• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
5 // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2018 David Hyde <dabh@stanford.edu>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 
13 #ifndef EIGEN_MINRES_H_
14 #define EIGEN_MINRES_H_
15 
16 
17 namespace Eigen {
18 
19     namespace internal {
20 
21         /** \internal Low-level MINRES algorithm
22          * \param mat The matrix A
23          * \param rhs The right hand side vector b
24          * \param x On input and initial solution, on output the computed solution.
25          * \param precond A right preconditioner being able to efficiently solve for an
26          *                approximation of Ax=b (regardless of b)
27          * \param iters On input the max number of iteration, on output the number of performed iterations.
28          * \param tol_error On input the tolerance error, on output an estimation of the relative error.
29          */
30         template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
31         EIGEN_DONT_INLINE
minres(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,Index & iters,typename Dest::RealScalar & tol_error)32         void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
33                     const Preconditioner& precond, Index& iters,
34                     typename Dest::RealScalar& tol_error)
35         {
36             using std::sqrt;
37             typedef typename Dest::RealScalar RealScalar;
38             typedef typename Dest::Scalar Scalar;
39             typedef Matrix<Scalar,Dynamic,1> VectorType;
40 
41             // Check for zero rhs
42             const RealScalar rhsNorm2(rhs.squaredNorm());
43             if(rhsNorm2 == 0)
44             {
45                 x.setZero();
46                 iters = 0;
47                 tol_error = 0;
48                 return;
49             }
50 
51             // initialize
52             const Index maxIters(iters);  // initialize maxIters to iters
53             const Index N(mat.cols());    // the size of the matrix
54             const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
55 
56             // Initialize preconditioned Lanczos
57             VectorType v_old(N); // will be initialized inside loop
58             VectorType v( VectorType::Zero(N) ); //initialize v
59             VectorType v_new(rhs-mat*x); //initialize v_new
60             RealScalar residualNorm2(v_new.squaredNorm());
61             VectorType w(N); // will be initialized inside loop
62             VectorType w_new(precond.solve(v_new)); // initialize w_new
63 //            RealScalar beta; // will be initialized inside loop
64             RealScalar beta_new2(v_new.dot(w_new));
65             eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
66             RealScalar beta_new(sqrt(beta_new2));
67             const RealScalar beta_one(beta_new);
68             // Initialize other variables
69             RealScalar c(1.0); // the cosine of the Givens rotation
70             RealScalar c_old(1.0);
71             RealScalar s(0.0); // the sine of the Givens rotation
72             RealScalar s_old(0.0); // the sine of the Givens rotation
73             VectorType p_oold(N); // will be initialized in loop
74             VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
75             VectorType p(p_old); // initialize p=0
76             RealScalar eta(1.0);
77 
78             iters = 0; // reset iters
79             while ( iters < maxIters )
80             {
81                 // Preconditioned Lanczos
82                 /* Note that there are 4 variants on the Lanczos algorithm. These are
83                  * described in Paige, C. C. (1972). Computational variants of
84                  * the Lanczos method for the eigenproblem. IMA Journal of Applied
85                  * Mathematics, 10(3), 373-381. The current implementation corresponds
86                  * to the case A(2,7) in the paper. It also corresponds to
87                  * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
88                  * Systems, 2003 p.173. For the preconditioned version see
89                  * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
90                  */
91                 const RealScalar beta(beta_new);
92                 v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
93                 v_new /= beta_new; // overwrite v_new for next iteration
94                 w_new /= beta_new; // overwrite w_new for next iteration
95                 v = v_new; // update
96                 w = w_new; // update
97                 v_new.noalias() = mat*w - beta*v_old; // compute v_new
98                 const RealScalar alpha = v_new.dot(w);
99                 v_new -= alpha*v; // overwrite v_new
100                 w_new = precond.solve(v_new); // overwrite w_new
101                 beta_new2 = v_new.dot(w_new); // compute beta_new
102                 eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
103                 beta_new = sqrt(beta_new2); // compute beta_new
104 
105                 // Givens rotation
106                 const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
107                 const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
108                 const RealScalar r1_hat=c*alpha-c_old*s*beta;
109                 const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
110                 c_old = c; // store for next iteration
111                 s_old = s; // store for next iteration
112                 c=r1_hat/r1; // new cosine
113                 s=beta_new/r1; // new sine
114 
115                 // Update solution
116                 p_oold = p_old;
117                 p_old = p;
118                 p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
119                 x += beta_one*c*eta*p;
120 
121                 /* Update the squared residual. Note that this is the estimated residual.
122                 The real residual |Ax-b|^2 may be slightly larger */
123                 residualNorm2 *= s*s;
124 
125                 if ( residualNorm2 < threshold2)
126                 {
127                     break;
128                 }
129 
130                 eta=-s*eta; // update eta
131                 iters++; // increment iteration number (for output purposes)
132             }
133 
134             /* Compute error. Note that this is the estimated error. The real
135              error |Ax-b|/|b| may be slightly larger */
136             tol_error = std::sqrt(residualNorm2 / rhsNorm2);
137         }
138 
139     }
140 
141     template< typename _MatrixType, int _UpLo=Lower,
142     typename _Preconditioner = IdentityPreconditioner>
143     class MINRES;
144 
145     namespace internal {
146 
147         template< typename _MatrixType, int _UpLo, typename _Preconditioner>
148         struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
149         {
150             typedef _MatrixType MatrixType;
151             typedef _Preconditioner Preconditioner;
152         };
153 
154     }
155 
156     /** \ingroup IterativeLinearSolvers_Module
157      * \brief A minimal residual solver for sparse symmetric problems
158      *
159      * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
160      * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
161      * The vectors x and b can be either dense or sparse.
162      *
163      * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
164      * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
165      *               Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
166      * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
167      *
168      * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
169      * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
170      * and NumTraits<Scalar>::epsilon() for the tolerance.
171      *
172      * This class can be used as the direct solver classes. Here is a typical usage example:
173      * \code
174      * int n = 10000;
175      * VectorXd x(n), b(n);
176      * SparseMatrix<double> A(n,n);
177      * // fill A and b
178      * MINRES<SparseMatrix<double> > mr;
179      * mr.compute(A);
180      * x = mr.solve(b);
181      * std::cout << "#iterations:     " << mr.iterations() << std::endl;
182      * std::cout << "estimated error: " << mr.error()      << std::endl;
183      * // update b, and solve again
184      * x = mr.solve(b);
185      * \endcode
186      *
187      * By default the iterations start with x=0 as an initial guess of the solution.
188      * One can control the start using the solveWithGuess() method.
189      *
190      * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
191      *
192      * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
193      */
194     template< typename _MatrixType, int _UpLo, typename _Preconditioner>
195     class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
196     {
197 
198         typedef IterativeSolverBase<MINRES> Base;
199         using Base::matrix;
200         using Base::m_error;
201         using Base::m_iterations;
202         using Base::m_info;
203         using Base::m_isInitialized;
204     public:
205         using Base::_solve_impl;
206         typedef _MatrixType MatrixType;
207         typedef typename MatrixType::Scalar Scalar;
208         typedef typename MatrixType::RealScalar RealScalar;
209         typedef _Preconditioner Preconditioner;
210 
211         enum {UpLo = _UpLo};
212 
213     public:
214 
215         /** Default constructor. */
216         MINRES() : Base() {}
217 
218         /** Initialize the solver with matrix \a A for further \c Ax=b solving.
219          *
220          * This constructor is a shortcut for the default constructor followed
221          * by a call to compute().
222          *
223          * \warning this class stores a reference to the matrix A as well as some
224          * precomputed values that depend on it. Therefore, if \a A is changed
225          * this class becomes invalid. Call compute() to update it with the new
226          * matrix A, or modify a copy of A.
227          */
228         template<typename MatrixDerived>
229         explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
230 
231         /** Destructor. */
232         ~MINRES(){}
233 
234         /** \internal */
235         template<typename Rhs,typename Dest>
236         void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
237         {
238             typedef typename Base::MatrixWrapper MatrixWrapper;
239             typedef typename Base::ActualMatrixType ActualMatrixType;
240             enum {
241               TransposeInput  =   (!MatrixWrapper::MatrixFree)
242                               &&  (UpLo==(Lower|Upper))
243                               &&  (!MatrixType::IsRowMajor)
244                               &&  (!NumTraits<Scalar>::IsComplex)
245             };
246             typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
247             EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
248             typedef typename internal::conditional<UpLo==(Lower|Upper),
249                                                   RowMajorWrapper,
250                                                   typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
251                                             >::type SelfAdjointWrapper;
252 
253             m_iterations = Base::maxIterations();
254             m_error = Base::m_tolerance;
255             RowMajorWrapper row_mat(matrix());
256             internal::minres(SelfAdjointWrapper(row_mat), b, x,
257                              Base::m_preconditioner, m_iterations, m_error);
258             m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
259         }
260 
261     protected:
262 
263     };
264 
265 } // end namespace Eigen
266 
267 #endif // EIGEN_MINRES_H
268