1 #ifndef TEST_SOLVERBASE_H
2 #define TEST_SOLVERBASE_H
3
4 template<typename DstType, typename RhsType, typename MatrixType, typename SolverType>
check_solverbase(const MatrixType & matrix,const SolverType & solver,Index rows,Index cols,Index cols2)5 void check_solverbase(const MatrixType& matrix, const SolverType& solver, Index rows, Index cols, Index cols2)
6 {
7 // solve
8 DstType m2 = DstType::Random(cols,cols2);
9 RhsType m3 = matrix*m2;
10 DstType solver_solution = DstType::Random(cols,cols2);
11 solver._solve_impl(m3, solver_solution);
12 VERIFY_IS_APPROX(m3, matrix*solver_solution);
13 solver_solution = DstType::Random(cols,cols2);
14 solver_solution = solver.solve(m3);
15 VERIFY_IS_APPROX(m3, matrix*solver_solution);
16 // test solve with transposed
17 m3 = RhsType::Random(rows,cols2);
18 m2 = matrix.transpose()*m3;
19 RhsType solver_solution2 = RhsType::Random(rows,cols2);
20 solver.template _solve_impl_transposed<false>(m2, solver_solution2);
21 VERIFY_IS_APPROX(m2, matrix.transpose()*solver_solution2);
22 solver_solution2 = RhsType::Random(rows,cols2);
23 solver_solution2 = solver.transpose().solve(m2);
24 VERIFY_IS_APPROX(m2, matrix.transpose()*solver_solution2);
25 // test solve with conjugate transposed
26 m3 = RhsType::Random(rows,cols2);
27 m2 = matrix.adjoint()*m3;
28 solver_solution2 = RhsType::Random(rows,cols2);
29 solver.template _solve_impl_transposed<true>(m2, solver_solution2);
30 VERIFY_IS_APPROX(m2, matrix.adjoint()*solver_solution2);
31 solver_solution2 = RhsType::Random(rows,cols2);
32 solver_solution2 = solver.adjoint().solve(m2);
33 VERIFY_IS_APPROX(m2, matrix.adjoint()*solver_solution2);
34 }
35
36 #endif // TEST_SOLVERBASE_H
37