• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_NUMTRAITS_H
11 #define EIGEN_NUMTRAITS_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // default implementation of digits10(), based on numeric_limits if specialized,
18 // 0 for integer types, and log10(epsilon()) otherwise.
19 template< typename T,
20           bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
21           bool is_integer = NumTraits<T>::IsInteger>
22 struct default_digits10_impl
23 {
24   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
rundefault_digits10_impl25   static int run() { return std::numeric_limits<T>::digits10; }
26 };
27 
28 template<typename T>
29 struct default_digits10_impl<T,false,false> // Floating point
30 {
31   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
32   static int run() {
33     using std::log10;
34     using std::ceil;
35     typedef typename NumTraits<T>::Real Real;
36     return int(ceil(-log10(NumTraits<Real>::epsilon())));
37   }
38 };
39 
40 template<typename T>
41 struct default_digits10_impl<T,false,true> // Integer
42 {
43   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
44   static int run() { return 0; }
45 };
46 
47 
48 // default implementation of digits(), based on numeric_limits if specialized,
49 // 0 for integer types, and log2(epsilon()) otherwise.
50 template< typename T,
51           bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
52           bool is_integer = NumTraits<T>::IsInteger>
53 struct default_digits_impl
54 {
55   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
56   static int run() { return std::numeric_limits<T>::digits; }
57 };
58 
59 template<typename T>
60 struct default_digits_impl<T,false,false> // Floating point
61 {
62   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
63   static int run() {
64     using std::log;
65     using std::ceil;
66     typedef typename NumTraits<T>::Real Real;
67     return int(ceil(-log(NumTraits<Real>::epsilon())/log(static_cast<Real>(2))));
68   }
69 };
70 
71 template<typename T>
72 struct default_digits_impl<T,false,true> // Integer
73 {
74   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
75   static int run() { return 0; }
76 };
77 
78 } // end namespace internal
79 
80 namespace numext {
81 /** \internal bit-wise cast without changing the underlying bit representation. */
82 
83 // TODO: Replace by std::bit_cast (available in C++20)
84 template <typename Tgt, typename Src>
85 EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) {
86 #if EIGEN_HAS_TYPE_TRAITS
87   // The behaviour of memcpy is not specified for non-trivially copyable types
88   EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED);
89   EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value,
90                       THIS_TYPE_IS_NOT_SUPPORTED);
91 #endif
92 
93   EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED);
94   Tgt tgt;
95   EIGEN_USING_STD(memcpy)
96   memcpy(&tgt, &src, sizeof(Tgt));
97   return tgt;
98 }
99 }  // namespace numext
100 
101 /** \class NumTraits
102   * \ingroup Core_Module
103   *
104   * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
105   *
106   * \tparam T the numeric type at hand
107   *
108   * This class stores enums, typedefs and static methods giving information about a numeric type.
109   *
110   * The provided data consists of:
111   * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real,
112   *     then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real
113   *     is a typedef to \a U.
114   * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values,
115   *     such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
116   *     \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
117   *     take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
118   *     only intended as a helper for code that needs to explicitly promote types.
119   * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U.
120   *     Of course, this type must be fully compatible with \a T. In doubt, just use \a T here.
121   * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
122   *     this means, just use \a T here.
123   * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
124   *     type, and to 0 otherwise.
125   * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
126   *     and to \c 0 otherwise.
127   * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
128   *     to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
129   *     Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost.
130   * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
131   * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
132   *     be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
133   * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>,
134   *     it returns a \a Real instead of a \a T.
135   * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
136   *     value by the fuzzy comparison operators.
137   * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
138   * \li digits() function returning the number of radix digits (non-sign digits for integers, mantissa for floating-point). This is
139   *     the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a>
140   *     which is used as the default implementation if specialized.
141   * \li digits10() function returning the number of decimal digits that can be represented without change. This is
142   *     the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
143   *     which is used as the default implementation if specialized.
144   * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively,
145   *     such that the radix raised to the power exponent-1 is a normalized floating-point number.  These are equivalent to
146   *     <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/
147   *     <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>.
148   * \li infinity() function returning a representation of positive infinity, if available.
149   * \li quiet_NaN function returning a non-signaling "not-a-number", if available.
150   */
151 
152 template<typename T> struct GenericNumTraits
153 {
154   enum {
155     IsInteger = std::numeric_limits<T>::is_integer,
156     IsSigned = std::numeric_limits<T>::is_signed,
157     IsComplex = 0,
158     RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
159     ReadCost = 1,
160     AddCost = 1,
161     MulCost = 1
162   };
163 
164   typedef T Real;
165   typedef typename internal::conditional<
166                      IsInteger,
167                      typename internal::conditional<sizeof(T)<=2, float, double>::type,
168                      T
169                    >::type NonInteger;
170   typedef T Nested;
171   typedef T Literal;
172 
173   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
174   static inline Real epsilon()
175   {
176     return numext::numeric_limits<T>::epsilon();
177   }
178 
179   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
180   static inline int digits10()
181   {
182     return internal::default_digits10_impl<T>::run();
183   }
184 
185   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
186   static inline int digits()
187   {
188     return internal::default_digits_impl<T>::run();
189   }
190 
191   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
192   static inline int min_exponent()
193   {
194     return numext::numeric_limits<T>::min_exponent;
195   }
196 
197   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
198   static inline int max_exponent()
199   {
200     return numext::numeric_limits<T>::max_exponent;
201   }
202 
203   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
204   static inline Real dummy_precision()
205   {
206     // make sure to override this for floating-point types
207     return Real(0);
208   }
209 
210   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
211   static inline T highest() {
212     return (numext::numeric_limits<T>::max)();
213   }
214 
215   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
216   static inline T lowest()  {
217     return IsInteger ? (numext::numeric_limits<T>::min)()
218                      : static_cast<T>(-(numext::numeric_limits<T>::max)());
219   }
220 
221   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
222   static inline T infinity() {
223     return numext::numeric_limits<T>::infinity();
224   }
225 
226   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
227   static inline T quiet_NaN() {
228     return numext::numeric_limits<T>::quiet_NaN();
229   }
230 };
231 
232 template<typename T> struct NumTraits : GenericNumTraits<T>
233 {};
234 
235 template<> struct NumTraits<float>
236   : GenericNumTraits<float>
237 {
238   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
239   static inline float dummy_precision() { return 1e-5f; }
240 };
241 
242 template<> struct NumTraits<double> : GenericNumTraits<double>
243 {
244   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
245   static inline double dummy_precision() { return 1e-12; }
246 };
247 
248 template<> struct NumTraits<long double>
249   : GenericNumTraits<long double>
250 {
251   EIGEN_CONSTEXPR
252   static inline long double dummy_precision() { return 1e-15l; }
253 };
254 
255 template<typename _Real> struct NumTraits<std::complex<_Real> >
256   : GenericNumTraits<std::complex<_Real> >
257 {
258   typedef _Real Real;
259   typedef typename NumTraits<_Real>::Literal Literal;
260   enum {
261     IsComplex = 1,
262     RequireInitialization = NumTraits<_Real>::RequireInitialization,
263     ReadCost = 2 * NumTraits<_Real>::ReadCost,
264     AddCost = 2 * NumTraits<Real>::AddCost,
265     MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
266   };
267 
268   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
269   static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
270   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
271   static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
272   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
273   static inline int digits10() { return NumTraits<Real>::digits10(); }
274 };
275 
276 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
277 struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
278 {
279   typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
280   typedef typename NumTraits<Scalar>::Real RealScalar;
281   typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
282   typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
283   typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
284   typedef ArrayType & Nested;
285   typedef typename NumTraits<Scalar>::Literal Literal;
286 
287   enum {
288     IsComplex = NumTraits<Scalar>::IsComplex,
289     IsInteger = NumTraits<Scalar>::IsInteger,
290     IsSigned  = NumTraits<Scalar>::IsSigned,
291     RequireInitialization = 1,
292     ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::ReadCost),
293     AddCost  = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::AddCost),
294     MulCost  = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::MulCost)
295   };
296 
297   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
298   static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
299   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
300   static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
301 
302   EIGEN_CONSTEXPR
303   static inline int digits10() { return NumTraits<Scalar>::digits10(); }
304 };
305 
306 template<> struct NumTraits<std::string>
307   : GenericNumTraits<std::string>
308 {
309   enum {
310     RequireInitialization = 1,
311     ReadCost = HugeCost,
312     AddCost  = HugeCost,
313     MulCost  = HugeCost
314   };
315 
316   EIGEN_CONSTEXPR
317   static inline int digits10() { return 0; }
318 
319 private:
320   static inline std::string epsilon();
321   static inline std::string dummy_precision();
322   static inline std::string lowest();
323   static inline std::string highest();
324   static inline std::string infinity();
325   static inline std::string quiet_NaN();
326 };
327 
328 // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
329 template<> struct NumTraits<void> {};
330 
331 template<> struct NumTraits<bool> : GenericNumTraits<bool> {};
332 
333 } // end namespace Eigen
334 
335 #endif // EIGEN_NUMTRAITS_H
336