• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::Tensor;
24 
25 // Inflation Definition for each dimension the inflated val would be
26 //((dim-1)*strid[dim] +1)
27 
28 // for 1 dimension vector of size 3 with value (4,4,4) with the inflated stride value of 3 would be changed to
29 // tensor of size (2*3) +1 = 7 with the value of
30 // (4, 0, 0, 4, 0, 0, 4).
31 
32 template <typename DataType, int DataLayout, typename IndexType>
test_simple_inflation_sycl(const Eigen::SyclDevice & sycl_device)33 void test_simple_inflation_sycl(const Eigen::SyclDevice &sycl_device) {
34 
35 
36   IndexType sizeDim1 = 2;
37   IndexType sizeDim2 = 3;
38   IndexType sizeDim3 = 5;
39   IndexType sizeDim4 = 7;
40   array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
41   Tensor<DataType, 4, DataLayout,IndexType> tensor(tensorRange);
42   Tensor<DataType, 4, DataLayout,IndexType> no_stride(tensorRange);
43   tensor.setRandom();
44 
45   array<IndexType, 4> strides;
46   strides[0] = 1;
47   strides[1] = 1;
48   strides[2] = 1;
49   strides[3] = 1;
50 
51 
52   const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
53   DataType* gpu_data_tensor  = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
54   DataType* gpu_data_no_stride  = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
55 
56   TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
57   TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_no_stride(gpu_data_no_stride, tensorRange);
58 
59   sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
60   gpu_no_stride.device(sycl_device)=gpu_tensor.inflate(strides);
61   sycl_device.memcpyDeviceToHost(no_stride.data(), gpu_data_no_stride, tensorBuffSize);
62 
63   VERIFY_IS_EQUAL(no_stride.dimension(0), sizeDim1);
64   VERIFY_IS_EQUAL(no_stride.dimension(1), sizeDim2);
65   VERIFY_IS_EQUAL(no_stride.dimension(2), sizeDim3);
66   VERIFY_IS_EQUAL(no_stride.dimension(3), sizeDim4);
67 
68   for (IndexType i = 0; i < 2; ++i) {
69     for (IndexType j = 0; j < 3; ++j) {
70       for (IndexType k = 0; k < 5; ++k) {
71         for (IndexType l = 0; l < 7; ++l) {
72           VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
73         }
74       }
75     }
76   }
77 
78 
79   strides[0] = 2;
80   strides[1] = 4;
81   strides[2] = 2;
82   strides[3] = 3;
83 
84   IndexType inflatedSizeDim1 = 3;
85   IndexType inflatedSizeDim2 = 9;
86   IndexType inflatedSizeDim3 = 9;
87   IndexType inflatedSizeDim4 = 19;
88   array<IndexType, 4> inflatedTensorRange = {{inflatedSizeDim1, inflatedSizeDim2, inflatedSizeDim3, inflatedSizeDim4}};
89 
90   Tensor<DataType, 4, DataLayout, IndexType> inflated(inflatedTensorRange);
91 
92   const size_t inflatedTensorBuffSize =inflated.size()*sizeof(DataType);
93   DataType* gpu_data_inflated  = static_cast<DataType*>(sycl_device.allocate(inflatedTensorBuffSize));
94   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_inflated(gpu_data_inflated, inflatedTensorRange);
95   gpu_inflated.device(sycl_device)=gpu_tensor.inflate(strides);
96   sycl_device.memcpyDeviceToHost(inflated.data(), gpu_data_inflated, inflatedTensorBuffSize);
97 
98   VERIFY_IS_EQUAL(inflated.dimension(0), inflatedSizeDim1);
99   VERIFY_IS_EQUAL(inflated.dimension(1), inflatedSizeDim2);
100   VERIFY_IS_EQUAL(inflated.dimension(2), inflatedSizeDim3);
101   VERIFY_IS_EQUAL(inflated.dimension(3), inflatedSizeDim4);
102 
103   for (IndexType i = 0; i < inflatedSizeDim1; ++i) {
104     for (IndexType j = 0; j < inflatedSizeDim2; ++j) {
105       for (IndexType k = 0; k < inflatedSizeDim3; ++k) {
106         for (IndexType l = 0; l < inflatedSizeDim4; ++l) {
107           if (i % strides[0] == 0 &&
108               j % strides[1] == 0 &&
109               k % strides[2] == 0 &&
110               l % strides[3] == 0) {
111             VERIFY_IS_EQUAL(inflated(i,j,k,l),
112                             tensor(i/strides[0], j/strides[1], k/strides[2], l/strides[3]));
113           } else {
114             VERIFY_IS_EQUAL(0, inflated(i,j,k,l));
115           }
116         }
117       }
118     }
119   }
120   sycl_device.deallocate(gpu_data_tensor);
121   sycl_device.deallocate(gpu_data_no_stride);
122   sycl_device.deallocate(gpu_data_inflated);
123 }
124 
sycl_inflation_test_per_device(dev_Selector s)125 template<typename DataType, typename dev_Selector> void sycl_inflation_test_per_device(dev_Selector s){
126   QueueInterface queueInterface(s);
127   auto sycl_device = Eigen::SyclDevice(&queueInterface);
128   test_simple_inflation_sycl<DataType, RowMajor, int64_t>(sycl_device);
129   test_simple_inflation_sycl<DataType, ColMajor, int64_t>(sycl_device);
130 }
EIGEN_DECLARE_TEST(cxx11_tensor_inflation_sycl)131 EIGEN_DECLARE_TEST(cxx11_tensor_inflation_sycl)
132 {
133   for (const auto& device :Eigen::get_sycl_supported_devices()) {
134     CALL_SUBTEST(sycl_inflation_test_per_device<float>(device));
135   }
136 }
137