• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2018 Andy Davis <andydavis@google.com>
5 // Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 
13 #include <algorithm>
14 #include <set>
15 
16 #include <Eigen/CXX11/Tensor>
17 
18 using Eigen::Tensor;
19 using Eigen::Index;
20 using Eigen::RowMajor;
21 using Eigen::ColMajor;
22 using Eigen::internal::TensorBlockShapeType;
23 
zeroCost()24 static TensorOpCost zeroCost() { return {0, 0, 0}; }
25 
26 template<typename T>
choose(int layout,const T & col,const T & row)27 static const T& choose(int layout, const T& col, const T& row) {
28   return layout == ColMajor ? col : row;
29 }
30 
RandomShape()31 static TensorBlockShapeType RandomShape() {
32   return internal::random<bool>()
33          ? TensorBlockShapeType::kUniformAllDims
34          : TensorBlockShapeType::kSkewedInnerDims;
35 }
36 
37 template <int NumDims>
RandomTargetSize(const DSizes<Index,NumDims> & dims)38 static size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
39   return internal::random<size_t>(1, dims.TotalSize());
40 }
41 
42 template <int NumDims>
RandomDims()43 static DSizes<Index, NumDims> RandomDims() {
44   array<Index, NumDims> dims;
45   for (int i = 0; i < NumDims; ++i) {
46     dims[i] = internal::random<int>(1, 20);
47   }
48   return DSizes<Index, NumDims>(dims);
49 }
50 
51 template <typename T>
GenerateRandomData(const Index & size)52 static T* GenerateRandomData(const Index& size) {
53   T* data = new T[size];
54   for (int i = 0; i < size; ++i) {
55     data[i] = internal::random<T>();
56   }
57   return data;
58 }
59 
60 template <int NumDims>
Debug(DSizes<Index,NumDims> dims)61 static void Debug(DSizes<Index, NumDims> dims) {
62   for (int i = 0; i < NumDims; ++i) {
63     std::cout << dims[i] << "; ";
64   }
65   std::cout << std::endl;
66 }
67 
68 template <int Layout>
test_block_mapper_sanity()69 static void test_block_mapper_sanity()
70 {
71   typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper;
72 
73   DSizes<Index, 2> tensor_dims(100, 100);
74 
75   // Test uniform blocks.
76   TensorBlockMapper uniform_block_mapper(
77       tensor_dims, {TensorBlockShapeType::kUniformAllDims, 100, zeroCost()});
78 
79   VERIFY_IS_EQUAL(uniform_block_mapper.blockCount(), 100);
80   VERIFY_IS_EQUAL(uniform_block_mapper.blockTotalSize(), 100);
81 
82   // 10x10 blocks
83   auto uniform_b0 = uniform_block_mapper.blockDescriptor(0);
84   VERIFY_IS_EQUAL(uniform_b0.dimensions().at(0), 10);
85   VERIFY_IS_EQUAL(uniform_b0.dimensions().at(1), 10);
86 
87   // Test skewed to inner dims blocks.
88   TensorBlockMapper skewed_block_mapper(
89       tensor_dims, {TensorBlockShapeType::kSkewedInnerDims, 100, zeroCost()});
90 
91   VERIFY_IS_EQUAL(skewed_block_mapper.blockCount(), 100);
92   VERIFY_IS_EQUAL(skewed_block_mapper.blockTotalSize(), 100);
93 
94   // 1x100 (100x1) rows/cols depending on a tensor layout.
95   auto skewed_b0 = skewed_block_mapper.blockDescriptor(0);
96   VERIFY_IS_EQUAL(skewed_b0.dimensions().at(0), choose(Layout, 100, 1));
97   VERIFY_IS_EQUAL(skewed_b0.dimensions().at(1), choose(Layout, 1, 100));
98 }
99 
100 // Given a TensorBlock "visit" every element accessible though it, and a keep an
101 // index in the visited set. Verify that every coeff accessed only once.
102 template<int NumDims, int Layout>
UpdateCoeffSet(const DSizes<Index,NumDims> & tensor_strides,const internal::TensorBlockDescriptor<NumDims> & block,Index first_coeff_index,int dim_index,std::set<Index> * visited_coeffs)103 static void UpdateCoeffSet(
104     const DSizes<Index, NumDims>& tensor_strides,
105     const internal::TensorBlockDescriptor<NumDims>& block,
106     Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
107   const DSizes<Index, NumDims>& block_sizes = block.dimensions();
108 
109   for (int i = 0; i < block_sizes[dim_index]; ++i) {
110     if (tensor_strides[dim_index] == 1) {
111       typedef std::pair<std::set<Index>::iterator, bool> ReturnType;
112       ReturnType inserted = visited_coeffs->insert(first_coeff_index + i);
113       VERIFY_IS_EQUAL(inserted.second, true);
114     } else {
115       int next_dim_index = dim_index + choose(Layout, -1, 1);
116       UpdateCoeffSet<NumDims, Layout>(tensor_strides, block, first_coeff_index,
117                                          next_dim_index, visited_coeffs);
118       first_coeff_index += tensor_strides[dim_index];
119     }
120   }
121 }
122 
123 template <typename T, int NumDims, int Layout>
test_block_mapper_maps_every_element()124 static void test_block_mapper_maps_every_element() {
125   typedef internal::TensorBlockMapper<NumDims, Layout> TensorBlockMapper;
126 
127   DSizes<Index, NumDims> dims = RandomDims<NumDims>();
128   DSizes<Index, NumDims> strides = internal::strides<Layout>(dims);
129 
130   // Keep track of elements indices available via block access.
131   std::set<Index> coeff_set;
132 
133   // Try different combinations of block types and sizes.
134   TensorBlockMapper block_mapper(
135       dims, {RandomShape(), RandomTargetSize(dims), zeroCost()});
136 
137   for (int i = 0; i < block_mapper.blockCount(); ++i) {
138     auto block = block_mapper.blockDescriptor(i);
139     UpdateCoeffSet<NumDims, Layout>(strides, block, block.offset(),
140                                     choose(Layout, NumDims - 1, 0),
141                                     &coeff_set);
142   }
143 
144   // Verify that every coefficient in the original Tensor is accessible through
145   // TensorBlock only once.
146   Index total_coeffs = dims.TotalSize();
147   VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs);
148   VERIFY_IS_EQUAL(*coeff_set.begin(), 0);
149   VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1);
150 }
151 
152 template <int Layout, int NumDims>
GetInputIndex(Index output_index,const array<Index,NumDims> & output_to_input_dim_map,const array<Index,NumDims> & input_strides,const array<Index,NumDims> & output_strides)153 static Index GetInputIndex(Index output_index,
154                          const array<Index, NumDims>& output_to_input_dim_map,
155                          const array<Index, NumDims>& input_strides,
156                          const array<Index, NumDims>& output_strides) {
157   int input_index = 0;
158   if (Layout == ColMajor) {
159     for (int i = NumDims - 1; i > 0; --i) {
160       const Index idx = output_index / output_strides[i];
161       input_index += idx * input_strides[output_to_input_dim_map[i]];
162       output_index -= idx * output_strides[i];
163     }
164     return input_index +
165            output_index * input_strides[output_to_input_dim_map[0]];
166   } else {
167     for (int i = 0; i < NumDims - 1; ++i) {
168       const Index idx = output_index / output_strides[i];
169       input_index += idx * input_strides[output_to_input_dim_map[i]];
170       output_index -= idx * output_strides[i];
171     }
172     return input_index +
173            output_index * input_strides[output_to_input_dim_map[NumDims - 1]];
174   }
175 }
176 
177 template <int Layout, int NumDims>
ComputeStrides(const array<Index,NumDims> & sizes)178 static array<Index, NumDims> ComputeStrides(
179     const array<Index, NumDims>& sizes) {
180   array<Index, NumDims> strides;
181   if (Layout == ColMajor) {
182     strides[0] = 1;
183     for (int i = 1; i < NumDims; ++i) {
184       strides[i] = strides[i - 1] * sizes[i - 1];
185     }
186   } else {
187     strides[NumDims - 1] = 1;
188     for (int i = NumDims - 2; i >= 0; --i) {
189       strides[i] = strides[i + 1] * sizes[i + 1];
190     }
191   }
192   return strides;
193 }
194 
195 template<typename Scalar, typename StorageIndex, int Dim>
196 class EqualityChecker
197 {
198     const Scalar* input_data;
199     const DSizes<StorageIndex, Dim> &input_dims, &input_strides, &output_dims, &output_strides;
check_recursive(const Scalar * input,const Scalar * output,int depth=0) const200     void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const
201     {
202         if(depth==Dim)
203         {
204             VERIFY_IS_EQUAL(*input, *output);
205             return;
206         }
207 
208         for(int i=0; i<output_dims[depth]; ++i)
209         {
210             check_recursive(input + i % input_dims[depth] * input_strides[depth], output + i*output_strides[depth], depth+1);
211         }
212     }
213 public:
EqualityChecker(const Scalar * input_data_,const DSizes<StorageIndex,Dim> & input_dims_,const DSizes<StorageIndex,Dim> & input_strides_,const DSizes<StorageIndex,Dim> & output_dims_,const DSizes<StorageIndex,Dim> & output_strides_)214     EqualityChecker(const Scalar* input_data_,
215             const DSizes<StorageIndex, Dim> &input_dims_, const DSizes<StorageIndex, Dim> &input_strides_,
216             const DSizes<StorageIndex, Dim> &output_dims_, const DSizes<StorageIndex, Dim> &output_strides_)
217         : input_data(input_data_)
218         , input_dims(input_dims_), input_strides(input_strides_)
219         , output_dims(output_dims_), output_strides(output_strides_)
220         {}
221 
operator ()(const Scalar * output_data) const222     void operator()(const Scalar* output_data) const
223     {
224         check_recursive(input_data, output_data);
225     }
226 };
227 
228 template <int Layout>
test_uniform_block_shape()229 static void test_uniform_block_shape()
230 {
231   typedef internal::TensorBlockDescriptor<5> TensorBlock;
232   typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper;
233 
234   {
235     // Test shape 'UniformAllDims' with uniform 'max_coeff count'.
236     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
237     const Index max_coeff_count = 5 * 5 * 5 * 5 * 5;
238     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
239                                           max_coeff_count, zeroCost()});
240     TensorBlock block = block_mapper.blockDescriptor(0);
241     for (int i = 0; i < 5; ++i) {
242       VERIFY_IS_EQUAL(5, block.dimensions()[i]);
243     }
244     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
245   }
246 
247   // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
248   // partially into first inner-most dimension.
249   if (Layout == ColMajor) {
250     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
251     const Index max_coeff_count = 7 * 5 * 5 * 5 * 5;
252     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
253                                           max_coeff_count, zeroCost()});
254     TensorBlock block = block_mapper.blockDescriptor(0);
255     VERIFY_IS_EQUAL(7, block.dimensions()[0]);
256     for (int i = 1; i < 5; ++i) {
257       VERIFY_IS_EQUAL(5, block.dimensions()[i]);
258     }
259     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
260   } else {
261     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
262     const Index max_coeff_count = 5 * 5 * 5 * 5 * 6;
263     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
264                                           max_coeff_count, zeroCost()});
265     TensorBlock block = block_mapper.blockDescriptor(0);
266     VERIFY_IS_EQUAL(6, block.dimensions()[4]);
267     for (int i = 3; i >= 0; --i) {
268       VERIFY_IS_EQUAL(5, block.dimensions()[i]);
269     }
270     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
271   }
272 
273   // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
274   // fully into first inner-most dimension.
275   if (Layout == ColMajor) {
276     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
277     const Index max_coeff_count = 11 * 5 * 5 * 5 * 5;
278     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
279                                           max_coeff_count, zeroCost()});
280     TensorBlock block = block_mapper.blockDescriptor(0);
281     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
282     for (int i = 1; i < 5; ++i) {
283       VERIFY_IS_EQUAL(5, block.dimensions()[i]);
284     }
285     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
286   } else {
287     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
288     const Index max_coeff_count = 5 * 5 * 5 * 5 * 7;
289     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
290                                           max_coeff_count, zeroCost()});
291     TensorBlock block = block_mapper.blockDescriptor(0);
292     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
293     for (int i = 3; i >= 0; --i) {
294       VERIFY_IS_EQUAL(5, block.dimensions()[i]);
295     }
296     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
297   }
298 
299   // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
300   // fully into first few inner-most dimensions.
301   if (Layout == ColMajor) {
302     DSizes<Index, 5> dims(7, 5, 6, 17, 7);
303     const Index max_coeff_count = 7 * 5 * 6 * 7 * 5;
304     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
305                                           max_coeff_count, zeroCost()});
306     TensorBlock block = block_mapper.blockDescriptor(0);
307     VERIFY_IS_EQUAL(7, block.dimensions()[0]);
308     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
309     VERIFY_IS_EQUAL(6, block.dimensions()[2]);
310     VERIFY_IS_EQUAL(7, block.dimensions()[3]);
311     VERIFY_IS_EQUAL(5, block.dimensions()[4]);
312     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
313   } else {
314     DSizes<Index, 5> dims(7, 5, 6, 9, 7);
315     const Index max_coeff_count = 5 * 5 * 5 * 6 * 7;
316     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
317                                           max_coeff_count, zeroCost()});
318     TensorBlock block = block_mapper.blockDescriptor(0);
319     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
320     VERIFY_IS_EQUAL(6, block.dimensions()[3]);
321     VERIFY_IS_EQUAL(5, block.dimensions()[2]);
322     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
323     VERIFY_IS_EQUAL(5, block.dimensions()[0]);
324     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
325   }
326 
327   // Test shape 'UniformAllDims' with full allocation to all dims.
328   if (Layout == ColMajor) {
329     DSizes<Index, 5> dims(7, 5, 6, 17, 7);
330     const Index max_coeff_count = 7 * 5 * 6 * 17 * 7;
331     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
332                                           max_coeff_count, zeroCost()});
333     TensorBlock block = block_mapper.blockDescriptor(0);
334     VERIFY_IS_EQUAL(7, block.dimensions()[0]);
335     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
336     VERIFY_IS_EQUAL(6, block.dimensions()[2]);
337     VERIFY_IS_EQUAL(17, block.dimensions()[3]);
338     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
339     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
340   } else {
341     DSizes<Index, 5> dims(7, 5, 6, 9, 7);
342     const Index max_coeff_count = 7 * 5 * 6 * 9 * 7;
343     TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims,
344                                           max_coeff_count, zeroCost()});
345     TensorBlock block = block_mapper.blockDescriptor(0);
346     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
347     VERIFY_IS_EQUAL(9, block.dimensions()[3]);
348     VERIFY_IS_EQUAL(6, block.dimensions()[2]);
349     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
350     VERIFY_IS_EQUAL(7, block.dimensions()[0]);
351     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
352   }
353 }
354 
355 template <int Layout>
test_skewed_inner_dim_block_shape()356 static void test_skewed_inner_dim_block_shape()
357 {
358   typedef internal::TensorBlockDescriptor<5> TensorBlock;
359   typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper;
360 
361   // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
362   if (Layout == ColMajor) {
363     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
364     const Index max_coeff_count = 10 * 1 * 1 * 1 * 1;
365     TensorBlockMapper block_mapper(
366         dims,
367         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
368     TensorBlock block = block_mapper.blockDescriptor(0);
369     VERIFY_IS_EQUAL(10, block.dimensions()[0]);
370     for (int i = 1; i < 5; ++i) {
371       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
372     }
373     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
374   } else {
375     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
376     const Index max_coeff_count = 1 * 1 * 1 * 1 * 6;
377     TensorBlockMapper block_mapper(
378         dims,
379         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
380     TensorBlock block = block_mapper.blockDescriptor(0);
381     VERIFY_IS_EQUAL(6, block.dimensions()[4]);
382     for (int i = 3; i >= 0; --i) {
383       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
384     }
385     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
386   }
387 
388   // Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
389   if (Layout == ColMajor) {
390     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
391     const Index max_coeff_count = 11 * 1 * 1 * 1 * 1;
392     TensorBlockMapper block_mapper(
393         dims,
394         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
395     TensorBlock block = block_mapper.blockDescriptor(0);
396     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
397     for (int i = 1; i < 5; ++i) {
398       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
399     }
400     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
401   } else {
402     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
403     const Index max_coeff_count = 1 * 1 * 1 * 1 * 7;
404     TensorBlockMapper block_mapper(
405         dims,
406         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
407     TensorBlock block = block_mapper.blockDescriptor(0);
408     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
409     for (int i = 3; i >= 0; --i) {
410       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
411     }
412     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
413   }
414 
415   // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
416   // and partial allocation to second inner-dim.
417   if (Layout == ColMajor) {
418     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
419     const Index max_coeff_count = 11 * 3 * 1 * 1 * 1;
420     TensorBlockMapper block_mapper(
421         dims,
422         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
423     TensorBlock block = block_mapper.blockDescriptor(0);
424     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
425     VERIFY_IS_EQUAL(3, block.dimensions()[1]);
426     for (int i = 2; i < 5; ++i) {
427       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
428     }
429     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
430   } else {
431     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
432     const Index max_coeff_count = 1 * 1 * 1 * 15 * 7;
433     TensorBlockMapper block_mapper(
434         dims,
435         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
436     TensorBlock block = block_mapper.blockDescriptor(0);
437     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
438     VERIFY_IS_EQUAL(15, block.dimensions()[3]);
439     for (int i = 2; i >= 0; --i) {
440       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
441     }
442     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
443   }
444 
445   // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
446   // and partial allocation to third inner-dim.
447   if (Layout == ColMajor) {
448     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
449     const Index max_coeff_count = 11 * 5 * 5 * 1 * 1;
450     TensorBlockMapper block_mapper(
451         dims,
452         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
453     TensorBlock block = block_mapper.blockDescriptor(0);
454     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
455     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
456     VERIFY_IS_EQUAL(5, block.dimensions()[2]);
457     for (int i = 3; i < 5; ++i) {
458       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
459     }
460     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
461   } else {
462     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
463     const Index max_coeff_count = 1 * 1 * 5 * 17 * 7;
464     TensorBlockMapper block_mapper(
465         dims,
466         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
467     TensorBlock block = block_mapper.blockDescriptor(0);
468     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
469     VERIFY_IS_EQUAL(17, block.dimensions()[3]);
470     VERIFY_IS_EQUAL(5, block.dimensions()[2]);
471     for (int i = 1; i >= 0; --i) {
472       VERIFY_IS_EQUAL(1, block.dimensions()[i]);
473     }
474     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
475   }
476 
477   // Test shape 'SkewedInnerDims' with full allocation to all dims.
478   if (Layout == ColMajor) {
479     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
480     const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
481     TensorBlockMapper block_mapper(
482         dims,
483         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
484     TensorBlock block = block_mapper.blockDescriptor(0);
485     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
486     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
487     VERIFY_IS_EQUAL(6, block.dimensions()[2]);
488     VERIFY_IS_EQUAL(17, block.dimensions()[3]);
489     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
490     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
491   } else {
492     DSizes<Index, 5> dims(11, 5, 6, 17, 7);
493     const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
494     TensorBlockMapper block_mapper(
495         dims,
496         {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()});
497     TensorBlock block = block_mapper.blockDescriptor(0);
498     VERIFY_IS_EQUAL(7, block.dimensions()[4]);
499     VERIFY_IS_EQUAL(17, block.dimensions()[3]);
500     VERIFY_IS_EQUAL(6, block.dimensions()[2]);
501     VERIFY_IS_EQUAL(5, block.dimensions()[1]);
502     VERIFY_IS_EQUAL(11, block.dimensions()[0]);
503     VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
504   }
505 }
506 
507 template <int Layout>
test_empty_dims(const internal::TensorBlockShapeType block_shape)508 static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
509 {
510   // Test blocking of tensors with zero dimensions:
511   //  - we must not crash on asserts and divisions by zero
512   //  - we must not return block with zero dimensions
513   //    (recipe for overflows/underflows, divisions by zero and NaNs later)
514   //  - total block count must be zero
515   {
516     typedef internal::TensorBlockMapper<1, Layout> TensorBlockMapper;
517 
518     DSizes<Index, 1> dims(0);
519     for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
520       TensorBlockMapper block_mapper(
521           dims, {block_shape, max_coeff_count, zeroCost()});
522       VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
523       VERIFY(block_mapper.blockTotalSize() >= 1);
524     }
525   }
526 
527   {
528     typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper;
529 
530     for (int dim1 = 0; dim1 < 3; ++dim1) {
531       for (int dim2 = 0; dim2 < 3; ++dim2) {
532         DSizes<Index, 2> dims(dim1, dim2);
533         for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
534           TensorBlockMapper block_mapper(
535               dims, {block_shape, max_coeff_count, zeroCost()});
536           if (dim1 * dim2 == 0) {
537             VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
538           }
539           VERIFY(block_mapper.blockTotalSize() >= 1);
540         }
541       }
542     }
543   }
544 }
545 
546 #define TEST_LAYOUTS(NAME) \
547   CALL_SUBTEST(NAME<ColMajor>()); \
548   CALL_SUBTEST(NAME<RowMajor>())
549 
550 #define TEST_LAYOUTS_AND_DIMS(TYPE, NAME)    \
551   CALL_SUBTEST((NAME<TYPE, 1, ColMajor>())); \
552   CALL_SUBTEST((NAME<TYPE, 1, RowMajor>())); \
553   CALL_SUBTEST((NAME<TYPE, 2, ColMajor>())); \
554   CALL_SUBTEST((NAME<TYPE, 2, RowMajor>())); \
555   CALL_SUBTEST((NAME<TYPE, 3, ColMajor>())); \
556   CALL_SUBTEST((NAME<TYPE, 3, RowMajor>())); \
557   CALL_SUBTEST((NAME<TYPE, 4, ColMajor>())); \
558   CALL_SUBTEST((NAME<TYPE, 4, RowMajor>())); \
559   CALL_SUBTEST((NAME<TYPE, 5, ColMajor>())); \
560   CALL_SUBTEST((NAME<TYPE, 5, RowMajor>()))
561 
562 #define TEST_LAYOUTS_WITH_ARG(NAME, ARG) \
563   CALL_SUBTEST(NAME<ColMajor>(ARG)); \
564   CALL_SUBTEST(NAME<RowMajor>(ARG))
565 
EIGEN_DECLARE_TEST(cxx11_tensor_block_access)566 EIGEN_DECLARE_TEST(cxx11_tensor_block_access) {
567   TEST_LAYOUTS(test_block_mapper_sanity);
568   TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element);
569   TEST_LAYOUTS(test_uniform_block_shape);
570   TEST_LAYOUTS(test_skewed_inner_dim_block_shape);
571   TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims);
572   TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims);
573 }
574 
575 #undef TEST_LAYOUTS
576 #undef TEST_LAYOUTS_WITH_ARG
577