• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
12 #define EIGEN_SUITESPARSEQRSUPPORT_H
13 
14 namespace Eigen {
15 
16   template<typename MatrixType> class SPQR;
17   template<typename SPQRType> struct SPQRMatrixQReturnType;
18   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
19   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
20   namespace internal {
21     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
22     {
23       typedef typename SPQRType::MatrixType ReturnType;
24     };
25     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
26     {
27       typedef typename SPQRType::MatrixType ReturnType;
28     };
29     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
30     {
31       typedef typename Derived::PlainObject ReturnType;
32     };
33   } // End namespace internal
34 
35 /**
36   * \ingroup SPQRSupport_Module
37   * \class SPQR
38   * \brief Sparse QR factorization based on SuiteSparseQR library
39   *
40   * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
41   * of sparse matrices. The result is then used to solve linear leasts_square systems.
42   * Clearly, a QR factorization is returned such that A*P = Q*R where :
43   *
44   * P is the column permutation. Use colsPermutation() to get it.
45   *
46   * Q is the orthogonal matrix represented as Householder reflectors.
47   * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
48   * You can then apply it to a vector.
49   *
50   * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
51   * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
52   *
53   * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
54   *
55   * \implsparsesolverconcept
56   *
57   *
58   */
59 template<typename _MatrixType>
60 class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
61 {
62   protected:
63     typedef SparseSolverBase<SPQR<_MatrixType> > Base;
64     using Base::m_isInitialized;
65   public:
66     typedef typename _MatrixType::Scalar Scalar;
67     typedef typename _MatrixType::RealScalar RealScalar;
68     typedef SuiteSparse_long StorageIndex ;
69     typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
70     typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
71     enum {
72       ColsAtCompileTime = Dynamic,
73       MaxColsAtCompileTime = Dynamic
74     };
75   public:
76     SPQR()
77       : m_analysisIsOk(false),
78         m_factorizationIsOk(false),
79         m_isRUpToDate(false),
80         m_ordering(SPQR_ORDERING_DEFAULT),
81         m_allow_tol(SPQR_DEFAULT_TOL),
82         m_tolerance (NumTraits<Scalar>::epsilon()),
83         m_cR(0),
84         m_E(0),
85         m_H(0),
86         m_HPinv(0),
87         m_HTau(0),
88         m_useDefaultThreshold(true)
89     {
90       cholmod_l_start(&m_cc);
91     }
92 
93     explicit SPQR(const _MatrixType& matrix)
94       : m_analysisIsOk(false),
95         m_factorizationIsOk(false),
96         m_isRUpToDate(false),
97         m_ordering(SPQR_ORDERING_DEFAULT),
98         m_allow_tol(SPQR_DEFAULT_TOL),
99         m_tolerance (NumTraits<Scalar>::epsilon()),
100         m_cR(0),
101         m_E(0),
102         m_H(0),
103         m_HPinv(0),
104         m_HTau(0),
105         m_useDefaultThreshold(true)
106     {
107       cholmod_l_start(&m_cc);
108       compute(matrix);
109     }
110 
111     ~SPQR()
112     {
113       SPQR_free();
114       cholmod_l_finish(&m_cc);
115     }
116     void SPQR_free()
117     {
118       cholmod_l_free_sparse(&m_H, &m_cc);
119       cholmod_l_free_sparse(&m_cR, &m_cc);
120       cholmod_l_free_dense(&m_HTau, &m_cc);
121       std::free(m_E);
122       std::free(m_HPinv);
123     }
124 
125     void compute(const _MatrixType& matrix)
126     {
127       if(m_isInitialized) SPQR_free();
128 
129       MatrixType mat(matrix);
130 
131       /* Compute the default threshold as in MatLab, see:
132        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
133        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
134        */
135       RealScalar pivotThreshold = m_tolerance;
136       if(m_useDefaultThreshold)
137       {
138         RealScalar max2Norm = 0.0;
139         for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
140         if(max2Norm==RealScalar(0))
141           max2Norm = RealScalar(1);
142         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
143       }
144       cholmod_sparse A;
145       A = viewAsCholmod(mat);
146       m_rows = matrix.rows();
147       Index col = matrix.cols();
148       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
149                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
150 
151       if (!m_cR)
152       {
153         m_info = NumericalIssue;
154         m_isInitialized = false;
155         return;
156       }
157       m_info = Success;
158       m_isInitialized = true;
159       m_isRUpToDate = false;
160     }
161     /**
162      * Get the number of rows of the input matrix and the Q matrix
163      */
164     inline Index rows() const {return m_rows; }
165 
166     /**
167      * Get the number of columns of the input matrix.
168      */
169     inline Index cols() const { return m_cR->ncol; }
170 
171     template<typename Rhs, typename Dest>
172     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
173     {
174       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
175       eigen_assert(b.cols()==1 && "This method is for vectors only");
176 
177       //Compute Q^T * b
178       typename Dest::PlainObject y, y2;
179       y = matrixQ().transpose() * b;
180 
181       // Solves with the triangular matrix R
182       Index rk = this->rank();
183       y2 = y;
184       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
185       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
186 
187       // Apply the column permutation
188       // colsPermutation() performs a copy of the permutation,
189       // so let's apply it manually:
190       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
191       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
192 
193 //       y.bottomRows(y.rows()-rk).setZero();
194 //       dest = colsPermutation() * y.topRows(cols());
195 
196       m_info = Success;
197     }
198 
199     /** \returns the sparse triangular factor R. It is a sparse matrix
200      */
201     const MatrixType matrixR() const
202     {
203       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
204       if(!m_isRUpToDate) {
205         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
206         m_isRUpToDate = true;
207       }
208       return m_R;
209     }
210     /// Get an expression of the matrix Q
211     SPQRMatrixQReturnType<SPQR> matrixQ() const
212     {
213       return SPQRMatrixQReturnType<SPQR>(*this);
214     }
215     /// Get the permutation that was applied to columns of A
216     PermutationType colsPermutation() const
217     {
218       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
219       return PermutationType(m_E, m_cR->ncol);
220     }
221     /**
222      * Gets the rank of the matrix.
223      * It should be equal to matrixQR().cols if the matrix is full-rank
224      */
225     Index rank() const
226     {
227       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
228       return m_cc.SPQR_istat[4];
229     }
230     /// Set the fill-reducing ordering method to be used
231     void setSPQROrdering(int ord) { m_ordering = ord;}
232     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
233     void setPivotThreshold(const RealScalar& tol)
234     {
235       m_useDefaultThreshold = false;
236       m_tolerance = tol;
237     }
238 
239     /** \returns a pointer to the SPQR workspace */
240     cholmod_common *cholmodCommon() const { return &m_cc; }
241 
242 
243     /** \brief Reports whether previous computation was successful.
244       *
245       * \returns \c Success if computation was successful,
246       *          \c NumericalIssue if the sparse QR can not be computed
247       */
248     ComputationInfo info() const
249     {
250       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
251       return m_info;
252     }
253   protected:
254     bool m_analysisIsOk;
255     bool m_factorizationIsOk;
256     mutable bool m_isRUpToDate;
257     mutable ComputationInfo m_info;
258     int m_ordering; // Ordering method to use, see SPQR's manual
259     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
260     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
261     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
262     mutable MatrixType m_R; // The sparse matrix R in Eigen format
263     mutable StorageIndex *m_E; // The permutation applied to columns
264     mutable cholmod_sparse *m_H;  //The householder vectors
265     mutable StorageIndex *m_HPinv; // The row permutation of H
266     mutable cholmod_dense *m_HTau; // The Householder coefficients
267     mutable Index m_rank; // The rank of the matrix
268     mutable cholmod_common m_cc; // Workspace and parameters
269     bool m_useDefaultThreshold;     // Use default threshold
270     Index m_rows;
271     template<typename ,typename > friend struct SPQR_QProduct;
272 };
273 
274 template <typename SPQRType, typename Derived>
275 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
276 {
277   typedef typename SPQRType::Scalar Scalar;
278   typedef typename SPQRType::StorageIndex StorageIndex;
279   //Define the constructor to get reference to argument types
280   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
281 
282   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
283   inline Index cols() const { return m_other.cols(); }
284   // Assign to a vector
285   template<typename ResType>
286   void evalTo(ResType& res) const
287   {
288     cholmod_dense y_cd;
289     cholmod_dense *x_cd;
290     int method = m_transpose ? SPQR_QTX : SPQR_QX;
291     cholmod_common *cc = m_spqr.cholmodCommon();
292     y_cd = viewAsCholmod(m_other.const_cast_derived());
293     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
294     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
295     cholmod_l_free_dense(&x_cd, cc);
296   }
297   const SPQRType& m_spqr;
298   const Derived& m_other;
299   bool m_transpose;
300 
301 };
302 template<typename SPQRType>
303 struct SPQRMatrixQReturnType{
304 
305   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
306   template<typename Derived>
307   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
308   {
309     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
310   }
311   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
312   {
313     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
314   }
315   // To use for operations with the transpose of Q
316   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
317   {
318     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
319   }
320   const SPQRType& m_spqr;
321 };
322 
323 template<typename SPQRType>
324 struct SPQRMatrixQTransposeReturnType{
325   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
326   template<typename Derived>
327   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
328   {
329     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
330   }
331   const SPQRType& m_spqr;
332 };
333 
334 }// End namespace Eigen
335 #endif
336