• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 The Amber Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "src/float16_helper.h"
16 
17 #include <cassert>
18 #include <cstring>
19 
20 // Float10
21 // | 9 8 7 6 5 | 4 3 2 1 0 |
22 // | exponent  | mantissa  |
23 //
24 // Float11
25 // | 10 9 8 7 6 | 5 4 3 2 1 0 |
26 // | exponent   |  mantissa   |
27 //
28 // Float16
29 // | 15 | 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 0 |
30 // | s  |     exponent   |  mantissa           |
31 //
32 // Float32
33 // | 31 | 30 ... 23 | 22 ... 0 |
34 // | s  |  exponent | mantissa |
35 
36 namespace amber {
37 namespace float16 {
38 namespace {
39 
40 // Return sign value of 32 bits float.
FloatSign(const uint32_t hex_float)41 uint16_t FloatSign(const uint32_t hex_float) {
42   return static_cast<uint16_t>(hex_float >> 31U);
43 }
44 
45 // Return exponent value of 32 bits float.
FloatExponent(const uint32_t hex_float)46 uint16_t FloatExponent(const uint32_t hex_float) {
47   uint32_t exponent_bits = ((hex_float >> 23U) & ((1U << 8U) - 1U));
48   // Handle zero and denormals.
49   if (exponent_bits == 0U)
50     return 0;
51   uint32_t exponent = exponent_bits - 112U;
52   const uint32_t half_exponent_mask = (1U << 5U) - 1U;
53   assert(((exponent & ~half_exponent_mask) == 0U) && "Float exponent overflow");
54   return static_cast<uint16_t>(exponent & half_exponent_mask);
55 }
56 
57 // Return mantissa value of 32 bits float. Note that mantissa for 32
58 // bits float is 23 bits and this method must return uint32_t.
FloatMantissa(const uint32_t hex_float)59 uint32_t FloatMantissa(const uint32_t hex_float) {
60   return static_cast<uint32_t>(hex_float & ((1U << 23U) - 1U));
61 }
62 
63 // Convert float |value| whose size is 16 bits to 32 bits float
64 // based on IEEE-754.
HexFloat16ToFloat(const uint8_t * value)65 float HexFloat16ToFloat(const uint8_t* value) {
66   uint32_t sign = (static_cast<uint32_t>(value[1]) & 0x80) << 24U;
67   uint32_t exponent_bits = (static_cast<uint32_t>(value[1]) & 0x7c) >> 2U;
68   uint32_t exponent = 0U;
69   uint32_t mantissa = 0U;
70   // Handle zero and flush denormals to zero.
71   if (exponent_bits != 0U) {
72     exponent = (exponent_bits + 112U) << 23U;
73     mantissa = ((static_cast<uint32_t>(value[1]) & 0x3) << 8U |
74                 static_cast<uint32_t>(value[0]))
75                << 13U;
76   }
77 
78   uint32_t hex = sign | exponent | mantissa;
79   float hex_float;
80   static_assert((sizeof(uint32_t) == sizeof(float)),
81                 "sizeof(uint32_t) != sizeof(float)");
82   memcpy(&hex_float, &hex, sizeof(float));
83   return hex_float;
84 }
85 
86 // Convert float |value| whose size is 11 bits to 32 bits float
87 // based on IEEE-754.
HexFloat11ToFloat(const uint8_t * value)88 float HexFloat11ToFloat(const uint8_t* value) {
89   uint32_t exponent = (((static_cast<uint32_t>(value[1]) << 2U) |
90                         ((static_cast<uint32_t>(value[0]) & 0xc0) >> 6U)) +
91                        112U)
92                       << 23U;
93   uint32_t mantissa = (static_cast<uint32_t>(value[0]) & 0x3f) << 17U;
94 
95   uint32_t hex = exponent | mantissa;
96   float hex_float;
97   static_assert((sizeof(uint32_t) == sizeof(float)),
98                 "sizeof(uint32_t) != sizeof(float)");
99   memcpy(&hex_float, &hex, sizeof(float));
100   return hex_float;
101 }
102 
103 // Convert float |value| whose size is 10 bits to 32 bits float
104 // based on IEEE-754.
HexFloat10ToFloat(const uint8_t * value)105 float HexFloat10ToFloat(const uint8_t* value) {
106   uint32_t exponent = (((static_cast<uint32_t>(value[1]) << 3U) |
107                         ((static_cast<uint32_t>(value[0]) & 0xe0) >> 5U)) +
108                        112U)
109                       << 23U;
110   uint32_t mantissa = (static_cast<uint32_t>(value[0]) & 0x1f) << 18U;
111 
112   uint32_t hex = exponent | mantissa;
113   float hex_float;
114   static_assert((sizeof(uint32_t) == sizeof(float)),
115                 "sizeof(uint32_t) != sizeof(float)");
116   memcpy(&hex_float, &hex, sizeof(float));
117   return hex_float;
118 }
119 
120 }  // namespace
121 
HexFloatToFloat(const uint8_t * value,uint8_t bits)122 float HexFloatToFloat(const uint8_t* value, uint8_t bits) {
123   switch (bits) {
124     case 10:
125       return HexFloat10ToFloat(value);
126     case 11:
127       return HexFloat11ToFloat(value);
128     case 16:
129       return HexFloat16ToFloat(value);
130   }
131 
132   assert(false && "Invalid bits");
133   return 0;
134 }
135 
FloatToHexFloat16(const float value)136 uint16_t FloatToHexFloat16(const float value) {
137   const uint32_t* hex = reinterpret_cast<const uint32_t*>(&value);
138   uint16_t sign = FloatSign(*hex);
139   uint16_t exponent = FloatExponent(*hex);
140   // Flush denormals.
141   uint32_t mantissa = ((exponent == 0) ? 0U : FloatMantissa(*hex));
142   return static_cast<uint16_t>(static_cast<uint16_t>(sign << 15U) |
143                                static_cast<uint16_t>(exponent << 10U) |
144                                static_cast<uint16_t>(mantissa >> 13U));
145 }
146 
147 }  // namespace float16
148 }  // namespace amber
149