• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 #define EIGEN_TEST_NO_LONGDOUBLE
16 #define EIGEN_TEST_NO_COMPLEX
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::array;
24 using Eigen::SyclDevice;
25 using Eigen::Tensor;
26 using Eigen::TensorMap;
27 
28 using Eigen::Tensor;
29 using Eigen::RowMajor;
30 template <typename DataType, int DataLayout, typename IndexType>
test_tanh_sycl(const Eigen::SyclDevice & sycl_device)31 static void test_tanh_sycl(const Eigen::SyclDevice &sycl_device)
32 {
33 
34   IndexType sizeDim1 = 4;
35   IndexType sizeDim2 = 4;
36   IndexType sizeDim3 = 1;
37   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
38   Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
39   Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange);
40   Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
41 
42   in = in.random();
43 
44   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
45   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
46 
47   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
48   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
49 
50   sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
51   gpu2.device(sycl_device) = gpu1.tanh();
52   sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
53 
54   out_cpu=in.tanh();
55 
56   for (int i = 0; i < in.size(); ++i) {
57     VERIFY_IS_APPROX(out(i), out_cpu(i));
58   }
59 }
60 template <typename DataType, int DataLayout, typename IndexType>
test_sigmoid_sycl(const Eigen::SyclDevice & sycl_device)61 static void test_sigmoid_sycl(const Eigen::SyclDevice &sycl_device)
62 {
63 
64   IndexType sizeDim1 = 4;
65   IndexType sizeDim2 = 4;
66   IndexType sizeDim3 = 1;
67   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
68   Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
69   Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange);
70   Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
71 
72   in = in.random();
73 
74   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
75   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
76 
77   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
78   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
79 
80   sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
81   gpu2.device(sycl_device) = gpu1.sigmoid();
82   sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
83 
84   out_cpu=in.sigmoid();
85 
86   for (int i = 0; i < in.size(); ++i) {
87     VERIFY_IS_APPROX(out(i), out_cpu(i));
88   }
89 }
90 
91 
sycl_computing_test_per_device(dev_Selector s)92 template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
93   QueueInterface queueInterface(s);
94   auto sycl_device = Eigen::SyclDevice(&queueInterface);
95   test_tanh_sycl<DataType, RowMajor, int64_t>(sycl_device);
96   test_tanh_sycl<DataType, ColMajor, int64_t>(sycl_device);
97   test_sigmoid_sycl<DataType, RowMajor, int64_t>(sycl_device);
98   test_sigmoid_sycl<DataType, ColMajor, int64_t>(sycl_device);
99 }
100 
EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl)101 EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl) {
102   for (const auto& device :Eigen::get_sycl_supported_devices()) {
103     CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
104   }
105 }
106