• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIX_LOGARITHM
12 #define EIGEN_MATRIX_LOGARITHM
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template <typename Scalar>
19 struct matrix_log_min_pade_degree
20 {
21   static const int value = 3;
22 };
23 
24 template <typename Scalar>
25 struct matrix_log_max_pade_degree
26 {
27   typedef typename NumTraits<Scalar>::Real RealScalar;
28   static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
29                            std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
30                            std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
31                            std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
32                                                                          11;  // quadruple precision
33 };
34 
35 /** \brief Compute logarithm of 2x2 triangular matrix. */
36 template <typename MatrixType>
matrix_log_compute_2x2(const MatrixType & A,MatrixType & result)37 void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
38 {
39   typedef typename MatrixType::Scalar Scalar;
40   typedef typename MatrixType::RealScalar RealScalar;
41   using std::abs;
42   using std::ceil;
43   using std::imag;
44   using std::log;
45 
46   Scalar logA00 = log(A(0,0));
47   Scalar logA11 = log(A(1,1));
48 
49   result(0,0) = logA00;
50   result(1,0) = Scalar(0);
51   result(1,1) = logA11;
52 
53   Scalar y = A(1,1) - A(0,0);
54   if (y==Scalar(0))
55   {
56     result(0,1) = A(0,1) / A(0,0);
57   }
58   else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
59   {
60     result(0,1) = A(0,1) * (logA11 - logA00) / y;
61   }
62   else
63   {
64     // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
65     RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
66     result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y;
67   }
68 }
69 
70 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
matrix_log_get_pade_degree(float normTminusI)71 inline int matrix_log_get_pade_degree(float normTminusI)
72 {
73   const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
74             5.3149729967117310e-1 };
75   const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
76   const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
77   int degree = minPadeDegree;
78   for (; degree <= maxPadeDegree; ++degree)
79     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
80       break;
81   return degree;
82 }
83 
84 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
matrix_log_get_pade_degree(double normTminusI)85 inline int matrix_log_get_pade_degree(double normTminusI)
86 {
87   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
88             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
89   const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
90   const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
91   int degree = minPadeDegree;
92   for (; degree <= maxPadeDegree; ++degree)
93     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
94       break;
95   return degree;
96 }
97 
98 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
matrix_log_get_pade_degree(long double normTminusI)99 inline int matrix_log_get_pade_degree(long double normTminusI)
100 {
101 #if   LDBL_MANT_DIG == 53         // double precision
102   const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
103             1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
104 #elif LDBL_MANT_DIG <= 64         // extended precision
105   const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
106             5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
107             2.32777776523703892094e-1L };
108 #elif LDBL_MANT_DIG <= 106        // double-double
109   const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
110             9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
111             1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
112             4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
113             1.05026503471351080481093652651105e-1L };
114 #else                             // quadruple precision
115   const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
116             5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
117             8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
118             3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
119             8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
120 #endif
121   const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
122   const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
123   int degree = minPadeDegree;
124   for (; degree <= maxPadeDegree; ++degree)
125     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
126       break;
127   return degree;
128 }
129 
130 /* \brief Compute Pade approximation to matrix logarithm */
131 template <typename MatrixType>
matrix_log_compute_pade(MatrixType & result,const MatrixType & T,int degree)132 void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
133 {
134   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
135   const int minPadeDegree = 3;
136   const int maxPadeDegree = 11;
137   assert(degree >= minPadeDegree && degree <= maxPadeDegree);
138   // FIXME this creates float-conversion-warnings if these are enabled.
139   // Either manually convert each value, or disable the warning locally
140   const RealScalar nodes[][maxPadeDegree] = {
141     { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3
142       0.8872983346207416885179265399782400L },
143     { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4
144       0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
145     { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5
146       0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
147       0.9530899229693319963988134391496965L },
148     { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6
149       0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
150       0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
151     { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7
152       0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
153       0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
154       0.9745539561713792622630948420239256L },
155     { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8
156       0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
157       0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
158       0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
159     { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9
160       0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
161       0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
162       0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
163       0.9840801197538130449177881014518364L },
164     { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10
165       0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
166       0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
167       0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
168       0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
169     { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11
170       0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
171       0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
172       0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
173       0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
174       0.9891143290730284964019690005614287L } };
175 
176   const RealScalar weights[][maxPadeDegree] = {
177     { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3
178       0.2777777777777777777777777777777778L },
179     { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4
180       0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
181     { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5
182       0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
183       0.1184634425280945437571320203599587L },
184     { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6
185       0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
186       0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
187     { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7
188       0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
189       0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
190       0.0647424830844348466353057163395410L },
191     { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8
192       0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
193       0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
194       0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
195     { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9
196       0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
197       0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
198       0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
199       0.0406371941807872059859460790552618L },
200     { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10
201       0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
202       0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
203       0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
204       0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
205     { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11
206       0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
207       0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
208       0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
209       0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
210       0.0278342835580868332413768602212743L } };
211 
212   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
213   result.setZero(T.rows(), T.rows());
214   for (int k = 0; k < degree; ++k) {
215     RealScalar weight = weights[degree-minPadeDegree][k];
216     RealScalar node = nodes[degree-minPadeDegree][k];
217     result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
218                        .template triangularView<Upper>().solve(TminusI);
219   }
220 }
221 
222 /** \brief Compute logarithm of triangular matrices with size > 2.
223   * \details This uses a inverse scale-and-square algorithm. */
224 template <typename MatrixType>
matrix_log_compute_big(const MatrixType & A,MatrixType & result)225 void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
226 {
227   typedef typename MatrixType::Scalar Scalar;
228   typedef typename NumTraits<Scalar>::Real RealScalar;
229   using std::pow;
230 
231   int numberOfSquareRoots = 0;
232   int numberOfExtraSquareRoots = 0;
233   int degree;
234   MatrixType T = A, sqrtT;
235 
236   const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
237   const RealScalar maxNormForPade = RealScalar(
238                                     maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision
239                                     maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision
240                                     maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
241                                     maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
242                                                        1.1880960220216759245467951592883642e-1L); // quadruple precision
243 
244   while (true) {
245     RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
246     if (normTminusI < maxNormForPade) {
247       degree = matrix_log_get_pade_degree(normTminusI);
248       int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
249       if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
250         break;
251       ++numberOfExtraSquareRoots;
252     }
253     matrix_sqrt_triangular(T, sqrtT);
254     T = sqrtT.template triangularView<Upper>();
255     ++numberOfSquareRoots;
256   }
257 
258   matrix_log_compute_pade(result, T, degree);
259   result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible
260 }
261 
262 /** \ingroup MatrixFunctions_Module
263   * \class MatrixLogarithmAtomic
264   * \brief Helper class for computing matrix logarithm of atomic matrices.
265   *
266   * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
267   *
268   * \sa class MatrixFunctionAtomic, MatrixBase::log()
269   */
270 template <typename MatrixType>
271 class MatrixLogarithmAtomic
272 {
273 public:
274   /** \brief Compute matrix logarithm of atomic matrix
275     * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
276     * \returns  The logarithm of \p A.
277     */
278   MatrixType compute(const MatrixType& A);
279 };
280 
281 template <typename MatrixType>
compute(const MatrixType & A)282 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
283 {
284   using std::log;
285   MatrixType result(A.rows(), A.rows());
286   if (A.rows() == 1)
287     result(0,0) = log(A(0,0));
288   else if (A.rows() == 2)
289     matrix_log_compute_2x2(A, result);
290   else
291     matrix_log_compute_big(A, result);
292   return result;
293 }
294 
295 } // end of namespace internal
296 
297 /** \ingroup MatrixFunctions_Module
298   *
299   * \brief Proxy for the matrix logarithm of some matrix (expression).
300   *
301   * \tparam Derived  Type of the argument to the matrix function.
302   *
303   * This class holds the argument to the matrix function until it is
304   * assigned or evaluated for some other reason (so the argument
305   * should not be changed in the meantime). It is the return type of
306   * MatrixBase::log() and most of the time this is the only way it
307   * is used.
308   */
309 template<typename Derived> class MatrixLogarithmReturnValue
310 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
311 {
312 public:
313   typedef typename Derived::Scalar Scalar;
314   typedef typename Derived::Index Index;
315 
316 protected:
317   typedef typename internal::ref_selector<Derived>::type DerivedNested;
318 
319 public:
320 
321   /** \brief Constructor.
322     *
323     * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
324     */
MatrixLogarithmReturnValue(const Derived & A)325   explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
326 
327   /** \brief Compute the matrix logarithm.
328     *
329     * \param[out]  result  Logarithm of \c A, where \c A is as specified in the constructor.
330     */
331   template <typename ResultType>
evalTo(ResultType & result)332   inline void evalTo(ResultType& result) const
333   {
334     typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
335     typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
336     typedef internal::traits<DerivedEvalTypeClean> Traits;
337     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
338     typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
339     typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
340     AtomicType atomic;
341 
342     internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
343   }
344 
rows()345   Index rows() const { return m_A.rows(); }
cols()346   Index cols() const { return m_A.cols(); }
347 
348 private:
349   const DerivedNested m_A;
350 };
351 
352 namespace internal {
353   template<typename Derived>
354   struct traits<MatrixLogarithmReturnValue<Derived> >
355   {
356     typedef typename Derived::PlainObject ReturnType;
357   };
358 }
359 
360 
361 /********** MatrixBase method **********/
362 
363 
364 template <typename Derived>
365 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
366 {
367   eigen_assert(rows() == cols());
368   return MatrixLogarithmReturnValue<Derived>(derived());
369 }
370 
371 } // end namespace Eigen
372 
373 #endif // EIGEN_MATRIX_LOGARITHM
374