const { return users_; } 73 74 // Marks this phi candidate as a trivial copy of |orig_id|. MarkCopyOf(uint32_t orig_id)75 void MarkCopyOf(uint32_t orig_id) { copy_of_ = orig_id; } 76 77 // Marks this phi candidate as incomplete. MarkIncomplete()78 void MarkIncomplete() { is_complete_ = false; } 79 80 // Marks this phi candidate as complete. MarkComplete()81 void MarkComplete() { is_complete_ = true; } 82 83 // Returns true if this Phi candidate is ready to be emitted. IsReady()84 bool IsReady() const { return is_complete() && copy_of() == 0; } 85 86 // Pretty prints this Phi candidate into a string and returns it. |cfg| is 87 // needed to lookup basic block predecessors. 88 std::string PrettyPrint(const CFG* cfg) const; 89 90 // Registers |operand_id| as a user of this Phi candidate. AddUser(uint32_t operand_id)91 void AddUser(uint32_t operand_id) { users_.push_back(operand_id); } 92 93 private: 94 // Variable ID that this Phi is merging. 95 uint32_t var_id_; 96 97 // SSA ID generated by this Phi (i.e., this is the result ID of the eventual 98 // Phi instruction). 99 uint32_t result_id_; 100 101 // Basic block to hold this Phi. 102 BasicBlock* bb_; 103 104 // Vector of operands for every predecessor block of |bb|. This vector is 105 // organized so that the Ith slot contains the argument coming from the Ith 106 // predecessor of |bb|. 107 std::vector<uint32_t> phi_args_; 108 109 // If this Phi is a trivial copy of another Phi, this is the ID of the 110 // original. If this is 0, it means that this is not a trivial Phi. 111 uint32_t copy_of_; 112 113 // False, if this Phi candidate has no arguments or at least one argument is 114 // %0. 115 bool is_complete_; 116 117 // List of all users for this Phi instruction. Each element is the result ID 118 // of the load instruction replaced by this Phi, or the result ID of a Phi 119 // candidate that has this Phi in its list of operands. 120 std::vector<uint32_t> users_; 121 }; 122 123 // Type used to keep track of store operations in each basic block. 124 typedef std::unordered_map<BasicBlock*, 125 std::unordered_map<uint32_t, uint32_t>> 126 BlockDefsMap; 127 128 // Generates all the SSA rewriting decisions for basic block |bb|. This 129 // populates the Phi candidate table (|phi_candidate_|) and the load 130 // replacement table (|load_replacement_). Returns true if successful. 131 bool GenerateSSAReplacements(BasicBlock* bb); 132 133 // Seals block |bb|. Sealing a basic block means |bb| and all its 134 // predecessors of |bb| have been scanned for loads/stores. 135 void SealBlock(BasicBlock* bb); 136 137 // Returns true if |bb| has been sealed. IsBlockSealed(BasicBlock * bb)138 bool IsBlockSealed(BasicBlock* bb) { return sealed_blocks_.count(bb) != 0; } 139 140 // Returns the Phi candidate with result ID |id| if it exists in the table 141 // |phi_candidates_|. If no such Phi candidate exists, it returns nullptr. GetPhiCandidate(uint32_t id)142 PhiCandidate* GetPhiCandidate(uint32_t id) { 143 auto it = phi_candidates_.find(id); 144 return (it != phi_candidates_.end()) ? &it->second : nullptr; 145 } 146 147 // Replaces all the users of Phi candidate |phi_cand| to be users of 148 // |repl_id|. 149 void ReplacePhiUsersWith(const PhiCandidate& phi_cand, uint32_t repl_id); 150 151 // Returns the value ID that should replace the load ID in the given 152 // replacement pair |repl|. The replacement is a pair (|load_id|, |val_id|). 153 // If |val_id| is itself replaced by another value in the table, this function 154 // will look the replacement for |val_id| until it finds one that is not 155 // itself replaced. For instance, given: 156 // 157 // %34 = OpLoad %float %f1 158 // OpStore %t %34 159 // %36 = OpLoad %float %t 160 // 161 // Assume that %f1 is reached by a Phi candidate %42, the load 162 // replacement table will have the following entries: 163 // 164 // %34 -> %42 165 // %36 -> %34 166 // 167 // So, when looking for the replacement for %36, we should not use 168 // %34. Rather, we should use %42. To do this, the chain of 169 // replacements must be followed until we reach an element that has 170 // no replacement. 171 uint32_t GetReplacement(std::pair<uint32_t, uint32_t> repl); 172 173 // Returns the argument at index |ix| from |phi_candidate|. If argument |ix| 174 // comes from a trivial Phi, it follows the copy-of chain from that trivial 175 // Phi until it finds the original Phi candidate. 176 // 177 // This is only valid after all Phi candidates have been completed. It can 178 // only be called when generating the IR for these Phis. 179 uint32_t GetPhiArgument(const PhiCandidate* phi_candidate, uint32_t ix); 180 181 // Applies all the SSA replacement decisions. This replaces loads/stores to 182 // SSA target variables with their corresponding SSA IDs, and inserts Phi 183 // instructions for them. 184 bool ApplyReplacements(); 185 186 // Registers a definition for variable |var_id| in basic block |bb| with 187 // value |val_id|. WriteVariable(uint32_t var_id,BasicBlock * bb,uint32_t val_id)188 void WriteVariable(uint32_t var_id, BasicBlock* bb, uint32_t val_id) { 189 defs_at_block_[bb][var_id] = val_id; 190 if (auto* pc = GetPhiCandidate(val_id)) { 191 pc->AddUser(bb->id()); 192 } 193 } 194 195 // Returns the value of |var_id| at |bb| if |defs_at_block_| contains it. 196 // Otherwise, returns 0. 197 uint32_t GetValueAtBlock(uint32_t var_id, BasicBlock* bb); 198 199 // Processes the store operation |inst| in basic block |bb|. This extracts 200 // the variable ID being stored into, determines whether the variable is an 201 // SSA-target variable, and, if it is, it stores its value in the 202 // |defs_at_block_| map. 203 void ProcessStore(Instruction* inst, BasicBlock* bb); 204 205 // Processes the load operation |inst| in basic block |bb|. This extracts 206 // the variable ID being stored into, determines whether the variable is an 207 // SSA-target variable, and, if it is, it reads its reaching definition by 208 // calling |GetReachingDef|. Returns true if successful. 209 bool ProcessLoad(Instruction* inst, BasicBlock* bb); 210 211 // Reads the current definition for variable |var_id| in basic block |bb|. 212 // If |var_id| is not defined in block |bb| it walks up the predecessors of 213 // |bb|, creating new Phi candidates along the way, if needed. 214 // 215 // It returns the value for |var_id| from the RHS of the current reaching 216 // definition for |var_id|. 217 uint32_t GetReachingDef(uint32_t var_id, BasicBlock* bb); 218 219 // Adds arguments to |phi_candidate| by getting the reaching definition of 220 // |phi_candidate|'s variable on each of the predecessors of its basic 221 // block. After populating the argument list, it determines whether all its 222 // arguments are the same. If so, it returns the ID of the argument that 223 // this Phi copies. 224 uint32_t AddPhiOperands(PhiCandidate* phi_candidate); 225 226 // Creates a Phi candidate instruction for variable |var_id| in basic block 227 // |bb|. 228 // 229 // Since the rewriting algorithm may remove Phi candidates when it finds 230 // them to be trivial, we avoid the expense of creating actual Phi 231 // instructions by keeping a pool of Phi candidates (|phi_candidates_|) 232 // during rewriting. 233 // 234 // Once the candidate Phi is created, it returns its ID. 235 PhiCandidate& CreatePhiCandidate(uint32_t var_id, BasicBlock* bb); 236 237 // Attempts to remove a trivial Phi candidate |phi_cand|. Trivial Phis are 238 // those that only reference themselves and one other value |val| any number 239 // of times. This will try to remove any other Phis that become trivial 240 // after |phi_cand| is removed. 241 // 242 // If |phi_cand| is trivial, it returns the SSA ID for the value that should 243 // replace it. Otherwise, it returns the SSA ID for |phi_cand|. 244 uint32_t TryRemoveTrivialPhi(PhiCandidate* phi_cand); 245 246 // Finalizes |phi_candidate| by replacing every argument that is still %0 247 // with its reaching definition. 248 void FinalizePhiCandidate(PhiCandidate* phi_candidate); 249 250 // Finalizes processing of Phi candidates. Once the whole function has been 251 // scanned for loads and stores, the CFG will still have some incomplete and 252 // trivial Phis. This will add missing arguments and remove trivial Phi 253 // candidates. 254 void FinalizePhiCandidates(); 255 256 // Prints the table of Phi candidates to std::cerr. 257 void PrintPhiCandidates() const; 258 259 // Prints the load replacement table to std::cerr. 260 void PrintReplacementTable() const; 261 262 // Map holding the value of every SSA-target variable at every basic block 263 // where the variable is stored. defs_at_block_[block][var_id] = val_id 264 // means that there is a store or Phi instruction for variable |var_id| at 265 // basic block |block| with value |val_id|. 266 BlockDefsMap defs_at_block_; 267 268 // Map, indexed by Phi ID, holding all the Phi candidates created during SSA 269 // rewriting. |phi_candidates_[id]| returns the Phi candidate whose result 270 // is |id|. 271 std::unordered_map<uint32_t, PhiCandidate> phi_candidates_; 272 273 // Queue of incomplete Phi candidates. These are Phi candidates created at 274 // unsealed blocks. They need to be completed before they are instantiated 275 // in ApplyReplacements. 276 std::queue<PhiCandidate*> incomplete_phis_; 277 278 // List of completed Phi candidates. These are the only candidates that 279 // will become real Phi instructions. 280 std::vector<PhiCandidate*> phis_to_generate_; 281 282 // SSA replacement table. This maps variable IDs, resulting from a load 283 // operation, to the value IDs that will replace them after SSA rewriting. 284 // After all the rewriting decisions are made, a final scan through the IR 285 // is done to replace all uses of the original load ID with the value ID. 286 std::unordered_map<uint32_t, uint32_t> load_replacement_; 287 288 // Set of blocks that have been sealed already. 289 std::unordered_set<BasicBlock*> sealed_blocks_; 290 291 // Memory pass requesting the SSA rewriter. 292 MemPass* pass_; 293 }; 294 295 class SSARewritePass : public MemPass { 296 public: 297 SSARewritePass() = default; 298 name()299 const char* name() const override { return "ssa-rewrite"; } 300 Status Process() override; 301 }; 302 303 } // namespace opt 304 } // namespace spvtools 305 306 #endif // SOURCE_OPT_SSA_REWRITE_PASS_H_ 307