• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* GENERATED SOURCE. DO NOT MODIFY. */
2 // © 2016 and later: Unicode, Inc. and others.
3 // License & terms of use: http://www.unicode.org/copyright.html
4 /*
5  *******************************************************************************
6  * Copyright (C) 1996-2010, International Business Machines Corporation and    *
7  * others. All Rights Reserved.                                                *
8  *******************************************************************************
9  */
10 package android.icu.text;
11 
12 import android.icu.impl.Utility;
13 
14 /**
15  * A transliteration rule used by
16  * <code>RuleBasedTransliterator</code>.
17  * <code>TransliterationRule</code> is an immutable object.
18  *
19  * <p>A rule consists of an input pattern and an output string.  When
20  * the input pattern is matched, the output string is emitted.  The
21  * input pattern consists of zero or more characters which are matched
22  * exactly (the key) and optional context.  Context must match if it
23  * is specified.  Context may be specified before the key, after the
24  * key, or both.  The key, preceding context, and following context
25  * may contain variables.  Variables represent a set of Unicode
26  * characters, such as the letters <i>a</i> through <i>z</i>.
27  * Variables are detected by looking up each character in a supplied
28  * variable list to see if it has been so defined.
29  *
30  * <p>A rule may contain segments in its input string and segment
31  * references in its output string.  A segment is a substring of the
32  * input pattern, indicated by an offset and limit.  The segment may
33  * be in the preceding or following context.  It may not span a
34  * context boundary.  A segment reference is a special character in
35  * the output string that causes a segment of the input string (not
36  * the input pattern) to be copied to the output string.  The range of
37  * special characters that represent segment references is defined by
38  * RuleBasedTransliterator.Data.
39  *
40  * <p>Example: The rule "([a-z]) . ([0-9]) > $2 . $1" will change the input
41  * string "abc.123" to "ab1.c23".
42  *
43  * <p>Copyright &copy; IBM Corporation 1999.  All rights reserved.
44  *
45  * @author Alan Liu
46  */
47 class TransliterationRule {
48 
49     // TODO Eliminate the pattern and keyLength data members.  They
50     // are used only by masks() and getIndexValue() which are called
51     // only during build time, not during run-time.  Perhaps these
52     // methods and pattern/keyLength can be isolated into a separate
53     // object.
54 
55     /**
56      * The match that must occur before the key, or null if there is no
57      * preceding context.
58      */
59     private StringMatcher anteContext;
60 
61     /**
62      * The matcher object for the key.  If null, then the key is empty.
63      */
64     private StringMatcher key;
65 
66     /**
67      * The match that must occur after the key, or null if there is no
68      * following context.
69      */
70     private StringMatcher postContext;
71 
72     /**
73      * The object that performs the replacement if the key,
74      * anteContext, and postContext are matched.  Never null.
75      */
76     private UnicodeReplacer output;
77 
78     /**
79      * The string that must be matched, consisting of the anteContext, key,
80      * and postContext, concatenated together, in that order.  Some components
81      * may be empty (zero length).
82      * @see anteContextLength
83      * @see keyLength
84      */
85     private String pattern;
86 
87     /**
88      * An array of matcher objects corresponding to the input pattern
89      * segments.  If there are no segments this is null.  N.B. This is
90      * a UnicodeMatcher for generality, but in practice it is always a
91      * StringMatcher.  In the future we may generalize this, but for
92      * now we sometimes cast down to StringMatcher.
93      */
94     UnicodeMatcher[] segments;
95 
96     /**
97      * The length of the string that must match before the key.  If
98      * zero, then there is no matching requirement before the key.
99      * Substring [0,anteContextLength) of pattern is the anteContext.
100      */
101     private int anteContextLength;
102 
103     /**
104      * The length of the key.  Substring [anteContextLength,
105      * anteContextLength + keyLength) is the key.
106      */
107     private int keyLength;
108 
109     /**
110      * Miscellaneous attributes.
111      */
112     byte flags;
113 
114     /**
115      * Flag attributes.
116      */
117     static final int ANCHOR_START = 1;
118     static final int ANCHOR_END   = 2;
119 
120     /**
121      * An alias pointer to the data for this rule.  The data provides
122      * lookup services for matchers and segments.
123      */
124     private final RuleBasedTransliterator.Data data;
125 
126 
127     /**
128      * Construct a new rule with the given input, output text, and other
129      * attributes.  A cursor position may be specified for the output text.
130      * @param input input string, including key and optional ante and
131      * post context
132      * @param anteContextPos offset into input to end of ante context, or -1 if
133      * none.  Must be <= input.length() if not -1.
134      * @param postContextPos offset into input to start of post context, or -1
135      * if none.  Must be <= input.length() if not -1, and must be >=
136      * anteContextPos.
137      * @param output output string
138      * @param cursorPos offset into output at which cursor is located, or -1 if
139      * none.  If less than zero, then the cursor is placed after the
140      * <code>output</code>; that is, -1 is equivalent to
141      * <code>output.length()</code>.  If greater than
142      * <code>output.length()</code> then an exception is thrown.
143      * @param cursorOffset an offset to be added to cursorPos to position the
144      * cursor either in the ante context, if < 0, or in the post context, if >
145      * 0.  For example, the rule "abc{def} > | @@@ xyz;" changes "def" to
146      * "xyz" and moves the cursor to before "a".  It would have a cursorOffset
147      * of -3.
148      * @param segs array of UnicodeMatcher corresponding to input pattern
149      * segments, or null if there are none
150      * @param anchorStart true if the the rule is anchored on the left to
151      * the context start
152      * @param anchorEnd true if the rule is anchored on the right to the
153      * context limit
154      */
TransliterationRule(String input, int anteContextPos, int postContextPos, String output, int cursorPos, int cursorOffset, UnicodeMatcher[] segs, boolean anchorStart, boolean anchorEnd, RuleBasedTransliterator.Data theData)155     public TransliterationRule(String input,
156                                int anteContextPos, int postContextPos,
157                                String output,
158                                int cursorPos, int cursorOffset,
159                                UnicodeMatcher[] segs,
160                                boolean anchorStart, boolean anchorEnd,
161                                RuleBasedTransliterator.Data theData) {
162         data = theData;
163 
164         // Do range checks only when warranted to save time
165         if (anteContextPos < 0) {
166             anteContextLength = 0;
167         } else {
168             if (anteContextPos > input.length()) {
169                 throw new IllegalArgumentException("Invalid ante context");
170             }
171             anteContextLength = anteContextPos;
172         }
173         if (postContextPos < 0) {
174             keyLength = input.length() - anteContextLength;
175         } else {
176             if (postContextPos < anteContextLength ||
177                 postContextPos > input.length()) {
178                 throw new IllegalArgumentException("Invalid post context");
179             }
180             keyLength = postContextPos - anteContextLength;
181         }
182         if (cursorPos < 0) {
183             cursorPos = output.length();
184         } else if (cursorPos > output.length()) {
185             throw new IllegalArgumentException("Invalid cursor position");
186         }
187 
188         // We don't validate the segments array.  The caller must
189         // guarantee that the segments are well-formed (that is, that
190         // all $n references in the output refer to indices of this
191         // array, and that no array elements are null).
192         this.segments = segs;
193 
194         pattern = input;
195         flags = 0;
196         if (anchorStart) {
197             flags |= ANCHOR_START;
198         }
199         if (anchorEnd) {
200             flags |= ANCHOR_END;
201         }
202 
203         anteContext = null;
204         if (anteContextLength > 0) {
205             anteContext = new StringMatcher(pattern.substring(0, anteContextLength),
206                                             0, data);
207         }
208 
209         key = null;
210         if (keyLength > 0) {
211             key = new StringMatcher(pattern.substring(anteContextLength, anteContextLength + keyLength),
212                                     0, data);
213         }
214 
215         int postContextLength = pattern.length() - keyLength - anteContextLength;
216         postContext = null;
217         if (postContextLength > 0) {
218             postContext = new StringMatcher(pattern.substring(anteContextLength + keyLength),
219                                             0, data);
220         }
221 
222         this.output = new StringReplacer(output, cursorPos + cursorOffset, data);
223     }
224 
225     /**
226      * Return the preceding context length.  This method is needed to
227      * support the <code>Transliterator</code> method
228      * <code>getMaximumContextLength()</code>.
229      */
getAnteContextLength()230     public int getAnteContextLength() {
231         return anteContextLength + (((flags & ANCHOR_START) != 0) ? 1 : 0);
232     }
233 
234     /**
235      * Internal method.  Returns 8-bit index value for this rule.
236      * This is the low byte of the first character of the key,
237      * unless the first character of the key is a set.  If it's a
238      * set, or otherwise can match multiple keys, the index value is -1.
239      */
getIndexValue()240     final int getIndexValue() {
241         if (anteContextLength == pattern.length()) {
242             // A pattern with just ante context {such as foo)>bar} can
243             // match any key.
244             return -1;
245         }
246         int c = UTF16.charAt(pattern, anteContextLength);
247         return data.lookupMatcher(c) == null ? (c & 0xFF) : -1;
248     }
249 
250     /**
251      * Internal method.  Returns true if this rule matches the given
252      * index value.  The index value is an 8-bit integer, 0..255,
253      * representing the low byte of the first character of the key.
254      * It matches this rule if it matches the first character of the
255      * key, or if the first character of the key is a set, and the set
256      * contains any character with a low byte equal to the index
257      * value.  If the rule contains only ante context, as in foo)>bar,
258      * then it will match any key.
259      */
matchesIndexValue(int v)260     final boolean matchesIndexValue(int v) {
261         // Delegate to the key, or if there is none, to the postContext.
262         // If there is neither then we match any key; return true.
263         UnicodeMatcher m = (key != null) ? key : postContext;
264         return (m != null) ? m.matchesIndexValue(v) : true;
265     }
266 
267     /**
268      * Return true if this rule masks another rule.  If r1 masks r2 then
269      * r1 matches any input string that r2 matches.  If r1 masks r2 and r2 masks
270      * r1 then r1 == r2.  Examples: "a>x" masks "ab>y".  "a>x" masks "a[b]>y".
271      * "[c]a>x" masks "[dc]a>y".
272      */
masks(TransliterationRule r2)273     public boolean masks(TransliterationRule r2) {
274         /* Rule r1 masks rule r2 if the string formed of the
275          * antecontext, key, and postcontext overlaps in the following
276          * way:
277          *
278          * r1:      aakkkpppp
279          * r2:     aaakkkkkpppp
280          *            ^
281          *
282          * The strings must be aligned at the first character of the
283          * key.  The length of r1 to the left of the alignment point
284          * must be <= the length of r2 to the left; ditto for the
285          * right.  The characters of r1 must equal (or be a superset
286          * of) the corresponding characters of r2.  The superset
287          * operation should be performed to check for UnicodeSet
288          * masking.
289          *
290          * Anchors:  Two patterns that differ only in anchors only
291          * mask one another if they are exactly equal, and r2 has
292          * all the anchors r1 has (optionally, plus some).  Here Y
293          * means the row masks the column, N means it doesn't.
294          *
295          *         ab   ^ab    ab$  ^ab$
296          *   ab    Y     Y     Y     Y
297          *  ^ab    N     Y     N     Y
298          *   ab$   N     N     Y     Y
299          *  ^ab$   N     N     N     Y
300          *
301          * Post context: {a}b masks ab, but not vice versa, since {a}b
302          * matches everything ab matches, and {a}b matches {|a|}b but ab
303          * does not.  Pre context is different (a{b} does not align with
304          * ab).
305          */
306 
307         /* LIMITATION of the current mask algorithm: Some rule
308          * maskings are currently not detected.  For example,
309          * "{Lu}]a>x" masks "A]a>y".  This can be added later. TODO
310          */
311 
312         int len = pattern.length();
313         int left = anteContextLength;
314         int left2 = r2.anteContextLength;
315         int right = pattern.length() - left;
316         int right2 = r2.pattern.length() - left2;
317 
318         // TODO Clean this up -- some logic might be combinable with the
319         // next statement.
320 
321         // Test for anchor masking
322         if (left == left2 && right == right2 &&
323             keyLength <= r2.keyLength &&
324             r2.pattern.regionMatches(0, pattern, 0, len)) {
325             // The following boolean logic implements the table above
326             return (flags == r2.flags) ||
327                 (!((flags & ANCHOR_START) != 0) && !((flags & ANCHOR_END) != 0)) ||
328                 (((r2.flags & ANCHOR_START) != 0) && ((r2.flags & ANCHOR_END) != 0));
329         }
330 
331         return left <= left2 &&
332             (right < right2 ||
333              (right == right2 && keyLength <= r2.keyLength)) &&
334             r2.pattern.regionMatches(left2 - left, pattern, 0, len);
335     }
336 
posBefore(Replaceable str, int pos)337     static final int posBefore(Replaceable str, int pos) {
338         return (pos > 0) ?
339             pos - UTF16.getCharCount(str.char32At(pos-1)) :
340             pos - 1;
341     }
342 
posAfter(Replaceable str, int pos)343     static final int posAfter(Replaceable str, int pos) {
344         return (pos >= 0 && pos < str.length()) ?
345             pos + UTF16.getCharCount(str.char32At(pos)) :
346             pos + 1;
347     }
348 
349     /**
350      * Attempt a match and replacement at the given position.  Return
351      * the degree of match between this rule and the given text.  The
352      * degree of match may be mismatch, a partial match, or a full
353      * match.  A mismatch means at least one character of the text
354      * does not match the context or key.  A partial match means some
355      * context and key characters match, but the text is not long
356      * enough to match all of them.  A full match means all context
357      * and key characters match.
358      *
359      * If a full match is obtained, perform a replacement, update pos,
360      * and return U_MATCH.  Otherwise both text and pos are unchanged.
361      *
362      * @param text the text
363      * @param pos the position indices
364      * @param incremental if true, test for partial matches that may
365      * be completed by additional text inserted at pos.limit.
366      * @return one of <code>U_MISMATCH</code>,
367      * <code>U_PARTIAL_MATCH</code>, or <code>U_MATCH</code>.  If
368      * incremental is false then U_PARTIAL_MATCH will not be returned.
369      */
matchAndReplace(Replaceable text, Transliterator.Position pos, boolean incremental)370     public int matchAndReplace(Replaceable text,
371                                Transliterator.Position pos,
372                                boolean incremental) {
373         // Matching and replacing are done in one method because the
374         // replacement operation needs information obtained during the
375         // match.  Another way to do this is to have the match method
376         // create a match result struct with relevant offsets, and to pass
377         // this into the replace method.
378 
379         // ============================ MATCH ===========================
380 
381         // Reset segment match data
382         if (segments != null) {
383             for (int i=0; i<segments.length; ++i) {
384                 ((StringMatcher) segments[i]).resetMatch();
385             }
386         }
387 
388         int keyLimit;
389         int[] intRef = new int[1];
390 
391         // ------------------------ Ante Context ------------------------
392 
393         // A mismatch in the ante context, or with the start anchor,
394         // is an outright U_MISMATCH regardless of whether we are
395         // incremental or not.
396         int oText; // offset into 'text'
397         int minOText;
398 
399         // Note (1): We process text in 16-bit code units, rather than
400         // 32-bit code points.  This works because stand-ins are
401         // always in the BMP and because we are doing a literal match
402         // operation, which can be done 16-bits at a time.
403 
404         int anteLimit = posBefore(text, pos.contextStart);
405 
406         int match;
407 
408         // Start reverse match at char before pos.start
409         intRef[0] = posBefore(text, pos.start);
410 
411         if (anteContext != null) {
412             match = anteContext.matches(text, intRef, anteLimit, false);
413             if (match != UnicodeMatcher.U_MATCH) {
414                 return UnicodeMatcher.U_MISMATCH;
415             }
416         }
417 
418         oText = intRef[0];
419 
420         minOText = posAfter(text, oText);
421 
422         // ------------------------ Start Anchor ------------------------
423 
424         if (((flags & ANCHOR_START) != 0) && oText != anteLimit) {
425             return UnicodeMatcher.U_MISMATCH;
426         }
427 
428         // -------------------- Key and Post Context --------------------
429 
430         intRef[0] = pos.start;
431 
432         if (key != null) {
433             match = key.matches(text, intRef, pos.limit, incremental);
434             if (match != UnicodeMatcher.U_MATCH) {
435                 return match;
436             }
437         }
438 
439         keyLimit = intRef[0];
440 
441         if (postContext != null) {
442             if (incremental && keyLimit == pos.limit) {
443                 // The key matches just before pos.limit, and there is
444                 // a postContext.  Since we are in incremental mode,
445                 // we must assume more characters may be inserted at
446                 // pos.limit -- this is a partial match.
447                 return UnicodeMatcher.U_PARTIAL_MATCH;
448             }
449 
450             match = postContext.matches(text, intRef, pos.contextLimit, incremental);
451             if (match != UnicodeMatcher.U_MATCH) {
452                 return match;
453             }
454         }
455 
456         oText = intRef[0];
457 
458         // ------------------------- Stop Anchor ------------------------
459 
460         if (((flags & ANCHOR_END)) != 0) {
461             if (oText != pos.contextLimit) {
462                 return UnicodeMatcher.U_MISMATCH;
463             }
464             if (incremental) {
465                 return UnicodeMatcher.U_PARTIAL_MATCH;
466             }
467         }
468 
469         // =========================== REPLACE ==========================
470 
471         // We have a full match.  The key is between pos.start and
472         // keyLimit.
473 
474         int newLength = output.replace(text, pos.start, keyLimit, intRef);
475         int lenDelta = newLength - (keyLimit - pos.start);
476         int newStart = intRef[0];
477 
478         oText += lenDelta;
479         pos.limit += lenDelta;
480         pos.contextLimit += lenDelta;
481         // Restrict new value of start to [minOText, min(oText, pos.limit)].
482         pos.start = Math.max(minOText, Math.min(Math.min(oText, pos.limit), newStart));
483         return UnicodeMatcher.U_MATCH;
484     }
485 
486     /**
487      * Create a source string that represents this rule.  Append it to the
488      * given string.
489      */
toRule(boolean escapeUnprintable)490     public String toRule(boolean escapeUnprintable) {
491        // int i;
492 
493         StringBuffer rule = new StringBuffer();
494 
495         // Accumulate special characters (and non-specials following them)
496         // into quoteBuf.  Append quoteBuf, within single quotes, when
497         // a non-quoted element must be inserted.
498         StringBuffer quoteBuf = new StringBuffer();
499 
500         // Do not emit the braces '{' '}' around the pattern if there
501         // is neither anteContext nor postContext.
502         boolean emitBraces =
503             (anteContext != null) || (postContext != null);
504 
505         // Emit start anchor
506         if ((flags & ANCHOR_START) != 0) {
507             rule.append('^');
508         }
509 
510         // Emit the input pattern
511         Utility.appendToRule(rule, anteContext, escapeUnprintable, quoteBuf);
512 
513         if (emitBraces) {
514             Utility.appendToRule(rule, '{', true, escapeUnprintable, quoteBuf);
515         }
516 
517         Utility.appendToRule(rule, key, escapeUnprintable, quoteBuf);
518 
519         if (emitBraces) {
520             Utility.appendToRule(rule, '}', true, escapeUnprintable, quoteBuf);
521         }
522 
523         Utility.appendToRule(rule, postContext, escapeUnprintable, quoteBuf);
524 
525         // Emit end anchor
526         if ((flags & ANCHOR_END) != 0) {
527             rule.append('$');
528         }
529 
530         Utility.appendToRule(rule, " > ", true, escapeUnprintable, quoteBuf);
531 
532         // Emit the output pattern
533 
534         Utility.appendToRule(rule, output.toReplacerPattern(escapeUnprintable),
535                      true, escapeUnprintable, quoteBuf);
536 
537         Utility.appendToRule(rule, ';', true, escapeUnprintable, quoteBuf);
538 
539         return rule.toString();
540     }
541 
542     /**
543      * Return a string representation of this object.
544      * @return string representation of this object
545      */
546     @Override
toString()547     public String toString() {
548         return '{' + toRule(true) + '}';
549     }
550 
551     /**
552      * Find the source and target sets, subject to the input filter.
553      * There is a known issue with filters containing multiple characters.
554      */
555     // TODO: Problem: the rule is [{ab}]c > x
556     // The filter is [a{bc}].
557     // If the input is abc, then the rule will work.
558     // However, following code applying the filter won't catch that case.
559 
addSourceTargetSet(UnicodeSet filter, UnicodeSet sourceSet, UnicodeSet targetSet, UnicodeSet revisiting)560     void addSourceTargetSet(UnicodeSet filter, UnicodeSet sourceSet, UnicodeSet targetSet, UnicodeSet revisiting) {
561         int limit = anteContextLength + keyLength;
562         UnicodeSet tempSource = new UnicodeSet();
563         UnicodeSet temp = new UnicodeSet();
564 
565         // We need to walk through the pattern.
566         // Iff some of the characters at ALL of the the positions are matched by the filter, then we add temp to toUnionTo
567         for (int i=anteContextLength; i<limit; ) {
568             int ch = UTF16.charAt(pattern, i);
569             i += UTF16.getCharCount(ch);
570             UnicodeMatcher matcher = data.lookupMatcher(ch);
571             if (matcher == null) {
572                 if (!filter.contains(ch)) {
573                     return;
574                 }
575                 tempSource.add(ch);
576             } else {
577                 try {
578                     if (!filter.containsSome((UnicodeSet) matcher)) {
579                         return;
580                     }
581                     matcher.addMatchSetTo(tempSource);
582                 } catch (ClassCastException e) { // if the matcher is not a UnicodeSet
583                     temp.clear();
584                     matcher.addMatchSetTo(temp);
585                     if (!filter.containsSome(temp)) {
586                         return;
587                     }
588                     tempSource.addAll(temp);
589                 }
590             }
591         }
592         // if we made our way through the gauntlet, add to source/target
593         sourceSet.addAll(tempSource);
594         output.addReplacementSetTo(targetSet);
595     }
596 }
597