• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 #define EIGEN_TEST_NO_LONGDOUBLE
17 #define EIGEN_TEST_NO_COMPLEX
18 
19 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
20 #define EIGEN_USE_SYCL
21 
22 
23 #include "main.h"
24 #include <unsupported/Eigen/CXX11/Tensor>
25 
26 using Eigen::array;
27 using Eigen::SyclDevice;
28 using Eigen::Tensor;
29 using Eigen::TensorMap;
30 
31 
32 template<typename DataType, int DataLayout, typename IndexType>
test_simple_padding(const Eigen::SyclDevice & sycl_device)33 static void test_simple_padding(const Eigen::SyclDevice& sycl_device)
34 {
35 
36   IndexType sizeDim1 = 2;
37   IndexType sizeDim2 = 3;
38   IndexType sizeDim3 = 5;
39   IndexType sizeDim4 = 7;
40   array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
41 
42   Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
43   tensor.setRandom();
44 
45   array<std::pair<IndexType, IndexType>, 4> paddings;
46   paddings[0] = std::make_pair(0, 0);
47   paddings[1] = std::make_pair(2, 1);
48   paddings[2] = std::make_pair(3, 4);
49   paddings[3] = std::make_pair(0, 0);
50 
51   IndexType padedSizeDim1 = 2;
52   IndexType padedSizeDim2 = 6;
53   IndexType padedSizeDim3 = 12;
54   IndexType padedSizeDim4 = 7;
55   array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}};
56 
57   Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange);
58 
59 
60   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
61   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(padded.size()*sizeof(DataType)));
62   TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
63   TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu2(gpu_data2, padedtensorRange);
64 
65   VERIFY_IS_EQUAL(padded.dimension(0), 2+0);
66   VERIFY_IS_EQUAL(padded.dimension(1), 3+3);
67   VERIFY_IS_EQUAL(padded.dimension(2), 5+7);
68   VERIFY_IS_EQUAL(padded.dimension(3), 7+0);
69   sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
70   gpu2.device(sycl_device)=gpu1.pad(paddings);
71   sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2,(padded.size())*sizeof(DataType));
72   for (IndexType i = 0; i < padedSizeDim1; ++i) {
73     for (IndexType j = 0; j < padedSizeDim2; ++j) {
74       for (IndexType k = 0; k < padedSizeDim3; ++k) {
75         for (IndexType l = 0; l < padedSizeDim4; ++l) {
76           if (j >= 2 && j < 5 && k >= 3 && k < 8) {
77             VERIFY_IS_EQUAL(padded(i,j,k,l), tensor(i,j-2,k-3,l));
78           } else {
79             VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f);
80           }
81         }
82       }
83     }
84   }
85   sycl_device.deallocate(gpu_data1);
86   sycl_device.deallocate(gpu_data2);
87 }
88 
89 template<typename DataType, int DataLayout, typename IndexType>
test_padded_expr(const Eigen::SyclDevice & sycl_device)90 static void test_padded_expr(const Eigen::SyclDevice& sycl_device)
91 {
92   IndexType sizeDim1 = 2;
93   IndexType sizeDim2 = 3;
94   IndexType sizeDim3 = 5;
95   IndexType sizeDim4 = 7;
96   array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
97 
98   Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
99   tensor.setRandom();
100 
101   array<std::pair<IndexType, IndexType>, 4> paddings;
102   paddings[0] = std::make_pair(0, 0);
103   paddings[1] = std::make_pair(2, 1);
104   paddings[2] = std::make_pair(3, 4);
105   paddings[3] = std::make_pair(0, 0);
106 
107   Eigen::DSizes<IndexType, 2> reshape_dims;
108   reshape_dims[0] = 12;
109   reshape_dims[1] = 84;
110 
111 
112   Tensor<DataType, 2, DataLayout, IndexType>  result(reshape_dims);
113 
114   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
115   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(result.size()*sizeof(DataType)));
116   TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
117   TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, reshape_dims);
118 
119 
120   sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
121   gpu2.device(sycl_device)=gpu1.pad(paddings).reshape(reshape_dims);
122   sycl_device.memcpyDeviceToHost(result.data(), gpu_data2,(result.size())*sizeof(DataType));
123 
124   for (IndexType i = 0; i < 2; ++i) {
125     for (IndexType j = 0; j < 6; ++j) {
126       for (IndexType k = 0; k < 12; ++k) {
127         for (IndexType l = 0; l < 7; ++l) {
128           const float result_value = DataLayout == ColMajor ?
129               result(i+2*j,k+12*l) : result(j+6*i,l+7*k);
130           if (j >= 2 && j < 5 && k >= 3 && k < 8) {
131             VERIFY_IS_EQUAL(result_value, tensor(i,j-2,k-3,l));
132           } else {
133             VERIFY_IS_EQUAL(result_value, 0.0f);
134           }
135         }
136       }
137     }
138   }
139   sycl_device.deallocate(gpu_data1);
140   sycl_device.deallocate(gpu_data2);
141 }
142 
sycl_padding_test_per_device(dev_Selector s)143 template<typename DataType, typename dev_Selector> void sycl_padding_test_per_device(dev_Selector s){
144   QueueInterface queueInterface(s);
145   auto sycl_device = Eigen::SyclDevice(&queueInterface);
146   test_simple_padding<DataType, RowMajor, int64_t>(sycl_device);
147   test_simple_padding<DataType, ColMajor, int64_t>(sycl_device);
148   test_padded_expr<DataType, RowMajor, int64_t>(sycl_device);
149   test_padded_expr<DataType, ColMajor, int64_t>(sycl_device);
150 
151 }
EIGEN_DECLARE_TEST(cxx11_tensor_padding_sycl)152 EIGEN_DECLARE_TEST(cxx11_tensor_padding_sycl)
153 {
154   for (const auto& device :Eigen::get_sycl_supported_devices()) {
155     CALL_SUBTEST(sycl_padding_test_per_device<float>(device));
156   }
157 }
158