1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <unsupported/Eigen/Polynomials>
12 #include <iostream>
13
14 using namespace std;
15
16 namespace Eigen {
17 namespace internal {
18 template<int Size>
19 struct increment_if_fixed_size
20 {
21 enum {
22 ret = (Size == Dynamic) ? Dynamic : Size+1
23 };
24 };
25 }
26 }
27
28 template<typename _Scalar, int _Deg>
realRoots_to_monicPolynomial_test(int deg)29 void realRoots_to_monicPolynomial_test(int deg)
30 {
31 typedef internal::increment_if_fixed_size<_Deg> Dim;
32 typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
33 typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
34
35 PolynomialType pols(deg+1);
36 EvalRootsType roots = EvalRootsType::Random(deg);
37 roots_to_monicPolynomial( roots, pols );
38
39 EvalRootsType evr( deg );
40 for( int i=0; i<roots.size(); ++i ){
41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
42
43 bool evalToZero = evr.isZero( test_precision<_Scalar>() );
44 if( !evalToZero ){
45 cerr << evr.transpose() << endl; }
46 VERIFY( evalToZero );
47 }
48
realRoots_to_monicPolynomial_scalar()49 template<typename _Scalar> void realRoots_to_monicPolynomial_scalar()
50 {
51 CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) );
52 CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) );
53 CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) );
54 CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) );
55 CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) );
56 CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) );
57 CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) );
58
59 CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>(
60 internal::random<int>(18,26) )) );
61 }
62
63
64
65
66 template<typename _Scalar, int _Deg>
CauchyBounds(int deg)67 void CauchyBounds(int deg)
68 {
69 typedef internal::increment_if_fixed_size<_Deg> Dim;
70 typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
71 typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
72
73 PolynomialType pols(deg+1);
74 EvalRootsType roots = EvalRootsType::Random(deg);
75 roots_to_monicPolynomial( roots, pols );
76 _Scalar M = cauchy_max_bound( pols );
77 _Scalar m = cauchy_min_bound( pols );
78 _Scalar Max = roots.array().abs().maxCoeff();
79 _Scalar min = roots.array().abs().minCoeff();
80 bool eval = (M >= Max) && (m <= min);
81 if( !eval )
82 {
83 cerr << "Roots: " << roots << endl;
84 cerr << "Bounds: (" << m << ", " << M << ")" << endl;
85 cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
86 }
87 VERIFY( eval );
88 }
89
CauchyBounds_scalar()90 template<typename _Scalar> void CauchyBounds_scalar()
91 {
92 CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) );
93 CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) );
94 CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) );
95 CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) );
96 CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) );
97 CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) );
98 CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) );
99
100 CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>(
101 internal::random<int>(18,26) )) );
102 }
103
EIGEN_DECLARE_TEST(polynomialutils)104 EIGEN_DECLARE_TEST(polynomialutils)
105 {
106 for(int i = 0; i < g_repeat; i++)
107 {
108 realRoots_to_monicPolynomial_scalar<double>();
109 realRoots_to_monicPolynomial_scalar<float>();
110 CauchyBounds_scalar<double>();
111 CauchyBounds_scalar<float>();
112 }
113 }
114