• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package diff implements an algorithm for producing edit-scripts.
6// The edit-script is a sequence of operations needed to transform one list
7// of symbols into another (or vice-versa). The edits allowed are insertions,
8// deletions, and modifications. The summation of all edits is called the
9// Levenshtein distance as this problem is well-known in computer science.
10//
11// This package prioritizes performance over accuracy. That is, the run time
12// is more important than obtaining a minimal Levenshtein distance.
13package diff
14
15import (
16	"math/rand"
17	"time"
18
19	"github.com/google/go-cmp/cmp/internal/flags"
20)
21
22// EditType represents a single operation within an edit-script.
23type EditType uint8
24
25const (
26	// Identity indicates that a symbol pair is identical in both list X and Y.
27	Identity EditType = iota
28	// UniqueX indicates that a symbol only exists in X and not Y.
29	UniqueX
30	// UniqueY indicates that a symbol only exists in Y and not X.
31	UniqueY
32	// Modified indicates that a symbol pair is a modification of each other.
33	Modified
34)
35
36// EditScript represents the series of differences between two lists.
37type EditScript []EditType
38
39// String returns a human-readable string representing the edit-script where
40// Identity, UniqueX, UniqueY, and Modified are represented by the
41// '.', 'X', 'Y', and 'M' characters, respectively.
42func (es EditScript) String() string {
43	b := make([]byte, len(es))
44	for i, e := range es {
45		switch e {
46		case Identity:
47			b[i] = '.'
48		case UniqueX:
49			b[i] = 'X'
50		case UniqueY:
51			b[i] = 'Y'
52		case Modified:
53			b[i] = 'M'
54		default:
55			panic("invalid edit-type")
56		}
57	}
58	return string(b)
59}
60
61// stats returns a histogram of the number of each type of edit operation.
62func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
63	for _, e := range es {
64		switch e {
65		case Identity:
66			s.NI++
67		case UniqueX:
68			s.NX++
69		case UniqueY:
70			s.NY++
71		case Modified:
72			s.NM++
73		default:
74			panic("invalid edit-type")
75		}
76	}
77	return
78}
79
80// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
81// lists X and Y are equal.
82func (es EditScript) Dist() int { return len(es) - es.stats().NI }
83
84// LenX is the length of the X list.
85func (es EditScript) LenX() int { return len(es) - es.stats().NY }
86
87// LenY is the length of the Y list.
88func (es EditScript) LenY() int { return len(es) - es.stats().NX }
89
90// EqualFunc reports whether the symbols at indexes ix and iy are equal.
91// When called by Difference, the index is guaranteed to be within nx and ny.
92type EqualFunc func(ix int, iy int) Result
93
94// Result is the result of comparison.
95// NumSame is the number of sub-elements that are equal.
96// NumDiff is the number of sub-elements that are not equal.
97type Result struct{ NumSame, NumDiff int }
98
99// BoolResult returns a Result that is either Equal or not Equal.
100func BoolResult(b bool) Result {
101	if b {
102		return Result{NumSame: 1} // Equal, Similar
103	} else {
104		return Result{NumDiff: 2} // Not Equal, not Similar
105	}
106}
107
108// Equal indicates whether the symbols are equal. Two symbols are equal
109// if and only if NumDiff == 0. If Equal, then they are also Similar.
110func (r Result) Equal() bool { return r.NumDiff == 0 }
111
112// Similar indicates whether two symbols are similar and may be represented
113// by using the Modified type. As a special case, we consider binary comparisons
114// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
115//
116// The exact ratio of NumSame to NumDiff to determine similarity may change.
117func (r Result) Similar() bool {
118	// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
119	return r.NumSame+1 >= r.NumDiff
120}
121
122var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
123
124// Difference reports whether two lists of lengths nx and ny are equal
125// given the definition of equality provided as f.
126//
127// This function returns an edit-script, which is a sequence of operations
128// needed to convert one list into the other. The following invariants for
129// the edit-script are maintained:
130//   - eq == (es.Dist()==0)
131//   - nx == es.LenX()
132//   - ny == es.LenY()
133//
134// This algorithm is not guaranteed to be an optimal solution (i.e., one that
135// produces an edit-script with a minimal Levenshtein distance). This algorithm
136// favors performance over optimality. The exact output is not guaranteed to
137// be stable and may change over time.
138func Difference(nx, ny int, f EqualFunc) (es EditScript) {
139	// This algorithm is based on traversing what is known as an "edit-graph".
140	// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
141	// by Eugene W. Myers. Since D can be as large as N itself, this is
142	// effectively O(N^2). Unlike the algorithm from that paper, we are not
143	// interested in the optimal path, but at least some "decent" path.
144	//
145	// For example, let X and Y be lists of symbols:
146	//	X = [A B C A B B A]
147	//	Y = [C B A B A C]
148	//
149	// The edit-graph can be drawn as the following:
150	//	   A B C A B B A
151	//	  ┌─────────────┐
152	//	C │_|_|\|_|_|_|_│ 0
153	//	B │_|\|_|_|\|\|_│ 1
154	//	A │\|_|_|\|_|_|\│ 2
155	//	B │_|\|_|_|\|\|_│ 3
156	//	A │\|_|_|\|_|_|\│ 4
157	//	C │ | |\| | | | │ 5
158	//	  └─────────────┘ 6
159	//	   0 1 2 3 4 5 6 7
160	//
161	// List X is written along the horizontal axis, while list Y is written
162	// along the vertical axis. At any point on this grid, if the symbol in
163	// list X matches the corresponding symbol in list Y, then a '\' is drawn.
164	// The goal of any minimal edit-script algorithm is to find a path from the
165	// top-left corner to the bottom-right corner, while traveling through the
166	// fewest horizontal or vertical edges.
167	// A horizontal edge is equivalent to inserting a symbol from list X.
168	// A vertical edge is equivalent to inserting a symbol from list Y.
169	// A diagonal edge is equivalent to a matching symbol between both X and Y.
170
171	// Invariants:
172	//   - 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
173	//   - 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
174	//
175	// In general:
176	//   - fwdFrontier.X < revFrontier.X
177	//   - fwdFrontier.Y < revFrontier.Y
178	//
179	// Unless, it is time for the algorithm to terminate.
180	fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
181	revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
182	fwdFrontier := fwdPath.point // Forward search frontier
183	revFrontier := revPath.point // Reverse search frontier
184
185	// Search budget bounds the cost of searching for better paths.
186	// The longest sequence of non-matching symbols that can be tolerated is
187	// approximately the square-root of the search budget.
188	searchBudget := 4 * (nx + ny) // O(n)
189
190	// Running the tests with the "cmp_debug" build tag prints a visualization
191	// of the algorithm running in real-time. This is educational for
192	// understanding how the algorithm works. See debug_enable.go.
193	f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
194
195	// The algorithm below is a greedy, meet-in-the-middle algorithm for
196	// computing sub-optimal edit-scripts between two lists.
197	//
198	// The algorithm is approximately as follows:
199	//   - Searching for differences switches back-and-forth between
200	//     a search that starts at the beginning (the top-left corner), and
201	//     a search that starts at the end (the bottom-right corner).
202	//     The goal of the search is connect with the search
203	//     from the opposite corner.
204	//   - As we search, we build a path in a greedy manner,
205	//     where the first match seen is added to the path (this is sub-optimal,
206	//     but provides a decent result in practice). When matches are found,
207	//     we try the next pair of symbols in the lists and follow all matches
208	//     as far as possible.
209	//   - When searching for matches, we search along a diagonal going through
210	//     through the "frontier" point. If no matches are found,
211	//     we advance the frontier towards the opposite corner.
212	//   - This algorithm terminates when either the X coordinates or the
213	//     Y coordinates of the forward and reverse frontier points ever intersect.
214
215	// This algorithm is correct even if searching only in the forward direction
216	// or in the reverse direction. We do both because it is commonly observed
217	// that two lists commonly differ because elements were added to the front
218	// or end of the other list.
219	//
220	// Non-deterministically start with either the forward or reverse direction
221	// to introduce some deliberate instability so that we have the flexibility
222	// to change this algorithm in the future.
223	if flags.Deterministic || randBool {
224		goto forwardSearch
225	} else {
226		goto reverseSearch
227	}
228
229forwardSearch:
230	{
231		// Forward search from the beginning.
232		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
233			goto finishSearch
234		}
235		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
236			// Search in a diagonal pattern for a match.
237			z := zigzag(i)
238			p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
239			switch {
240			case p.X >= revPath.X || p.Y < fwdPath.Y:
241				stop1 = true // Hit top-right corner
242			case p.Y >= revPath.Y || p.X < fwdPath.X:
243				stop2 = true // Hit bottom-left corner
244			case f(p.X, p.Y).Equal():
245				// Match found, so connect the path to this point.
246				fwdPath.connect(p, f)
247				fwdPath.append(Identity)
248				// Follow sequence of matches as far as possible.
249				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
250					if !f(fwdPath.X, fwdPath.Y).Equal() {
251						break
252					}
253					fwdPath.append(Identity)
254				}
255				fwdFrontier = fwdPath.point
256				stop1, stop2 = true, true
257			default:
258				searchBudget-- // Match not found
259			}
260			debug.Update()
261		}
262		// Advance the frontier towards reverse point.
263		if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
264			fwdFrontier.X++
265		} else {
266			fwdFrontier.Y++
267		}
268		goto reverseSearch
269	}
270
271reverseSearch:
272	{
273		// Reverse search from the end.
274		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
275			goto finishSearch
276		}
277		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
278			// Search in a diagonal pattern for a match.
279			z := zigzag(i)
280			p := point{revFrontier.X - z, revFrontier.Y + z}
281			switch {
282			case fwdPath.X >= p.X || revPath.Y < p.Y:
283				stop1 = true // Hit bottom-left corner
284			case fwdPath.Y >= p.Y || revPath.X < p.X:
285				stop2 = true // Hit top-right corner
286			case f(p.X-1, p.Y-1).Equal():
287				// Match found, so connect the path to this point.
288				revPath.connect(p, f)
289				revPath.append(Identity)
290				// Follow sequence of matches as far as possible.
291				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
292					if !f(revPath.X-1, revPath.Y-1).Equal() {
293						break
294					}
295					revPath.append(Identity)
296				}
297				revFrontier = revPath.point
298				stop1, stop2 = true, true
299			default:
300				searchBudget-- // Match not found
301			}
302			debug.Update()
303		}
304		// Advance the frontier towards forward point.
305		if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
306			revFrontier.X--
307		} else {
308			revFrontier.Y--
309		}
310		goto forwardSearch
311	}
312
313finishSearch:
314	// Join the forward and reverse paths and then append the reverse path.
315	fwdPath.connect(revPath.point, f)
316	for i := len(revPath.es) - 1; i >= 0; i-- {
317		t := revPath.es[i]
318		revPath.es = revPath.es[:i]
319		fwdPath.append(t)
320	}
321	debug.Finish()
322	return fwdPath.es
323}
324
325type path struct {
326	dir   int // +1 if forward, -1 if reverse
327	point     // Leading point of the EditScript path
328	es    EditScript
329}
330
331// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
332// to the edit-script to connect p.point to dst.
333func (p *path) connect(dst point, f EqualFunc) {
334	if p.dir > 0 {
335		// Connect in forward direction.
336		for dst.X > p.X && dst.Y > p.Y {
337			switch r := f(p.X, p.Y); {
338			case r.Equal():
339				p.append(Identity)
340			case r.Similar():
341				p.append(Modified)
342			case dst.X-p.X >= dst.Y-p.Y:
343				p.append(UniqueX)
344			default:
345				p.append(UniqueY)
346			}
347		}
348		for dst.X > p.X {
349			p.append(UniqueX)
350		}
351		for dst.Y > p.Y {
352			p.append(UniqueY)
353		}
354	} else {
355		// Connect in reverse direction.
356		for p.X > dst.X && p.Y > dst.Y {
357			switch r := f(p.X-1, p.Y-1); {
358			case r.Equal():
359				p.append(Identity)
360			case r.Similar():
361				p.append(Modified)
362			case p.Y-dst.Y >= p.X-dst.X:
363				p.append(UniqueY)
364			default:
365				p.append(UniqueX)
366			}
367		}
368		for p.X > dst.X {
369			p.append(UniqueX)
370		}
371		for p.Y > dst.Y {
372			p.append(UniqueY)
373		}
374	}
375}
376
377func (p *path) append(t EditType) {
378	p.es = append(p.es, t)
379	switch t {
380	case Identity, Modified:
381		p.add(p.dir, p.dir)
382	case UniqueX:
383		p.add(p.dir, 0)
384	case UniqueY:
385		p.add(0, p.dir)
386	}
387	debug.Update()
388}
389
390type point struct{ X, Y int }
391
392func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
393
394// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
395//
396//	[0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
397func zigzag(x int) int {
398	if x&1 != 0 {
399		x = ^x
400	}
401	return x >> 1
402}
403