• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 #define EIGEN_HAS_CONSTEXPR 1
20 
21 #include "main.h"
22 
23 #include <unsupported/Eigen/CXX11/Tensor>
24 
25 using Eigen::array;
26 using Eigen::SyclDevice;
27 using Eigen::Tensor;
28 using Eigen::TensorMap;
29 
30 template <typename DataType, int Layout, typename DenseIndex>
test_sycl_simple_argmax(const Eigen::SyclDevice & sycl_device)31 static void test_sycl_simple_argmax(const Eigen::SyclDevice& sycl_device) {
32   Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2, 2, 2}});
33   Tensor<DenseIndex, 0, Layout, DenseIndex> out_max;
34   Tensor<DenseIndex, 0, Layout, DenseIndex> out_min;
35   in.setRandom();
36   in *= in.constant(100.0);
37   in(0, 0, 0) = -1000.0;
38   in(1, 1, 1) = 1000.0;
39 
40   std::size_t in_bytes = in.size() * sizeof(DataType);
41   std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
42 
43   DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
44   DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
45   DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
46 
47   Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in,
48                                                                            Eigen::array<DenseIndex, 3>{{2, 2, 2}});
49   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max);
50   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min);
51   sycl_device.memcpyHostToDevice(d_in, in.data(), in_bytes);
52 
53   gpu_out_max.device(sycl_device) = gpu_in.argmax();
54   gpu_out_min.device(sycl_device) = gpu_in.argmin();
55 
56   sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes);
57   sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes);
58 
59   VERIFY_IS_EQUAL(out_max(), 2 * 2 * 2 - 1);
60   VERIFY_IS_EQUAL(out_min(), 0);
61 
62   sycl_device.deallocate(d_in);
63   sycl_device.deallocate(d_out_max);
64   sycl_device.deallocate(d_out_min);
65 }
66 
67 template <typename DataType, int DataLayout, typename DenseIndex>
test_sycl_argmax_dim(const Eigen::SyclDevice & sycl_device)68 static void test_sycl_argmax_dim(const Eigen::SyclDevice& sycl_device) {
69   DenseIndex sizeDim0 = 9;
70   DenseIndex sizeDim1 = 3;
71   DenseIndex sizeDim2 = 5;
72   DenseIndex sizeDim3 = 7;
73   Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
74 
75   std::vector<DenseIndex> dims;
76   dims.push_back(sizeDim0);
77   dims.push_back(sizeDim1);
78   dims.push_back(sizeDim2);
79   dims.push_back(sizeDim3);
80   for (DenseIndex dim = 0; dim < 4; ++dim) {
81     array<DenseIndex, 3> out_shape;
82     for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
83 
84     Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
85 
86     array<DenseIndex, 4> ix;
87     for (DenseIndex i = 0; i < sizeDim0; ++i) {
88       for (DenseIndex j = 0; j < sizeDim1; ++j) {
89         for (DenseIndex k = 0; k < sizeDim2; ++k) {
90           for (DenseIndex l = 0; l < sizeDim3; ++l) {
91             ix[0] = i;
92             ix[1] = j;
93             ix[2] = k;
94             ix[3] = l;
95             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l)
96             // = 10.0
97             tensor(ix) = (ix[dim] != 0) ? -1.0 : 10.0;
98           }
99         }
100       }
101     }
102 
103     std::size_t in_bytes = tensor.size() * sizeof(DataType);
104     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
105 
106     DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
107     DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
108 
109     Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
110         d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
111     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
112 
113     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
114     gpu_out.device(sycl_device) = gpu_in.argmax(dim);
115     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
116 
117     VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
118                     size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
119 
120     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
121       // Expect max to be in the first index of the reduced dimension
122       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
123     }
124 
125     sycl_device.synchronize();
126 
127     for (DenseIndex i = 0; i < sizeDim0; ++i) {
128       for (DenseIndex j = 0; j < sizeDim1; ++j) {
129         for (DenseIndex k = 0; k < sizeDim2; ++k) {
130           for (DenseIndex l = 0; l < sizeDim3; ++l) {
131             ix[0] = i;
132             ix[1] = j;
133             ix[2] = k;
134             ix[3] = l;
135             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
136             tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? -1.0 : 20.0;
137           }
138         }
139       }
140     }
141 
142     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
143     gpu_out.device(sycl_device) = gpu_in.argmax(dim);
144     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
145 
146     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
147       // Expect max to be in the last index of the reduced dimension
148       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
149     }
150     sycl_device.deallocate(d_in);
151     sycl_device.deallocate(d_out);
152   }
153 }
154 
155 template <typename DataType, int DataLayout, typename DenseIndex>
test_sycl_argmin_dim(const Eigen::SyclDevice & sycl_device)156 static void test_sycl_argmin_dim(const Eigen::SyclDevice& sycl_device) {
157   DenseIndex sizeDim0 = 9;
158   DenseIndex sizeDim1 = 3;
159   DenseIndex sizeDim2 = 5;
160   DenseIndex sizeDim3 = 7;
161   Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
162 
163   std::vector<DenseIndex> dims;
164   dims.push_back(sizeDim0);
165   dims.push_back(sizeDim1);
166   dims.push_back(sizeDim2);
167   dims.push_back(sizeDim3);
168   for (DenseIndex dim = 0; dim < 4; ++dim) {
169     array<DenseIndex, 3> out_shape;
170     for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
171 
172     Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
173 
174     array<DenseIndex, 4> ix;
175     for (DenseIndex i = 0; i < sizeDim0; ++i) {
176       for (DenseIndex j = 0; j < sizeDim1; ++j) {
177         for (DenseIndex k = 0; k < sizeDim2; ++k) {
178           for (DenseIndex l = 0; l < sizeDim3; ++l) {
179             ix[0] = i;
180             ix[1] = j;
181             ix[2] = k;
182             ix[3] = l;
183             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
184             tensor(ix) = (ix[dim] != 0) ? 1.0 : -10.0;
185           }
186         }
187       }
188     }
189 
190     std::size_t in_bytes = tensor.size() * sizeof(DataType);
191     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
192 
193     DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
194     DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
195 
196     Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
197         d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
198     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
199 
200     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
201     gpu_out.device(sycl_device) = gpu_in.argmin(dim);
202     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
203 
204     VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
205                     size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
206 
207     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
208       // Expect max to be in the first index of the reduced dimension
209       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
210     }
211 
212     sycl_device.synchronize();
213 
214     for (DenseIndex i = 0; i < sizeDim0; ++i) {
215       for (DenseIndex j = 0; j < sizeDim1; ++j) {
216         for (DenseIndex k = 0; k < sizeDim2; ++k) {
217           for (DenseIndex l = 0; l < sizeDim3; ++l) {
218             ix[0] = i;
219             ix[1] = j;
220             ix[2] = k;
221             ix[3] = l;
222             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
223             tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? 1.0 : -20.0;
224           }
225         }
226       }
227     }
228 
229     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
230     gpu_out.device(sycl_device) = gpu_in.argmin(dim);
231     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
232 
233     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
234       // Expect max to be in the last index of the reduced dimension
235       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
236     }
237     sycl_device.deallocate(d_in);
238     sycl_device.deallocate(d_out);
239   }
240 }
241 
242 template <typename DataType, typename Device_Selector>
sycl_argmax_test_per_device(const Device_Selector & d)243 void sycl_argmax_test_per_device(const Device_Selector& d) {
244   QueueInterface queueInterface(d);
245   auto sycl_device = Eigen::SyclDevice(&queueInterface);
246   test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device);
247   test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device);
248   test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device);
249   test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device);
250   test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device);
251   test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device);
252 }
253 
EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl)254 EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl) {
255   for (const auto& device : Eigen::get_sycl_supported_devices()) {
256     CALL_SUBTEST(sycl_argmax_test_per_device<float>(device));
257   }
258 }
259