1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2018 Andy Davis <andydavis@google.com>
5 // Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #include "main.h"
12
13 #include <algorithm>
14 #include <set>
15
16 #include <Eigen/CXX11/Tensor>
17
18 using Eigen::Tensor;
19 using Eigen::Index;
20 using Eigen::RowMajor;
21 using Eigen::ColMajor;
22 using Eigen::internal::TensorBlockShapeType;
23
zeroCost()24 static TensorOpCost zeroCost() { return {0, 0, 0}; }
25
26 template<typename T>
choose(int layout,const T & col,const T & row)27 static const T& choose(int layout, const T& col, const T& row) {
28 return layout == ColMajor ? col : row;
29 }
30
RandomShape()31 static TensorBlockShapeType RandomShape() {
32 return internal::random<bool>()
33 ? TensorBlockShapeType::kUniformAllDims
34 : TensorBlockShapeType::kSkewedInnerDims;
35 }
36
37 template <int NumDims>
RandomTargetSize(const DSizes<Index,NumDims> & dims)38 static size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
39 return internal::random<size_t>(1, dims.TotalSize());
40 }
41
42 template <int NumDims>
RandomDims()43 static DSizes<Index, NumDims> RandomDims() {
44 array<Index, NumDims> dims;
45 for (int i = 0; i < NumDims; ++i) {
46 dims[i] = internal::random<int>(1, 20);
47 }
48 return DSizes<Index, NumDims>(dims);
49 }
50
51 template <typename T>
GenerateRandomData(const Index & size)52 static T* GenerateRandomData(const Index& size) {
53 T* data = new T[size];
54 for (int i = 0; i < size; ++i) {
55 data[i] = internal::random<T>();
56 }
57 return data;
58 }
59
60 template <int NumDims>
Debug(DSizes<Index,NumDims> dims)61 static void Debug(DSizes<Index, NumDims> dims) {
62 for (int i = 0; i < NumDims; ++i) {
63 std::cout << dims[i] << "; ";
64 }
65 std::cout << std::endl;
66 }
67
68 template <int Layout>
test_block_mapper_sanity()69 static void test_block_mapper_sanity()
70 {
71 typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper;
72
73 DSizes<Index, 2> tensor_dims(100, 100);
74
75 // Test uniform blocks.
76 TensorBlockMapper uniform_block_mapper(
77 tensor_dims, {TensorBlockShapeType::kUniformAllDims, 100, zeroCost()});
78
79 VERIFY_IS_EQUAL(uniform_block_mapper.blockCount(), 100);
80 VERIFY_IS_EQUAL(uniform_block_mapper.blockTotalSize(), 100);
81
82 // 10x10 blocks
83 auto uniform_b0 = uniform_block_mapper.blockDescriptor(0);
84 VERIFY_IS_EQUAL(uniform_b0.dimensions().at(0), 10);
85 VERIFY_IS_EQUAL(uniform_b0.dimensions().at(1), 10);
86
87 // Test skewed to inner dims blocks.
88 TensorBlockMapper skewed_block_mapper(
89 tensor_dims, {TensorBlockShapeType::kSkewedInnerDims, 100, zeroCost()});
90
91 VERIFY_IS_EQUAL(skewed_block_mapper.blockCount(), 100);
92 VERIFY_IS_EQUAL(skewed_block_mapper.blockTotalSize(), 100);
93
94 // 1x100 (100x1) rows/cols depending on a tensor layout.
95 auto skewed_b0 = skewed_block_mapper.blockDescriptor(0);
96 VERIFY_IS_EQUAL(skewed_b0.dimensions().at(0), choose(Layout, 100, 1));
97 VERIFY_IS_EQUAL(skewed_b0.dimensions().at(1), choose(Layout, 1, 100));
98 }
99
100 // Given a TensorBlock "visit" every element accessible though it, and a keep an
101 // index in the visited set. Verify that every coeff accessed only once.
102 template<int NumDims, int Layout>
UpdateCoeffSet(const DSizes<Index,NumDims> & tensor_strides,const internal::TensorBlockDescriptor<NumDims> & block,Index first_coeff_index,int dim_index,std::set<Index> * visited_coeffs)103 static void UpdateCoeffSet(
104 const DSizes<Index, NumDims>& tensor_strides,
105 const internal::TensorBlockDescriptor<NumDims>& block,
106 Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
107 const DSizes<Index, NumDims>& block_sizes = block.dimensions();
108
109 for (int i = 0; i < block_sizes[dim_index]; ++i) {
110 if (tensor_strides[dim_index] == 1) {
111 typedef std::pair<std::set<Index>::iterator, bool> ReturnType;
112 ReturnType inserted = visited_coeffs->insert(first_coeff_index + i);
113 VERIFY_IS_EQUAL(inserted.second, true);
114 } else {
115 int next_dim_index = dim_index + choose(Layout, -1, 1);
116 UpdateCoeffSet<NumDims, Layout>(tensor_strides, block, first_coeff_index,
117 next_dim_index, visited_coeffs);
118 first_coeff_index += tensor_strides[dim_index];
119 }
120 }
121 }
122
123 template <typename T, int NumDims, int Layout>
test_block_mapper_maps_every_element()124 static void test_block_mapper_maps_every_element() {
125 typedef internal::TensorBlockMapper<NumDims, Layout> TensorBlockMapper;
126
127 DSizes<Index, NumDims> dims = RandomDims<NumDims>();
128 DSizes<Index, NumDims> strides = internal::strides<Layout>(dims);
129
130 // Keep track of elements indices available via block access.
131 std::set<Index> coeff_set;
132
133 // Try different combinations of block types and sizes.
134 TensorBlockMapper block_mapper(
135 dims, {RandomShape(), RandomTargetSize(dims), zeroCost()});
136
137 for (int i = 0; i < block_mapper.blockCount(); ++i) {
138 auto block = block_mapper.blockDescriptor(i);
139 UpdateCoeffSet<NumDims, Layout>(strides, block, block.offset(),
140 choose(Layout, NumDims - 1, 0),
141 &coeff_set);
142 }
143
144 // Verify that every coefficient in the original Tensor is accessible through
145 // TensorBlock only once.
146 Index total_coeffs = dims.TotalSize();
147 VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs);
148 VERIFY_IS_EQUAL(*coeff_set.begin(), 0);
149 VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1);
150 }
151
152 template <int Layout, int NumDims>
GetInputIndex(Index output_index,const array<Index,NumDims> & output_to_input_dim_map,const array<Index,NumDims> & input_strides,const array<Index,NumDims> & output_strides)153 static Index GetInputIndex(Index output_index,
154 const array<Index, NumDims>& output_to_input_dim_map,
155 const array<Index, NumDims>& input_strides,
156 const array<Index, NumDims>& output_strides) {
157 int input_index = 0;
158 if (Layout == ColMajor) {
159 for (int i = NumDims - 1; i > 0; --i) {
160 const Index idx = output_index / output_strides[i];
161 input_index += idx * input_strides[output_to_input_dim_map[i]];
162 output_index -= idx * output_strides[i];
163 }
164 return input_index +
165 output_index * input_strides[output_to_input_dim_map[0]];
166 } else {
167 for (int i = 0; i < NumDims - 1; ++i) {
168 const Index idx = output_index / output_strides[i];
169 input_index += idx * input_strides[output_to_input_dim_map[i]];
170 output_index -= idx * output_strides[i];
171 }
172 return input_index +
173 output_index * input_strides[output_to_input_dim_map[NumDims - 1]];
174 }
175 }
176
177 template <int Layout, int NumDims>
ComputeStrides(const array<Index,NumDims> & sizes)178 static array<Index, NumDims> ComputeStrides(
179 const array<Index, NumDims>& sizes) {
180 array<Index, NumDims> strides;
181 if (Layout == ColMajor) {
182 strides[0] = 1;
183 for (int i = 1; i < NumDims; ++i) {
184 strides[i] = strides[i - 1] * sizes[i - 1];
185 }
186 } else {
187 strides[NumDims - 1] = 1;
188 for (int i = NumDims - 2; i >= 0; --i) {
189 strides[i] = strides[i + 1] * sizes[i + 1];
190 }
191 }
192 return strides;
193 }
194
195 template<typename Scalar, typename StorageIndex, int Dim>
196 class EqualityChecker
197 {
198 const Scalar* input_data;
199 const DSizes<StorageIndex, Dim> &input_dims, &input_strides, &output_dims, &output_strides;
check_recursive(const Scalar * input,const Scalar * output,int depth=0) const200 void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const
201 {
202 if(depth==Dim)
203 {
204 VERIFY_IS_EQUAL(*input, *output);
205 return;
206 }
207
208 for(int i=0; i<output_dims[depth]; ++i)
209 {
210 check_recursive(input + i % input_dims[depth] * input_strides[depth], output + i*output_strides[depth], depth+1);
211 }
212 }
213 public:
EqualityChecker(const Scalar * input_data_,const DSizes<StorageIndex,Dim> & input_dims_,const DSizes<StorageIndex,Dim> & input_strides_,const DSizes<StorageIndex,Dim> & output_dims_,const DSizes<StorageIndex,Dim> & output_strides_)214 EqualityChecker(const Scalar* input_data_,
215 const DSizes<StorageIndex, Dim> &input_dims_, const DSizes<StorageIndex, Dim> &input_strides_,
216 const DSizes<StorageIndex, Dim> &output_dims_, const DSizes<StorageIndex, Dim> &output_strides_)
217 : input_data(input_data_)
218 , input_dims(input_dims_), input_strides(input_strides_)
219 , output_dims(output_dims_), output_strides(output_strides_)
220 {}
221
operator ()(const Scalar * output_data) const222 void operator()(const Scalar* output_data) const
223 {
224 check_recursive(input_data, output_data);
225 }
226 };
227
228 template <int Layout>
test_uniform_block_shape()229 static void test_uniform_block_shape()
230 {
231 typedef internal::TensorBlockDescriptor<5> TensorBlock;
232 typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper;
233
234 {
235 // Test shape 'UniformAllDims' with uniform 'max_coeff count'.
236 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
237 const Index max_coeff_count = 5 * 5 * 5 * 5 * 5;
238 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
239 max_coeff_count, zeroCost()});
240 TensorBlock block = block_mapper.blockDescriptor(0);
241 for (int i = 0; i < 5; ++i) {
242 VERIFY_IS_EQUAL(5, block.dimensions()[i]);
243 }
244 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
245 }
246
247 // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
248 // partially into first inner-most dimension.
249 if (Layout == ColMajor) {
250 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
251 const Index max_coeff_count = 7 * 5 * 5 * 5 * 5;
252 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
253 max_coeff_count, zeroCost()});
254 TensorBlock block = block_mapper.blockDescriptor(0);
255 VERIFY_IS_EQUAL(7, block.dimensions()[0]);
256 for (int i = 1; i < 5; ++i) {
257 VERIFY_IS_EQUAL(5, block.dimensions()[i]);
258 }
259 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
260 } else {
261 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
262 const Index max_coeff_count = 5 * 5 * 5 * 5 * 6;
263 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
264 max_coeff_count, zeroCost()});
265 TensorBlock block = block_mapper.blockDescriptor(0);
266 VERIFY_IS_EQUAL(6, block.dimensions()[4]);
267 for (int i = 3; i >= 0; --i) {
268 VERIFY_IS_EQUAL(5, block.dimensions()[i]);
269 }
270 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
271 }
272
273 // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
274 // fully into first inner-most dimension.
275 if (Layout == ColMajor) {
276 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
277 const Index max_coeff_count = 11 * 5 * 5 * 5 * 5;
278 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
279 max_coeff_count, zeroCost()});
280 TensorBlock block = block_mapper.blockDescriptor(0);
281 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
282 for (int i = 1; i < 5; ++i) {
283 VERIFY_IS_EQUAL(5, block.dimensions()[i]);
284 }
285 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
286 } else {
287 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
288 const Index max_coeff_count = 5 * 5 * 5 * 5 * 7;
289 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
290 max_coeff_count, zeroCost()});
291 TensorBlock block = block_mapper.blockDescriptor(0);
292 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
293 for (int i = 3; i >= 0; --i) {
294 VERIFY_IS_EQUAL(5, block.dimensions()[i]);
295 }
296 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
297 }
298
299 // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
300 // fully into first few inner-most dimensions.
301 if (Layout == ColMajor) {
302 DSizes<Index, 5> dims(7, 5, 6, 17, 7);
303 const Index max_coeff_count = 7 * 5 * 6 * 7 * 5;
304 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
305 max_coeff_count, zeroCost()});
306 TensorBlock block = block_mapper.blockDescriptor(0);
307 VERIFY_IS_EQUAL(7, block.dimensions()[0]);
308 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
309 VERIFY_IS_EQUAL(6, block.dimensions()[2]);
310 VERIFY_IS_EQUAL(7, block.dimensions()[3]);
311 VERIFY_IS_EQUAL(5, block.dimensions()[4]);
312 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
313 } else {
314 DSizes<Index, 5> dims(7, 5, 6, 9, 7);
315 const Index max_coeff_count = 5 * 5 * 5 * 6 * 7;
316 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
317 max_coeff_count, zeroCost()});
318 TensorBlock block = block_mapper.blockDescriptor(0);
319 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
320 VERIFY_IS_EQUAL(6, block.dimensions()[3]);
321 VERIFY_IS_EQUAL(5, block.dimensions()[2]);
322 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
323 VERIFY_IS_EQUAL(5, block.dimensions()[0]);
324 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
325 }
326
327 // Test shape 'UniformAllDims' with full allocation to all dims.
328 if (Layout == ColMajor) {
329 DSizes<Index, 5> dims(7, 5, 6, 17, 7);
330 const Index max_coeff_count = 7 * 5 * 6 * 17 * 7;
331 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
332 max_coeff_count, zeroCost()});
333 TensorBlock block = block_mapper.blockDescriptor(0);
334 VERIFY_IS_EQUAL(7, block.dimensions()[0]);
335 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
336 VERIFY_IS_EQUAL(6, block.dimensions()[2]);
337 VERIFY_IS_EQUAL(17, block.dimensions()[3]);
338 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
339 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
340 } else {
341 DSizes<Index, 5> dims(7, 5, 6, 9, 7);
342 const Index max_coeff_count = 7 * 5 * 6 * 9 * 7;
343 TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
344 max_coeff_count, zeroCost()});
345 TensorBlock block = block_mapper.blockDescriptor(0);
346 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
347 VERIFY_IS_EQUAL(9, block.dimensions()[3]);
348 VERIFY_IS_EQUAL(6, block.dimensions()[2]);
349 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
350 VERIFY_IS_EQUAL(7, block.dimensions()[0]);
351 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
352 }
353 }
354
355 template <int Layout>
test_skewed_inner_dim_block_shape()356 static void test_skewed_inner_dim_block_shape()
357 {
358 typedef internal::TensorBlockDescriptor<5> TensorBlock;
359 typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper;
360
361 // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
362 if (Layout == ColMajor) {
363 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
364 const Index max_coeff_count = 10 * 1 * 1 * 1 * 1;
365 TensorBlockMapper block_mapper(
366 dims,
367 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
368 TensorBlock block = block_mapper.blockDescriptor(0);
369 VERIFY_IS_EQUAL(10, block.dimensions()[0]);
370 for (int i = 1; i < 5; ++i) {
371 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
372 }
373 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
374 } else {
375 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
376 const Index max_coeff_count = 1 * 1 * 1 * 1 * 6;
377 TensorBlockMapper block_mapper(
378 dims,
379 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
380 TensorBlock block = block_mapper.blockDescriptor(0);
381 VERIFY_IS_EQUAL(6, block.dimensions()[4]);
382 for (int i = 3; i >= 0; --i) {
383 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
384 }
385 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
386 }
387
388 // Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
389 if (Layout == ColMajor) {
390 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
391 const Index max_coeff_count = 11 * 1 * 1 * 1 * 1;
392 TensorBlockMapper block_mapper(
393 dims,
394 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
395 TensorBlock block = block_mapper.blockDescriptor(0);
396 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
397 for (int i = 1; i < 5; ++i) {
398 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
399 }
400 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
401 } else {
402 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
403 const Index max_coeff_count = 1 * 1 * 1 * 1 * 7;
404 TensorBlockMapper block_mapper(
405 dims,
406 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
407 TensorBlock block = block_mapper.blockDescriptor(0);
408 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
409 for (int i = 3; i >= 0; --i) {
410 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
411 }
412 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
413 }
414
415 // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
416 // and partial allocation to second inner-dim.
417 if (Layout == ColMajor) {
418 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
419 const Index max_coeff_count = 11 * 3 * 1 * 1 * 1;
420 TensorBlockMapper block_mapper(
421 dims,
422 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
423 TensorBlock block = block_mapper.blockDescriptor(0);
424 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
425 VERIFY_IS_EQUAL(3, block.dimensions()[1]);
426 for (int i = 2; i < 5; ++i) {
427 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
428 }
429 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
430 } else {
431 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
432 const Index max_coeff_count = 1 * 1 * 1 * 15 * 7;
433 TensorBlockMapper block_mapper(
434 dims,
435 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
436 TensorBlock block = block_mapper.blockDescriptor(0);
437 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
438 VERIFY_IS_EQUAL(15, block.dimensions()[3]);
439 for (int i = 2; i >= 0; --i) {
440 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
441 }
442 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
443 }
444
445 // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
446 // and partial allocation to third inner-dim.
447 if (Layout == ColMajor) {
448 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
449 const Index max_coeff_count = 11 * 5 * 5 * 1 * 1;
450 TensorBlockMapper block_mapper(
451 dims,
452 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
453 TensorBlock block = block_mapper.blockDescriptor(0);
454 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
455 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
456 VERIFY_IS_EQUAL(5, block.dimensions()[2]);
457 for (int i = 3; i < 5; ++i) {
458 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
459 }
460 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
461 } else {
462 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
463 const Index max_coeff_count = 1 * 1 * 5 * 17 * 7;
464 TensorBlockMapper block_mapper(
465 dims,
466 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
467 TensorBlock block = block_mapper.blockDescriptor(0);
468 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
469 VERIFY_IS_EQUAL(17, block.dimensions()[3]);
470 VERIFY_IS_EQUAL(5, block.dimensions()[2]);
471 for (int i = 1; i >= 0; --i) {
472 VERIFY_IS_EQUAL(1, block.dimensions()[i]);
473 }
474 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
475 }
476
477 // Test shape 'SkewedInnerDims' with full allocation to all dims.
478 if (Layout == ColMajor) {
479 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
480 const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
481 TensorBlockMapper block_mapper(
482 dims,
483 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
484 TensorBlock block = block_mapper.blockDescriptor(0);
485 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
486 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
487 VERIFY_IS_EQUAL(6, block.dimensions()[2]);
488 VERIFY_IS_EQUAL(17, block.dimensions()[3]);
489 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
490 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
491 } else {
492 DSizes<Index, 5> dims(11, 5, 6, 17, 7);
493 const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
494 TensorBlockMapper block_mapper(
495 dims,
496 {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
497 TensorBlock block = block_mapper.blockDescriptor(0);
498 VERIFY_IS_EQUAL(7, block.dimensions()[4]);
499 VERIFY_IS_EQUAL(17, block.dimensions()[3]);
500 VERIFY_IS_EQUAL(6, block.dimensions()[2]);
501 VERIFY_IS_EQUAL(5, block.dimensions()[1]);
502 VERIFY_IS_EQUAL(11, block.dimensions()[0]);
503 VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
504 }
505 }
506
507 template <int Layout>
test_empty_dims(const internal::TensorBlockShapeType block_shape)508 static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
509 {
510 // Test blocking of tensors with zero dimensions:
511 // - we must not crash on asserts and divisions by zero
512 // - we must not return block with zero dimensions
513 // (recipe for overflows/underflows, divisions by zero and NaNs later)
514 // - total block count must be zero
515 {
516 typedef internal::TensorBlockMapper<1, Layout> TensorBlockMapper;
517
518 DSizes<Index, 1> dims(0);
519 for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
520 TensorBlockMapper block_mapper(
521 dims, {block_shape, max_coeff_count, zeroCost()});
522 VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
523 VERIFY(block_mapper.blockTotalSize() >= 1);
524 }
525 }
526
527 {
528 typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper;
529
530 for (int dim1 = 0; dim1 < 3; ++dim1) {
531 for (int dim2 = 0; dim2 < 3; ++dim2) {
532 DSizes<Index, 2> dims(dim1, dim2);
533 for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
534 TensorBlockMapper block_mapper(
535 dims, {block_shape, max_coeff_count, zeroCost()});
536 if (dim1 * dim2 == 0) {
537 VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
538 }
539 VERIFY(block_mapper.blockTotalSize() >= 1);
540 }
541 }
542 }
543 }
544 }
545
546 #define TEST_LAYOUTS(NAME) \
547 CALL_SUBTEST(NAME<ColMajor>()); \
548 CALL_SUBTEST(NAME<RowMajor>())
549
550 #define TEST_LAYOUTS_AND_DIMS(TYPE, NAME) \
551 CALL_SUBTEST((NAME<TYPE, 1, ColMajor>())); \
552 CALL_SUBTEST((NAME<TYPE, 1, RowMajor>())); \
553 CALL_SUBTEST((NAME<TYPE, 2, ColMajor>())); \
554 CALL_SUBTEST((NAME<TYPE, 2, RowMajor>())); \
555 CALL_SUBTEST((NAME<TYPE, 3, ColMajor>())); \
556 CALL_SUBTEST((NAME<TYPE, 3, RowMajor>())); \
557 CALL_SUBTEST((NAME<TYPE, 4, ColMajor>())); \
558 CALL_SUBTEST((NAME<TYPE, 4, RowMajor>())); \
559 CALL_SUBTEST((NAME<TYPE, 5, ColMajor>())); \
560 CALL_SUBTEST((NAME<TYPE, 5, RowMajor>()))
561
562 #define TEST_LAYOUTS_WITH_ARG(NAME, ARG) \
563 CALL_SUBTEST(NAME<ColMajor>(ARG)); \
564 CALL_SUBTEST(NAME<RowMajor>(ARG))
565
EIGEN_DECLARE_TEST(cxx11_tensor_block_access)566 EIGEN_DECLARE_TEST(cxx11_tensor_block_access) {
567 TEST_LAYOUTS(test_block_mapper_sanity);
568 TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element);
569 TEST_LAYOUTS(test_uniform_block_shape);
570 TEST_LAYOUTS(test_skewed_inner_dim_block_shape);
571 TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims);
572 TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims);
573 }
574
575 #undef TEST_LAYOUTS
576 #undef TEST_LAYOUTS_WITH_ARG
577