• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::Tensor;
24 
25 template<typename DataType, int DataLayout, typename IndexType>
test_simple_concatenation(const Eigen::SyclDevice & sycl_device)26 static void test_simple_concatenation(const Eigen::SyclDevice& sycl_device)
27 {
28   IndexType leftDim1 = 2;
29   IndexType leftDim2 = 3;
30   IndexType leftDim3 = 1;
31   Eigen::array<IndexType, 3> leftRange = {{leftDim1, leftDim2, leftDim3}};
32   IndexType rightDim1 = 2;
33   IndexType rightDim2 = 3;
34   IndexType rightDim3 = 1;
35   Eigen::array<IndexType, 3> rightRange = {{rightDim1, rightDim2, rightDim3}};
36 
37   //IndexType concatDim1 = 3;
38 //	IndexType concatDim2 = 3;
39 //	IndexType concatDim3 = 1;
40   //Eigen::array<IndexType, 3> concatRange = {{concatDim1, concatDim2, concatDim3}};
41 
42   Tensor<DataType, 3, DataLayout, IndexType> left(leftRange);
43   Tensor<DataType, 3, DataLayout, IndexType> right(rightRange);
44   left.setRandom();
45   right.setRandom();
46 
47   DataType * gpu_in1_data  = static_cast<DataType*>(sycl_device.allocate(left.dimensions().TotalSize()*sizeof(DataType)));
48   DataType * gpu_in2_data  = static_cast<DataType*>(sycl_device.allocate(right.dimensions().TotalSize()*sizeof(DataType)));
49 
50   Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, leftRange);
51   Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, rightRange);
52   sycl_device.memcpyHostToDevice(gpu_in1_data, left.data(),(left.dimensions().TotalSize())*sizeof(DataType));
53   sycl_device.memcpyHostToDevice(gpu_in2_data, right.data(),(right.dimensions().TotalSize())*sizeof(DataType));
54   ///
55   Tensor<DataType, 3, DataLayout, IndexType> concatenation1(leftDim1+rightDim1, leftDim2, leftDim3);
56   DataType * gpu_out_data1 =  static_cast<DataType*>(sycl_device.allocate(concatenation1.dimensions().TotalSize()*sizeof(DataType)));
57   Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out1(gpu_out_data1, concatenation1.dimensions());
58 
59   //concatenation = left.concatenate(right, 0);
60   gpu_out1.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 0);
61   sycl_device.memcpyDeviceToHost(concatenation1.data(), gpu_out_data1,(concatenation1.dimensions().TotalSize())*sizeof(DataType));
62 
63   VERIFY_IS_EQUAL(concatenation1.dimension(0), 4);
64   VERIFY_IS_EQUAL(concatenation1.dimension(1), 3);
65   VERIFY_IS_EQUAL(concatenation1.dimension(2), 1);
66   for (IndexType j = 0; j < 3; ++j) {
67     for (IndexType i = 0; i < 2; ++i) {
68       VERIFY_IS_EQUAL(concatenation1(i, j, 0), left(i, j, 0));
69     }
70     for (IndexType i = 2; i < 4; ++i) {
71       VERIFY_IS_EQUAL(concatenation1(i, j, 0), right(i - 2, j, 0));
72     }
73   }
74 
75   sycl_device.deallocate(gpu_out_data1);
76   Tensor<DataType, 3, DataLayout, IndexType> concatenation2(leftDim1, leftDim2 +rightDim2, leftDim3);
77   DataType * gpu_out_data2 =  static_cast<DataType*>(sycl_device.allocate(concatenation2.dimensions().TotalSize()*sizeof(DataType)));
78   Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out2(gpu_out_data2, concatenation2.dimensions());
79   gpu_out2.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 1);
80   sycl_device.memcpyDeviceToHost(concatenation2.data(), gpu_out_data2,(concatenation2.dimensions().TotalSize())*sizeof(DataType));
81 
82   //concatenation = left.concatenate(right, 1);
83   VERIFY_IS_EQUAL(concatenation2.dimension(0), 2);
84   VERIFY_IS_EQUAL(concatenation2.dimension(1), 6);
85   VERIFY_IS_EQUAL(concatenation2.dimension(2), 1);
86   for (IndexType i = 0; i < 2; ++i) {
87     for (IndexType j = 0; j < 3; ++j) {
88       VERIFY_IS_EQUAL(concatenation2(i, j, 0), left(i, j, 0));
89     }
90     for (IndexType j = 3; j < 6; ++j) {
91       VERIFY_IS_EQUAL(concatenation2(i, j, 0), right(i, j - 3, 0));
92     }
93   }
94   sycl_device.deallocate(gpu_out_data2);
95   Tensor<DataType, 3, DataLayout, IndexType> concatenation3(leftDim1, leftDim2, leftDim3+rightDim3);
96   DataType * gpu_out_data3 =  static_cast<DataType*>(sycl_device.allocate(concatenation3.dimensions().TotalSize()*sizeof(DataType)));
97   Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out3(gpu_out_data3, concatenation3.dimensions());
98   gpu_out3.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 2);
99   sycl_device.memcpyDeviceToHost(concatenation3.data(), gpu_out_data3,(concatenation3.dimensions().TotalSize())*sizeof(DataType));
100 
101   //concatenation = left.concatenate(right, 2);
102   VERIFY_IS_EQUAL(concatenation3.dimension(0), 2);
103   VERIFY_IS_EQUAL(concatenation3.dimension(1), 3);
104   VERIFY_IS_EQUAL(concatenation3.dimension(2), 2);
105   for (IndexType i = 0; i < 2; ++i) {
106     for (IndexType j = 0; j < 3; ++j) {
107       VERIFY_IS_EQUAL(concatenation3(i, j, 0), left(i, j, 0));
108       VERIFY_IS_EQUAL(concatenation3(i, j, 1), right(i, j, 0));
109     }
110   }
111   sycl_device.deallocate(gpu_out_data3);
112   sycl_device.deallocate(gpu_in1_data);
113   sycl_device.deallocate(gpu_in2_data);
114 }
115 template<typename DataType, int DataLayout, typename IndexType>
test_concatenation_as_lvalue(const Eigen::SyclDevice & sycl_device)116 static void test_concatenation_as_lvalue(const Eigen::SyclDevice& sycl_device)
117 {
118 
119   IndexType leftDim1 = 2;
120   IndexType leftDim2 = 3;
121   Eigen::array<IndexType, 2> leftRange = {{leftDim1, leftDim2}};
122 
123   IndexType rightDim1 = 2;
124   IndexType rightDim2 = 3;
125   Eigen::array<IndexType, 2> rightRange = {{rightDim1, rightDim2}};
126 
127   IndexType concatDim1 = 4;
128   IndexType concatDim2 = 3;
129   Eigen::array<IndexType, 2> resRange = {{concatDim1, concatDim2}};
130 
131   Tensor<DataType, 2, DataLayout, IndexType> left(leftRange);
132   Tensor<DataType, 2, DataLayout, IndexType> right(rightRange);
133   Tensor<DataType, 2, DataLayout, IndexType> result(resRange);
134 
135   left.setRandom();
136   right.setRandom();
137   result.setRandom();
138 
139   DataType * gpu_in1_data  = static_cast<DataType*>(sycl_device.allocate(left.dimensions().TotalSize()*sizeof(DataType)));
140   DataType * gpu_in2_data  = static_cast<DataType*>(sycl_device.allocate(right.dimensions().TotalSize()*sizeof(DataType)));
141   DataType * gpu_out_data =  static_cast<DataType*>(sycl_device.allocate(result.dimensions().TotalSize()*sizeof(DataType)));
142 
143 
144   Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_in1(gpu_in1_data, leftRange);
145   Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_in2(gpu_in2_data, rightRange);
146   Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_out(gpu_out_data, resRange);
147 
148   sycl_device.memcpyHostToDevice(gpu_in1_data, left.data(),(left.dimensions().TotalSize())*sizeof(DataType));
149   sycl_device.memcpyHostToDevice(gpu_in2_data, right.data(),(right.dimensions().TotalSize())*sizeof(DataType));
150   sycl_device.memcpyHostToDevice(gpu_out_data, result.data(),(result.dimensions().TotalSize())*sizeof(DataType));
151 
152 //  t1.concatenate(t2, 0) = result;
153  gpu_in1.concatenate(gpu_in2, 0).device(sycl_device) =gpu_out;
154  sycl_device.memcpyDeviceToHost(left.data(), gpu_in1_data,(left.dimensions().TotalSize())*sizeof(DataType));
155  sycl_device.memcpyDeviceToHost(right.data(), gpu_in2_data,(right.dimensions().TotalSize())*sizeof(DataType));
156 
157   for (IndexType i = 0; i < 2; ++i) {
158     for (IndexType j = 0; j < 3; ++j) {
159       VERIFY_IS_EQUAL(left(i, j), result(i, j));
160       VERIFY_IS_EQUAL(right(i, j), result(i+2, j));
161     }
162   }
163   sycl_device.deallocate(gpu_in1_data);
164   sycl_device.deallocate(gpu_in2_data);
165   sycl_device.deallocate(gpu_out_data);
166 }
167 
168 
tensorConcat_perDevice(Dev_selector s)169 template <typename DataType, typename Dev_selector> void tensorConcat_perDevice(Dev_selector s){
170   QueueInterface queueInterface(s);
171   auto sycl_device = Eigen::SyclDevice(&queueInterface);
172   test_simple_concatenation<DataType, RowMajor, int64_t>(sycl_device);
173   test_simple_concatenation<DataType, ColMajor, int64_t>(sycl_device);
174   test_concatenation_as_lvalue<DataType, ColMajor, int64_t>(sycl_device);
175 }
EIGEN_DECLARE_TEST(cxx11_tensor_concatenation_sycl)176 EIGEN_DECLARE_TEST(cxx11_tensor_concatenation_sycl) {
177   for (const auto& device :Eigen::get_sycl_supported_devices()) {
178     CALL_SUBTEST(tensorConcat_perDevice<float>(device));
179   }
180 }
181