• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ITERSCALING_H
11 #define EIGEN_ITERSCALING_H
12 
13 namespace Eigen {
14 
15 /**
16   * \ingroup IterativeSolvers_Module
17   * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
18   *
19   * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods
20   *
21   * This feature is  useful to limit the pivoting amount during LU/ILU factorization
22   * The  scaling strategy as presented here preserves the symmetry of the problem
23   * NOTE It is assumed that the matrix does not have empty row or column,
24   *
25   * Example with key steps
26   * \code
27   * VectorXd x(n), b(n);
28   * SparseMatrix<double> A;
29   * // fill A and b;
30   * IterScaling<SparseMatrix<double> > scal;
31   * // Compute the left and right scaling vectors. The matrix is equilibrated at output
32   * scal.computeRef(A);
33   * // Scale the right hand side
34   * b = scal.LeftScaling().cwiseProduct(b);
35   * // Now, solve the equilibrated linear system with any available solver
36   *
37   * // Scale back the computed solution
38   * x = scal.RightScaling().cwiseProduct(x);
39   * \endcode
40   *
41   * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix
42   *
43   * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552
44   *
45   * \sa \ref IncompleteLUT
46   */
47 template<typename _MatrixType>
48 class IterScaling
49 {
50   public:
51     typedef _MatrixType MatrixType;
52     typedef typename MatrixType::Scalar Scalar;
53     typedef typename MatrixType::Index Index;
54 
55   public:
IterScaling()56     IterScaling() { init(); }
57 
IterScaling(const MatrixType & matrix)58     IterScaling(const MatrixType& matrix)
59     {
60       init();
61       compute(matrix);
62     }
63 
~IterScaling()64     ~IterScaling() { }
65 
66     /**
67      * Compute the left and right diagonal matrices to scale the input matrix @p mat
68      *
69      * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
70      *
71      * \sa LeftScaling() RightScaling()
72      */
compute(const MatrixType & mat)73     void compute (const MatrixType& mat)
74     {
75       using std::abs;
76       int m = mat.rows();
77       int n = mat.cols();
78       eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
79       m_left.resize(m);
80       m_right.resize(n);
81       m_left.setOnes();
82       m_right.setOnes();
83       m_matrix = mat;
84       VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors
85       Dr.resize(m); Dc.resize(n);
86       DrRes.resize(m); DcRes.resize(n);
87       double EpsRow = 1.0, EpsCol = 1.0;
88       int its = 0;
89       do
90       { // Iterate until the infinite norm of each row and column is approximately 1
91         // Get the maximum value in each row and column
92         Dr.setZero(); Dc.setZero();
93         for (int k=0; k<m_matrix.outerSize(); ++k)
94         {
95           for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
96           {
97             if ( Dr(it.row()) < abs(it.value()) )
98               Dr(it.row()) = abs(it.value());
99 
100             if ( Dc(it.col()) < abs(it.value()) )
101               Dc(it.col()) = abs(it.value());
102           }
103         }
104         for (int i = 0; i < m; ++i)
105         {
106           Dr(i) = std::sqrt(Dr(i));
107         }
108         for (int i = 0; i < n; ++i)
109         {
110           Dc(i) = std::sqrt(Dc(i));
111         }
112         // Save the scaling factors
113         for (int i = 0; i < m; ++i)
114         {
115           m_left(i) /= Dr(i);
116         }
117         for (int i = 0; i < n; ++i)
118         {
119           m_right(i) /= Dc(i);
120         }
121         // Scale the rows and the columns of the matrix
122         DrRes.setZero(); DcRes.setZero();
123         for (int k=0; k<m_matrix.outerSize(); ++k)
124         {
125           for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
126           {
127             it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) );
128             // Accumulate the norms of the row and column vectors
129             if ( DrRes(it.row()) < abs(it.value()) )
130               DrRes(it.row()) = abs(it.value());
131 
132             if ( DcRes(it.col()) < abs(it.value()) )
133               DcRes(it.col()) = abs(it.value());
134           }
135         }
136         DrRes.array() = (1-DrRes.array()).abs();
137         EpsRow = DrRes.maxCoeff();
138         DcRes.array() = (1-DcRes.array()).abs();
139         EpsCol = DcRes.maxCoeff();
140         its++;
141       }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) );
142       m_isInitialized = true;
143     }
144     /** Compute the left and right vectors to scale the vectors
145      * the input matrix is scaled with the computed vectors at output
146      *
147      * \sa compute()
148      */
computeRef(MatrixType & mat)149     void computeRef (MatrixType& mat)
150     {
151       compute (mat);
152       mat = m_matrix;
153     }
154     /** Get the vector to scale the rows of the matrix
155      */
LeftScaling()156     VectorXd& LeftScaling()
157     {
158       return m_left;
159     }
160 
161     /** Get the vector to scale the columns of the matrix
162      */
RightScaling()163     VectorXd& RightScaling()
164     {
165       return m_right;
166     }
167 
168     /** Set the tolerance for the convergence of the iterative scaling algorithm
169      */
setTolerance(double tol)170     void setTolerance(double tol)
171     {
172       m_tol = tol;
173     }
174 
175   protected:
176 
init()177     void init()
178     {
179       m_tol = 1e-10;
180       m_maxits = 5;
181       m_isInitialized = false;
182     }
183 
184     MatrixType m_matrix;
185     mutable ComputationInfo m_info;
186     bool m_isInitialized;
187     VectorXd m_left; // Left scaling vector
188     VectorXd m_right; // m_right scaling vector
189     double m_tol;
190     int m_maxits; // Maximum number of iterations allowed
191 };
192 }
193 #endif
194