• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /**
4  *******************************************************************************
5  * Copyright (C) 2006-2016, International Business Machines Corporation
6  * and others. All Rights Reserved.
7  *******************************************************************************
8  */
9 
10 #include <utility>
11 
12 #include "unicode/utypes.h"
13 
14 #if !UCONFIG_NO_BREAK_ITERATION
15 
16 #include "brkeng.h"
17 #include "dictbe.h"
18 #include "unicode/uniset.h"
19 #include "unicode/chariter.h"
20 #include "unicode/resbund.h"
21 #include "unicode/ubrk.h"
22 #include "unicode/usetiter.h"
23 #include "ubrkimpl.h"
24 #include "utracimp.h"
25 #include "uvectr32.h"
26 #include "uvector.h"
27 #include "uassert.h"
28 #include "unicode/normlzr.h"
29 #include "cmemory.h"
30 #include "dictionarydata.h"
31 
32 U_NAMESPACE_BEGIN
33 
34 /*
35  ******************************************************************
36  */
37 
DictionaryBreakEngine()38 DictionaryBreakEngine::DictionaryBreakEngine() {
39 }
40 
~DictionaryBreakEngine()41 DictionaryBreakEngine::~DictionaryBreakEngine() {
42 }
43 
44 UBool
handles(UChar32 c) const45 DictionaryBreakEngine::handles(UChar32 c) const {
46     return fSet.contains(c);
47 }
48 
49 int32_t
findBreaks(UText * text,int32_t startPos,int32_t endPos,UVector32 & foundBreaks,UBool isPhraseBreaking,UErrorCode & status) const50 DictionaryBreakEngine::findBreaks( UText *text,
51                                  int32_t startPos,
52                                  int32_t endPos,
53                                  UVector32 &foundBreaks,
54                                  UBool isPhraseBreaking,
55                                  UErrorCode& status) const {
56     if (U_FAILURE(status)) return 0;
57     (void)startPos;            // TODO: remove this param?
58     int32_t result = 0;
59 
60     // Find the span of characters included in the set.
61     //   The span to break begins at the current position in the text, and
62     //   extends towards the start or end of the text, depending on 'reverse'.
63 
64     int32_t start = (int32_t)utext_getNativeIndex(text);
65     int32_t current;
66     int32_t rangeStart;
67     int32_t rangeEnd;
68     UChar32 c = utext_current32(text);
69     while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
70         utext_next32(text);         // TODO:  recast loop for postincrement
71         c = utext_current32(text);
72     }
73     rangeStart = start;
74     rangeEnd = current;
75     result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks, isPhraseBreaking, status);
76     utext_setNativeIndex(text, current);
77 
78     return result;
79 }
80 
81 void
setCharacters(const UnicodeSet & set)82 DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
83     fSet = set;
84     // Compact for caching
85     fSet.compact();
86 }
87 
88 /*
89  ******************************************************************
90  * PossibleWord
91  */
92 
93 // Helper class for improving readability of the Thai/Lao/Khmer word break
94 // algorithm. The implementation is completely inline.
95 
96 // List size, limited by the maximum number of words in the dictionary
97 // that form a nested sequence.
98 static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
99 
100 class PossibleWord {
101 private:
102     // list of word candidate lengths, in increasing length order
103     // TODO: bytes would be sufficient for word lengths.
104     int32_t   count;      // Count of candidates
105     int32_t   prefix;     // The longest match with a dictionary word
106     int32_t   offset;     // Offset in the text of these candidates
107     int32_t   mark;       // The preferred candidate's offset
108     int32_t   current;    // The candidate we're currently looking at
109     int32_t   cuLengths[POSSIBLE_WORD_LIST_MAX];   // Word Lengths, in code units.
110     int32_t   cpLengths[POSSIBLE_WORD_LIST_MAX];   // Word Lengths, in code points.
111 
112 public:
PossibleWord()113     PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}
~PossibleWord()114     ~PossibleWord() {}
115 
116     // Fill the list of candidates if needed, select the longest, and return the number found
117     int32_t   candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
118 
119     // Select the currently marked candidate, point after it in the text, and invalidate self
120     int32_t   acceptMarked( UText *text );
121 
122     // Back up from the current candidate to the next shorter one; return true if that exists
123     // and point the text after it
124     UBool     backUp( UText *text );
125 
126     // Return the longest prefix this candidate location shares with a dictionary word
127     // Return value is in code points.
longestPrefix()128     int32_t   longestPrefix() { return prefix; }
129 
130     // Mark the current candidate as the one we like
markCurrent()131     void      markCurrent() { mark = current; }
132 
133     // Get length in code points of the marked word.
markedCPLength()134     int32_t   markedCPLength() { return cpLengths[mark]; }
135 };
136 
137 
candidates(UText * text,DictionaryMatcher * dict,int32_t rangeEnd)138 int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
139     // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
140     int32_t start = (int32_t)utext_getNativeIndex(text);
141     if (start != offset) {
142         offset = start;
143         count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
144         // Dictionary leaves text after longest prefix, not longest word. Back up.
145         if (count <= 0) {
146             utext_setNativeIndex(text, start);
147         }
148     }
149     if (count > 0) {
150         utext_setNativeIndex(text, start+cuLengths[count-1]);
151     }
152     current = count-1;
153     mark = current;
154     return count;
155 }
156 
157 int32_t
acceptMarked(UText * text)158 PossibleWord::acceptMarked( UText *text ) {
159     utext_setNativeIndex(text, offset + cuLengths[mark]);
160     return cuLengths[mark];
161 }
162 
163 
164 UBool
backUp(UText * text)165 PossibleWord::backUp( UText *text ) {
166     if (current > 0) {
167         utext_setNativeIndex(text, offset + cuLengths[--current]);
168         return true;
169     }
170     return false;
171 }
172 
173 /*
174  ******************************************************************
175  * ThaiBreakEngine
176  */
177 
178 // How many words in a row are "good enough"?
179 static const int32_t THAI_LOOKAHEAD = 3;
180 
181 // Will not combine a non-word with a preceding dictionary word longer than this
182 static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
183 
184 // Will not combine a non-word that shares at least this much prefix with a
185 // dictionary word, with a preceding word
186 static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
187 
188 // Elision character
189 static const int32_t THAI_PAIYANNOI = 0x0E2F;
190 
191 // Repeat character
192 static const int32_t THAI_MAIYAMOK = 0x0E46;
193 
194 // Minimum word size
195 static const int32_t THAI_MIN_WORD = 2;
196 
197 // Minimum number of characters for two words
198 static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
199 
ThaiBreakEngine(DictionaryMatcher * adoptDictionary,UErrorCode & status)200 ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
201     : DictionaryBreakEngine(),
202       fDictionary(adoptDictionary)
203 {
204     UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
205     UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Thai");
206     UnicodeSet thaiWordSet(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]"), status);
207     if (U_SUCCESS(status)) {
208         setCharacters(thaiWordSet);
209     }
210     fMarkSet.applyPattern(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
211     fMarkSet.add(0x0020);
212     fEndWordSet = thaiWordSet;
213     fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
214     fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
215     fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
216     fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
217     fSuffixSet.add(THAI_PAIYANNOI);
218     fSuffixSet.add(THAI_MAIYAMOK);
219 
220     // Compact for caching.
221     fMarkSet.compact();
222     fEndWordSet.compact();
223     fBeginWordSet.compact();
224     fSuffixSet.compact();
225     UTRACE_EXIT_STATUS(status);
226 }
227 
~ThaiBreakEngine()228 ThaiBreakEngine::~ThaiBreakEngine() {
229     delete fDictionary;
230 }
231 
232 int32_t
divideUpDictionaryRange(UText * text,int32_t rangeStart,int32_t rangeEnd,UVector32 & foundBreaks,UBool,UErrorCode & status) const233 ThaiBreakEngine::divideUpDictionaryRange( UText *text,
234                                                 int32_t rangeStart,
235                                                 int32_t rangeEnd,
236                                                 UVector32 &foundBreaks,
237                                                 UBool /* isPhraseBreaking */,
238                                                 UErrorCode& status) const {
239     if (U_FAILURE(status)) return 0;
240     utext_setNativeIndex(text, rangeStart);
241     utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
242     if (utext_getNativeIndex(text) >= rangeEnd) {
243         return 0;       // Not enough characters for two words
244     }
245     utext_setNativeIndex(text, rangeStart);
246 
247 
248     uint32_t wordsFound = 0;
249     int32_t cpWordLength = 0;    // Word Length in Code Points.
250     int32_t cuWordLength = 0;    // Word length in code units (UText native indexing)
251     int32_t current;
252     PossibleWord words[THAI_LOOKAHEAD];
253 
254     utext_setNativeIndex(text, rangeStart);
255 
256     while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
257         cpWordLength = 0;
258         cuWordLength = 0;
259 
260         // Look for candidate words at the current position
261         int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
262 
263         // If we found exactly one, use that
264         if (candidates == 1) {
265             cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
266             cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
267             wordsFound += 1;
268         }
269         // If there was more than one, see which one can take us forward the most words
270         else if (candidates > 1) {
271             // If we're already at the end of the range, we're done
272             if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
273                 goto foundBest;
274             }
275             do {
276                 if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
277                     // Followed by another dictionary word; mark first word as a good candidate
278                     words[wordsFound%THAI_LOOKAHEAD].markCurrent();
279 
280                     // If we're already at the end of the range, we're done
281                     if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
282                         goto foundBest;
283                     }
284 
285                     // See if any of the possible second words is followed by a third word
286                     do {
287                         // If we find a third word, stop right away
288                         if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
289                             words[wordsFound % THAI_LOOKAHEAD].markCurrent();
290                             goto foundBest;
291                         }
292                     }
293                     while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
294                 }
295             }
296             while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
297 foundBest:
298             // Set UText position to after the accepted word.
299             cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
300             cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
301             wordsFound += 1;
302         }
303 
304         // We come here after having either found a word or not. We look ahead to the
305         // next word. If it's not a dictionary word, we will combine it with the word we
306         // just found (if there is one), but only if the preceding word does not exceed
307         // the threshold.
308         // The text iterator should now be positioned at the end of the word we found.
309 
310         UChar32 uc = 0;
311         if ((int32_t)utext_getNativeIndex(text) < rangeEnd &&  cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
312             // if it is a dictionary word, do nothing. If it isn't, then if there is
313             // no preceding word, or the non-word shares less than the minimum threshold
314             // of characters with a dictionary word, then scan to resynchronize
315             if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
316                   && (cuWordLength == 0
317                       || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
318                 // Look for a plausible word boundary
319                 int32_t remaining = rangeEnd - (current+cuWordLength);
320                 UChar32 pc;
321                 int32_t chars = 0;
322                 for (;;) {
323                     int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
324                     pc = utext_next32(text);
325                     int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
326                     chars += pcSize;
327                     remaining -= pcSize;
328                     if (remaining <= 0) {
329                         break;
330                     }
331                     uc = utext_current32(text);
332                     if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
333                         // Maybe. See if it's in the dictionary.
334                         // NOTE: In the original Apple code, checked that the next
335                         // two characters after uc were not 0x0E4C THANTHAKHAT before
336                         // checking the dictionary. That is just a performance filter,
337                         // but it's not clear it's faster than checking the trie.
338                         int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
339                         utext_setNativeIndex(text, current + cuWordLength + chars);
340                         if (num_candidates > 0) {
341                             break;
342                         }
343                     }
344                 }
345 
346                 // Bump the word count if there wasn't already one
347                 if (cuWordLength <= 0) {
348                     wordsFound += 1;
349                 }
350 
351                 // Update the length with the passed-over characters
352                 cuWordLength += chars;
353             }
354             else {
355                 // Back up to where we were for next iteration
356                 utext_setNativeIndex(text, current+cuWordLength);
357             }
358         }
359 
360         // Never stop before a combining mark.
361         int32_t currPos;
362         while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
363             utext_next32(text);
364             cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
365         }
366 
367         // Look ahead for possible suffixes if a dictionary word does not follow.
368         // We do this in code rather than using a rule so that the heuristic
369         // resynch continues to function. For example, one of the suffix characters
370         // could be a typo in the middle of a word.
371         if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
372             if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
373                 && fSuffixSet.contains(uc = utext_current32(text))) {
374                 if (uc == THAI_PAIYANNOI) {
375                     if (!fSuffixSet.contains(utext_previous32(text))) {
376                         // Skip over previous end and PAIYANNOI
377                         utext_next32(text);
378                         int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
379                         utext_next32(text);
380                         cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex;    // Add PAIYANNOI to word
381                         uc = utext_current32(text);     // Fetch next character
382                     }
383                     else {
384                         // Restore prior position
385                         utext_next32(text);
386                     }
387                 }
388                 if (uc == THAI_MAIYAMOK) {
389                     if (utext_previous32(text) != THAI_MAIYAMOK) {
390                         // Skip over previous end and MAIYAMOK
391                         utext_next32(text);
392                         int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
393                         utext_next32(text);
394                         cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex;    // Add MAIYAMOK to word
395                     }
396                     else {
397                         // Restore prior position
398                         utext_next32(text);
399                     }
400                 }
401             }
402             else {
403                 utext_setNativeIndex(text, current+cuWordLength);
404             }
405         }
406 
407         // Did we find a word on this iteration? If so, push it on the break stack
408         if (cuWordLength > 0) {
409             foundBreaks.push((current+cuWordLength), status);
410         }
411     }
412 
413     // Don't return a break for the end of the dictionary range if there is one there.
414     if (foundBreaks.peeki() >= rangeEnd) {
415         (void) foundBreaks.popi();
416         wordsFound -= 1;
417     }
418 
419     return wordsFound;
420 }
421 
422 /*
423  ******************************************************************
424  * LaoBreakEngine
425  */
426 
427 // How many words in a row are "good enough"?
428 static const int32_t LAO_LOOKAHEAD = 3;
429 
430 // Will not combine a non-word with a preceding dictionary word longer than this
431 static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
432 
433 // Will not combine a non-word that shares at least this much prefix with a
434 // dictionary word, with a preceding word
435 static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
436 
437 // Minimum word size
438 static const int32_t LAO_MIN_WORD = 2;
439 
440 // Minimum number of characters for two words
441 static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
442 
LaoBreakEngine(DictionaryMatcher * adoptDictionary,UErrorCode & status)443 LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
444     : DictionaryBreakEngine(),
445       fDictionary(adoptDictionary)
446 {
447     UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
448     UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Laoo");
449     UnicodeSet laoWordSet(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]]"), status);
450     if (U_SUCCESS(status)) {
451         setCharacters(laoWordSet);
452     }
453     fMarkSet.applyPattern(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
454     fMarkSet.add(0x0020);
455     fEndWordSet = laoWordSet;
456     fEndWordSet.remove(0x0EC0, 0x0EC4);     // prefix vowels
457     fBeginWordSet.add(0x0E81, 0x0EAE);      // basic consonants (including holes for corresponding Thai characters)
458     fBeginWordSet.add(0x0EDC, 0x0EDD);      // digraph consonants (no Thai equivalent)
459     fBeginWordSet.add(0x0EC0, 0x0EC4);      // prefix vowels
460 
461     // Compact for caching.
462     fMarkSet.compact();
463     fEndWordSet.compact();
464     fBeginWordSet.compact();
465     UTRACE_EXIT_STATUS(status);
466 }
467 
~LaoBreakEngine()468 LaoBreakEngine::~LaoBreakEngine() {
469     delete fDictionary;
470 }
471 
472 int32_t
divideUpDictionaryRange(UText * text,int32_t rangeStart,int32_t rangeEnd,UVector32 & foundBreaks,UBool,UErrorCode & status) const473 LaoBreakEngine::divideUpDictionaryRange( UText *text,
474                                                 int32_t rangeStart,
475                                                 int32_t rangeEnd,
476                                                 UVector32 &foundBreaks,
477                                                 UBool /* isPhraseBreaking */,
478                                                 UErrorCode& status) const {
479     if (U_FAILURE(status)) return 0;
480     if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
481         return 0;       // Not enough characters for two words
482     }
483 
484     uint32_t wordsFound = 0;
485     int32_t cpWordLength = 0;
486     int32_t cuWordLength = 0;
487     int32_t current;
488     PossibleWord words[LAO_LOOKAHEAD];
489 
490     utext_setNativeIndex(text, rangeStart);
491 
492     while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
493         cuWordLength = 0;
494         cpWordLength = 0;
495 
496         // Look for candidate words at the current position
497         int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
498 
499         // If we found exactly one, use that
500         if (candidates == 1) {
501             cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
502             cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
503             wordsFound += 1;
504         }
505         // If there was more than one, see which one can take us forward the most words
506         else if (candidates > 1) {
507             // If we're already at the end of the range, we're done
508             if (utext_getNativeIndex(text) >= rangeEnd) {
509                 goto foundBest;
510             }
511             do {
512                 if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
513                     // Followed by another dictionary word; mark first word as a good candidate
514                     words[wordsFound%LAO_LOOKAHEAD].markCurrent();
515 
516                     // If we're already at the end of the range, we're done
517                     if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
518                         goto foundBest;
519                     }
520 
521                     // See if any of the possible second words is followed by a third word
522                     do {
523                         // If we find a third word, stop right away
524                         if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
525                             words[wordsFound % LAO_LOOKAHEAD].markCurrent();
526                             goto foundBest;
527                         }
528                     }
529                     while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
530                 }
531             }
532             while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
533 foundBest:
534             cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
535             cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
536             wordsFound += 1;
537         }
538 
539         // We come here after having either found a word or not. We look ahead to the
540         // next word. If it's not a dictionary word, we will combine it with the word we
541         // just found (if there is one), but only if the preceding word does not exceed
542         // the threshold.
543         // The text iterator should now be positioned at the end of the word we found.
544         if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
545             // if it is a dictionary word, do nothing. If it isn't, then if there is
546             // no preceding word, or the non-word shares less than the minimum threshold
547             // of characters with a dictionary word, then scan to resynchronize
548             if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
549                   && (cuWordLength == 0
550                       || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
551                 // Look for a plausible word boundary
552                 int32_t remaining = rangeEnd - (current + cuWordLength);
553                 UChar32 pc;
554                 UChar32 uc;
555                 int32_t chars = 0;
556                 for (;;) {
557                     int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
558                     pc = utext_next32(text);
559                     int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
560                     chars += pcSize;
561                     remaining -= pcSize;
562                     if (remaining <= 0) {
563                         break;
564                     }
565                     uc = utext_current32(text);
566                     if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
567                         // Maybe. See if it's in the dictionary.
568                         // TODO: this looks iffy; compare with old code.
569                         int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
570                         utext_setNativeIndex(text, current + cuWordLength + chars);
571                         if (num_candidates > 0) {
572                             break;
573                         }
574                     }
575                 }
576 
577                 // Bump the word count if there wasn't already one
578                 if (cuWordLength <= 0) {
579                     wordsFound += 1;
580                 }
581 
582                 // Update the length with the passed-over characters
583                 cuWordLength += chars;
584             }
585             else {
586                 // Back up to where we were for next iteration
587                 utext_setNativeIndex(text, current + cuWordLength);
588             }
589         }
590 
591         // Never stop before a combining mark.
592         int32_t currPos;
593         while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
594             utext_next32(text);
595             cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
596         }
597 
598         // Look ahead for possible suffixes if a dictionary word does not follow.
599         // We do this in code rather than using a rule so that the heuristic
600         // resynch continues to function. For example, one of the suffix characters
601         // could be a typo in the middle of a word.
602         // NOT CURRENTLY APPLICABLE TO LAO
603 
604         // Did we find a word on this iteration? If so, push it on the break stack
605         if (cuWordLength > 0) {
606             foundBreaks.push((current+cuWordLength), status);
607         }
608     }
609 
610     // Don't return a break for the end of the dictionary range if there is one there.
611     if (foundBreaks.peeki() >= rangeEnd) {
612         (void) foundBreaks.popi();
613         wordsFound -= 1;
614     }
615 
616     return wordsFound;
617 }
618 
619 /*
620  ******************************************************************
621  * BurmeseBreakEngine
622  */
623 
624 // How many words in a row are "good enough"?
625 static const int32_t BURMESE_LOOKAHEAD = 3;
626 
627 // Will not combine a non-word with a preceding dictionary word longer than this
628 static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
629 
630 // Will not combine a non-word that shares at least this much prefix with a
631 // dictionary word, with a preceding word
632 static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
633 
634 // Minimum word size
635 static const int32_t BURMESE_MIN_WORD = 2;
636 
637 // Minimum number of characters for two words
638 static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
639 
BurmeseBreakEngine(DictionaryMatcher * adoptDictionary,UErrorCode & status)640 BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
641     : DictionaryBreakEngine(),
642       fDictionary(adoptDictionary)
643 {
644     UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
645     UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Mymr");
646     fBeginWordSet.add(0x1000, 0x102A);      // basic consonants and independent vowels
647     fEndWordSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]"), status);
648     fMarkSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
649     fMarkSet.add(0x0020);
650     if (U_SUCCESS(status)) {
651         setCharacters(fEndWordSet);
652     }
653 
654     // Compact for caching.
655     fMarkSet.compact();
656     fEndWordSet.compact();
657     fBeginWordSet.compact();
658     UTRACE_EXIT_STATUS(status);
659 }
660 
~BurmeseBreakEngine()661 BurmeseBreakEngine::~BurmeseBreakEngine() {
662     delete fDictionary;
663 }
664 
665 int32_t
divideUpDictionaryRange(UText * text,int32_t rangeStart,int32_t rangeEnd,UVector32 & foundBreaks,UBool,UErrorCode & status) const666 BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
667                                                 int32_t rangeStart,
668                                                 int32_t rangeEnd,
669                                                 UVector32 &foundBreaks,
670                                                 UBool /* isPhraseBreaking */,
671                                                 UErrorCode& status ) const {
672     if (U_FAILURE(status)) return 0;
673     if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
674         return 0;       // Not enough characters for two words
675     }
676 
677     uint32_t wordsFound = 0;
678     int32_t cpWordLength = 0;
679     int32_t cuWordLength = 0;
680     int32_t current;
681     PossibleWord words[BURMESE_LOOKAHEAD];
682 
683     utext_setNativeIndex(text, rangeStart);
684 
685     while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
686         cuWordLength = 0;
687         cpWordLength = 0;
688 
689         // Look for candidate words at the current position
690         int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
691 
692         // If we found exactly one, use that
693         if (candidates == 1) {
694             cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
695             cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
696             wordsFound += 1;
697         }
698         // If there was more than one, see which one can take us forward the most words
699         else if (candidates > 1) {
700             // If we're already at the end of the range, we're done
701             if (utext_getNativeIndex(text) >= rangeEnd) {
702                 goto foundBest;
703             }
704             do {
705                 if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
706                     // Followed by another dictionary word; mark first word as a good candidate
707                     words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
708 
709                     // If we're already at the end of the range, we're done
710                     if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
711                         goto foundBest;
712                     }
713 
714                     // See if any of the possible second words is followed by a third word
715                     do {
716                         // If we find a third word, stop right away
717                         if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
718                             words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
719                             goto foundBest;
720                         }
721                     }
722                     while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
723                 }
724             }
725             while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
726 foundBest:
727             cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
728             cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
729             wordsFound += 1;
730         }
731 
732         // We come here after having either found a word or not. We look ahead to the
733         // next word. If it's not a dictionary word, we will combine it with the word we
734         // just found (if there is one), but only if the preceding word does not exceed
735         // the threshold.
736         // The text iterator should now be positioned at the end of the word we found.
737         if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
738             // if it is a dictionary word, do nothing. If it isn't, then if there is
739             // no preceding word, or the non-word shares less than the minimum threshold
740             // of characters with a dictionary word, then scan to resynchronize
741             if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
742                   && (cuWordLength == 0
743                       || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
744                 // Look for a plausible word boundary
745                 int32_t remaining = rangeEnd - (current + cuWordLength);
746                 UChar32 pc;
747                 UChar32 uc;
748                 int32_t chars = 0;
749                 for (;;) {
750                     int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
751                     pc = utext_next32(text);
752                     int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
753                     chars += pcSize;
754                     remaining -= pcSize;
755                     if (remaining <= 0) {
756                         break;
757                     }
758                     uc = utext_current32(text);
759                     if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
760                         // Maybe. See if it's in the dictionary.
761                         // TODO: this looks iffy; compare with old code.
762                         int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
763                         utext_setNativeIndex(text, current + cuWordLength + chars);
764                         if (num_candidates > 0) {
765                             break;
766                         }
767                     }
768                 }
769 
770                 // Bump the word count if there wasn't already one
771                 if (cuWordLength <= 0) {
772                     wordsFound += 1;
773                 }
774 
775                 // Update the length with the passed-over characters
776                 cuWordLength += chars;
777             }
778             else {
779                 // Back up to where we were for next iteration
780                 utext_setNativeIndex(text, current + cuWordLength);
781             }
782         }
783 
784         // Never stop before a combining mark.
785         int32_t currPos;
786         while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
787             utext_next32(text);
788             cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
789         }
790 
791         // Look ahead for possible suffixes if a dictionary word does not follow.
792         // We do this in code rather than using a rule so that the heuristic
793         // resynch continues to function. For example, one of the suffix characters
794         // could be a typo in the middle of a word.
795         // NOT CURRENTLY APPLICABLE TO BURMESE
796 
797         // Did we find a word on this iteration? If so, push it on the break stack
798         if (cuWordLength > 0) {
799             foundBreaks.push((current+cuWordLength), status);
800         }
801     }
802 
803     // Don't return a break for the end of the dictionary range if there is one there.
804     if (foundBreaks.peeki() >= rangeEnd) {
805         (void) foundBreaks.popi();
806         wordsFound -= 1;
807     }
808 
809     return wordsFound;
810 }
811 
812 /*
813  ******************************************************************
814  * KhmerBreakEngine
815  */
816 
817 // How many words in a row are "good enough"?
818 static const int32_t KHMER_LOOKAHEAD = 3;
819 
820 // Will not combine a non-word with a preceding dictionary word longer than this
821 static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
822 
823 // Will not combine a non-word that shares at least this much prefix with a
824 // dictionary word, with a preceding word
825 static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
826 
827 // Minimum word size
828 static const int32_t KHMER_MIN_WORD = 2;
829 
830 // Minimum number of characters for two words
831 static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
832 
KhmerBreakEngine(DictionaryMatcher * adoptDictionary,UErrorCode & status)833 KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
834     : DictionaryBreakEngine(),
835       fDictionary(adoptDictionary)
836 {
837     UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
838     UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Khmr");
839     UnicodeSet khmerWordSet(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]]"), status);
840     if (U_SUCCESS(status)) {
841         setCharacters(khmerWordSet);
842     }
843     fMarkSet.applyPattern(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
844     fMarkSet.add(0x0020);
845     fEndWordSet = khmerWordSet;
846     fBeginWordSet.add(0x1780, 0x17B3);
847     //fBeginWordSet.add(0x17A3, 0x17A4);      // deprecated vowels
848     //fEndWordSet.remove(0x17A5, 0x17A9);     // Khmer independent vowels that can't end a word
849     //fEndWordSet.remove(0x17B2);             // Khmer independent vowel that can't end a word
850     fEndWordSet.remove(0x17D2);             // KHMER SIGN COENG that combines some following characters
851     //fEndWordSet.remove(0x17B6, 0x17C5);     // Remove dependent vowels
852 //    fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
853 //    fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
854 //    fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
855 //    fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
856 //    fSuffixSet.add(THAI_PAIYANNOI);
857 //    fSuffixSet.add(THAI_MAIYAMOK);
858 
859     // Compact for caching.
860     fMarkSet.compact();
861     fEndWordSet.compact();
862     fBeginWordSet.compact();
863 //    fSuffixSet.compact();
864     UTRACE_EXIT_STATUS(status);
865 }
866 
~KhmerBreakEngine()867 KhmerBreakEngine::~KhmerBreakEngine() {
868     delete fDictionary;
869 }
870 
871 int32_t
divideUpDictionaryRange(UText * text,int32_t rangeStart,int32_t rangeEnd,UVector32 & foundBreaks,UBool,UErrorCode & status) const872 KhmerBreakEngine::divideUpDictionaryRange( UText *text,
873                                                 int32_t rangeStart,
874                                                 int32_t rangeEnd,
875                                                 UVector32 &foundBreaks,
876                                                 UBool /* isPhraseBreaking */,
877                                                 UErrorCode& status ) const {
878     if (U_FAILURE(status)) return 0;
879     if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
880         return 0;       // Not enough characters for two words
881     }
882 
883     uint32_t wordsFound = 0;
884     int32_t cpWordLength = 0;
885     int32_t cuWordLength = 0;
886     int32_t current;
887     PossibleWord words[KHMER_LOOKAHEAD];
888 
889     utext_setNativeIndex(text, rangeStart);
890 
891     while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
892         cuWordLength = 0;
893         cpWordLength = 0;
894 
895         // Look for candidate words at the current position
896         int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
897 
898         // If we found exactly one, use that
899         if (candidates == 1) {
900             cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
901             cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
902             wordsFound += 1;
903         }
904 
905         // If there was more than one, see which one can take us forward the most words
906         else if (candidates > 1) {
907             // If we're already at the end of the range, we're done
908             if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
909                 goto foundBest;
910             }
911             do {
912                 if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
913                     // Followed by another dictionary word; mark first word as a good candidate
914                     words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
915 
916                     // If we're already at the end of the range, we're done
917                     if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
918                         goto foundBest;
919                     }
920 
921                     // See if any of the possible second words is followed by a third word
922                     do {
923                         // If we find a third word, stop right away
924                         if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
925                             words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
926                             goto foundBest;
927                         }
928                     }
929                     while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
930                 }
931             }
932             while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
933 foundBest:
934             cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
935             cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
936             wordsFound += 1;
937         }
938 
939         // We come here after having either found a word or not. We look ahead to the
940         // next word. If it's not a dictionary word, we will combine it with the word we
941         // just found (if there is one), but only if the preceding word does not exceed
942         // the threshold.
943         // The text iterator should now be positioned at the end of the word we found.
944         if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
945             // if it is a dictionary word, do nothing. If it isn't, then if there is
946             // no preceding word, or the non-word shares less than the minimum threshold
947             // of characters with a dictionary word, then scan to resynchronize
948             if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
949                   && (cuWordLength == 0
950                       || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
951                 // Look for a plausible word boundary
952                 int32_t remaining = rangeEnd - (current+cuWordLength);
953                 UChar32 pc;
954                 UChar32 uc;
955                 int32_t chars = 0;
956                 for (;;) {
957                     int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
958                     pc = utext_next32(text);
959                     int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
960                     chars += pcSize;
961                     remaining -= pcSize;
962                     if (remaining <= 0) {
963                         break;
964                     }
965                     uc = utext_current32(text);
966                     if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
967                         // Maybe. See if it's in the dictionary.
968                         int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
969                         utext_setNativeIndex(text, current+cuWordLength+chars);
970                         if (num_candidates > 0) {
971                             break;
972                         }
973                     }
974                 }
975 
976                 // Bump the word count if there wasn't already one
977                 if (cuWordLength <= 0) {
978                     wordsFound += 1;
979                 }
980 
981                 // Update the length with the passed-over characters
982                 cuWordLength += chars;
983             }
984             else {
985                 // Back up to where we were for next iteration
986                 utext_setNativeIndex(text, current+cuWordLength);
987             }
988         }
989 
990         // Never stop before a combining mark.
991         int32_t currPos;
992         while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
993             utext_next32(text);
994             cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
995         }
996 
997         // Look ahead for possible suffixes if a dictionary word does not follow.
998         // We do this in code rather than using a rule so that the heuristic
999         // resynch continues to function. For example, one of the suffix characters
1000         // could be a typo in the middle of a word.
1001 //        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
1002 //            if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
1003 //                && fSuffixSet.contains(uc = utext_current32(text))) {
1004 //                if (uc == KHMER_PAIYANNOI) {
1005 //                    if (!fSuffixSet.contains(utext_previous32(text))) {
1006 //                        // Skip over previous end and PAIYANNOI
1007 //                        utext_next32(text);
1008 //                        utext_next32(text);
1009 //                        wordLength += 1;            // Add PAIYANNOI to word
1010 //                        uc = utext_current32(text);     // Fetch next character
1011 //                    }
1012 //                    else {
1013 //                        // Restore prior position
1014 //                        utext_next32(text);
1015 //                    }
1016 //                }
1017 //                if (uc == KHMER_MAIYAMOK) {
1018 //                    if (utext_previous32(text) != KHMER_MAIYAMOK) {
1019 //                        // Skip over previous end and MAIYAMOK
1020 //                        utext_next32(text);
1021 //                        utext_next32(text);
1022 //                        wordLength += 1;            // Add MAIYAMOK to word
1023 //                    }
1024 //                    else {
1025 //                        // Restore prior position
1026 //                        utext_next32(text);
1027 //                    }
1028 //                }
1029 //            }
1030 //            else {
1031 //                utext_setNativeIndex(text, current+wordLength);
1032 //            }
1033 //        }
1034 
1035         // Did we find a word on this iteration? If so, push it on the break stack
1036         if (cuWordLength > 0) {
1037             foundBreaks.push((current+cuWordLength), status);
1038         }
1039     }
1040 
1041     // Don't return a break for the end of the dictionary range if there is one there.
1042     if (foundBreaks.peeki() >= rangeEnd) {
1043         (void) foundBreaks.popi();
1044         wordsFound -= 1;
1045     }
1046 
1047     return wordsFound;
1048 }
1049 
1050 #if !UCONFIG_NO_NORMALIZATION
1051 /*
1052  ******************************************************************
1053  * CjkBreakEngine
1054  */
1055 static const uint32_t kuint32max = 0xFFFFFFFF;
CjkBreakEngine(DictionaryMatcher * adoptDictionary,LanguageType type,UErrorCode & status)1056 CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
1057 : DictionaryBreakEngine(), fDictionary(adoptDictionary), isCj(false) {
1058     UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
1059     UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Hani");
1060     fMlBreakEngine = nullptr;
1061     nfkcNorm2 = Normalizer2::getNFKCInstance(status);
1062     // Korean dictionary only includes Hangul syllables
1063     fHangulWordSet.applyPattern(UnicodeString(u"[\\uac00-\\ud7a3]"), status);
1064     fHangulWordSet.compact();
1065     // Digits, open puncutation and Alphabetic characters.
1066     fDigitOrOpenPunctuationOrAlphabetSet.applyPattern(
1067         UnicodeString(u"[[:Nd:][:Pi:][:Ps:][:Alphabetic:]]"), status);
1068     fDigitOrOpenPunctuationOrAlphabetSet.compact();
1069     fClosePunctuationSet.applyPattern(UnicodeString(u"[[:Pc:][:Pd:][:Pe:][:Pf:][:Po:]]"), status);
1070     fClosePunctuationSet.compact();
1071 
1072     // handle Korean and Japanese/Chinese using different dictionaries
1073     if (type == kKorean) {
1074         if (U_SUCCESS(status)) {
1075             setCharacters(fHangulWordSet);
1076         }
1077     } else { // Chinese and Japanese
1078         UnicodeSet cjSet(UnicodeString(u"[[:Han:][:Hiragana:][:Katakana:]\\u30fc\\uff70\\uff9e\\uff9f]"), status);
1079         isCj = true;
1080         if (U_SUCCESS(status)) {
1081             setCharacters(cjSet);
1082 #if UCONFIG_USE_ML_PHRASE_BREAKING
1083             fMlBreakEngine = new MlBreakEngine(fDigitOrOpenPunctuationOrAlphabetSet,
1084                                                fClosePunctuationSet, status);
1085             if (fMlBreakEngine == nullptr) {
1086                 status = U_MEMORY_ALLOCATION_ERROR;
1087             }
1088 #else
1089             initJapanesePhraseParameter(status);
1090 #endif
1091         }
1092     }
1093     UTRACE_EXIT_STATUS(status);
1094 }
1095 
~CjkBreakEngine()1096 CjkBreakEngine::~CjkBreakEngine(){
1097     delete fDictionary;
1098     delete fMlBreakEngine;
1099 }
1100 
1101 // The katakanaCost values below are based on the length frequencies of all
1102 // katakana phrases in the dictionary
1103 static const int32_t kMaxKatakanaLength = 8;
1104 static const int32_t kMaxKatakanaGroupLength = 20;
1105 static const uint32_t maxSnlp = 255;
1106 
getKatakanaCost(int32_t wordLength)1107 static inline uint32_t getKatakanaCost(int32_t wordLength){
1108     //TODO: fill array with actual values from dictionary!
1109     static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
1110                                        = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
1111     return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
1112 }
1113 
isKatakana(UChar32 value)1114 static inline bool isKatakana(UChar32 value) {
1115     return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
1116             (value >= 0xFF66 && value <= 0xFF9f);
1117 }
1118 
1119 // Function for accessing internal utext flags.
1120 //   Replicates an internal UText function.
1121 
utext_i32_flag(int32_t bitIndex)1122 static inline int32_t utext_i32_flag(int32_t bitIndex) {
1123     return (int32_t)1 << bitIndex;
1124 }
1125 
1126 /*
1127  * @param text A UText representing the text
1128  * @param rangeStart The start of the range of dictionary characters
1129  * @param rangeEnd The end of the range of dictionary characters
1130  * @param foundBreaks vector<int32> to receive the break positions
1131  * @return The number of breaks found
1132  */
1133 int32_t
divideUpDictionaryRange(UText * inText,int32_t rangeStart,int32_t rangeEnd,UVector32 & foundBreaks,UBool isPhraseBreaking,UErrorCode & status) const1134 CjkBreakEngine::divideUpDictionaryRange( UText *inText,
1135         int32_t rangeStart,
1136         int32_t rangeEnd,
1137         UVector32 &foundBreaks,
1138         UBool isPhraseBreaking,
1139         UErrorCode& status) const {
1140     if (U_FAILURE(status)) return 0;
1141     if (rangeStart >= rangeEnd) {
1142         return 0;
1143     }
1144 
1145     // UnicodeString version of input UText, NFKC normalized if necessary.
1146     UnicodeString inString;
1147 
1148     // inputMap[inStringIndex] = corresponding native index from UText inText.
1149     // If NULL then mapping is 1:1
1150     LocalPointer<UVector32>     inputMap;
1151 
1152     // if UText has the input string as one contiguous UTF-16 chunk
1153     if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
1154          inText->chunkNativeStart <= rangeStart &&
1155          inText->chunkNativeLimit >= rangeEnd   &&
1156          inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
1157 
1158         // Input UText is in one contiguous UTF-16 chunk.
1159         // Use Read-only aliasing UnicodeString.
1160         inString.setTo(false,
1161                        inText->chunkContents + rangeStart - inText->chunkNativeStart,
1162                        rangeEnd - rangeStart);
1163     } else {
1164         // Copy the text from the original inText (UText) to inString (UnicodeString).
1165         // Create a map from UnicodeString indices -> UText offsets.
1166         utext_setNativeIndex(inText, rangeStart);
1167         int32_t limit = rangeEnd;
1168         U_ASSERT(limit <= utext_nativeLength(inText));
1169         if (limit > utext_nativeLength(inText)) {
1170             limit = (int32_t)utext_nativeLength(inText);
1171         }
1172         inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1173         if (U_FAILURE(status)) {
1174             return 0;
1175         }
1176         while (utext_getNativeIndex(inText) < limit) {
1177             int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
1178             UChar32 c = utext_next32(inText);
1179             U_ASSERT(c != U_SENTINEL);
1180             inString.append(c);
1181             while (inputMap->size() < inString.length()) {
1182                 inputMap->addElement(nativePosition, status);
1183             }
1184         }
1185         inputMap->addElement(limit, status);
1186     }
1187 
1188 
1189     if (!nfkcNorm2->isNormalized(inString, status)) {
1190         UnicodeString normalizedInput;
1191         //  normalizedMap[normalizedInput position] ==  original UText position.
1192         LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
1193         if (U_FAILURE(status)) {
1194             return 0;
1195         }
1196 
1197         UnicodeString fragment;
1198         UnicodeString normalizedFragment;
1199         for (int32_t srcI = 0; srcI < inString.length();) {  // Once per normalization chunk
1200             fragment.remove();
1201             int32_t fragmentStartI = srcI;
1202             UChar32 c = inString.char32At(srcI);
1203             for (;;) {
1204                 fragment.append(c);
1205                 srcI = inString.moveIndex32(srcI, 1);
1206                 if (srcI == inString.length()) {
1207                     break;
1208                 }
1209                 c = inString.char32At(srcI);
1210                 if (nfkcNorm2->hasBoundaryBefore(c)) {
1211                     break;
1212                 }
1213             }
1214             nfkcNorm2->normalize(fragment, normalizedFragment, status);
1215             normalizedInput.append(normalizedFragment);
1216 
1217             // Map every position in the normalized chunk to the start of the chunk
1218             //   in the original input.
1219             int32_t fragmentOriginalStart = inputMap.isValid() ?
1220                     inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
1221             while (normalizedMap->size() < normalizedInput.length()) {
1222                 normalizedMap->addElement(fragmentOriginalStart, status);
1223                 if (U_FAILURE(status)) {
1224                     break;
1225                 }
1226             }
1227         }
1228         U_ASSERT(normalizedMap->size() == normalizedInput.length());
1229         int32_t nativeEnd = inputMap.isValid() ?
1230                 inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
1231         normalizedMap->addElement(nativeEnd, status);
1232 
1233         inputMap = std::move(normalizedMap);
1234         inString = std::move(normalizedInput);
1235     }
1236 
1237     int32_t numCodePts = inString.countChar32();
1238     if (numCodePts != inString.length()) {
1239         // There are supplementary characters in the input.
1240         // The dictionary will produce boundary positions in terms of code point indexes,
1241         //   not in terms of code unit string indexes.
1242         // Use the inputMap mechanism to take care of this in addition to indexing differences
1243         //    from normalization and/or UTF-8 input.
1244         UBool hadExistingMap = inputMap.isValid();
1245         if (!hadExistingMap) {
1246             inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1247             if (U_FAILURE(status)) {
1248                 return 0;
1249             }
1250         }
1251         int32_t cpIdx = 0;
1252         for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
1253             U_ASSERT(cuIdx >= cpIdx);
1254             if (hadExistingMap) {
1255                 inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
1256             } else {
1257                 inputMap->addElement(cuIdx+rangeStart, status);
1258             }
1259             cpIdx++;
1260             if (cuIdx == inString.length()) {
1261                break;
1262             }
1263         }
1264     }
1265 
1266 #if UCONFIG_USE_ML_PHRASE_BREAKING
1267     // PhraseBreaking is supported in ja and ko; MlBreakEngine only supports ja.
1268     if (isPhraseBreaking && isCj) {
1269         return fMlBreakEngine->divideUpRange(inText, rangeStart, rangeEnd, foundBreaks, inString,
1270                                              inputMap, status);
1271     }
1272 #endif
1273 
1274     // bestSnlp[i] is the snlp of the best segmentation of the first i
1275     // code points in the range to be matched.
1276     UVector32 bestSnlp(numCodePts + 1, status);
1277     bestSnlp.addElement(0, status);
1278     for(int32_t i = 1; i <= numCodePts; i++) {
1279         bestSnlp.addElement(kuint32max, status);
1280     }
1281 
1282 
1283     // prev[i] is the index of the last CJK code point in the previous word in
1284     // the best segmentation of the first i characters.
1285     UVector32 prev(numCodePts + 1, status);
1286     for(int32_t i = 0; i <= numCodePts; i++){
1287         prev.addElement(-1, status);
1288     }
1289 
1290     const int32_t maxWordSize = 20;
1291     UVector32 values(numCodePts, status);
1292     values.setSize(numCodePts);
1293     UVector32 lengths(numCodePts, status);
1294     lengths.setSize(numCodePts);
1295 
1296     UText fu = UTEXT_INITIALIZER;
1297     utext_openUnicodeString(&fu, &inString, &status);
1298 
1299     // Dynamic programming to find the best segmentation.
1300 
1301     // In outer loop, i  is the code point index,
1302     //                ix is the corresponding string (code unit) index.
1303     //    They differ when the string contains supplementary characters.
1304     int32_t ix = 0;
1305     bool is_prev_katakana = false;
1306     for (int32_t i = 0;  i < numCodePts;  ++i, ix = inString.moveIndex32(ix, 1)) {
1307         if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
1308             continue;
1309         }
1310 
1311         int32_t count;
1312         utext_setNativeIndex(&fu, ix);
1313         count = fDictionary->matches(&fu, maxWordSize, numCodePts,
1314                              NULL, lengths.getBuffer(), values.getBuffer(), NULL);
1315                              // Note: lengths is filled with code point lengths
1316                              //       The NULL parameter is the ignored code unit lengths.
1317 
1318         // if there are no single character matches found in the dictionary
1319         // starting with this character, treat character as a 1-character word
1320         // with the highest value possible, i.e. the least likely to occur.
1321         // Exclude Korean characters from this treatment, as they should be left
1322         // together by default.
1323         if ((count == 0 || lengths.elementAti(0) != 1) &&
1324                 !fHangulWordSet.contains(inString.char32At(ix))) {
1325             values.setElementAt(maxSnlp, count);   // 255
1326             lengths.setElementAt(1, count++);
1327         }
1328 
1329         for (int32_t j = 0; j < count; j++) {
1330             uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
1331             int32_t ln_j_i = lengths.elementAti(j) + i;
1332             if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
1333                 bestSnlp.setElementAt(newSnlp, ln_j_i);
1334                 prev.setElementAt(i, ln_j_i);
1335             }
1336         }
1337 
1338         // In Japanese,
1339         // Katakana word in single character is pretty rare. So we apply
1340         // the following heuristic to Katakana: any continuous run of Katakana
1341         // characters is considered a candidate word with a default cost
1342         // specified in the katakanaCost table according to its length.
1343 
1344         bool is_katakana = isKatakana(inString.char32At(ix));
1345         int32_t katakanaRunLength = 1;
1346         if (!is_prev_katakana && is_katakana) {
1347             int32_t j = inString.moveIndex32(ix, 1);
1348             // Find the end of the continuous run of Katakana characters
1349             while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
1350                     isKatakana(inString.char32At(j))) {
1351                 j = inString.moveIndex32(j, 1);
1352                 katakanaRunLength++;
1353             }
1354             if (katakanaRunLength < kMaxKatakanaGroupLength) {
1355                 uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
1356                 if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) {
1357                     bestSnlp.setElementAt(newSnlp, i+katakanaRunLength);
1358                     prev.setElementAt(i, i+katakanaRunLength);  // prev[j] = i;
1359                 }
1360             }
1361         }
1362         is_prev_katakana = is_katakana;
1363     }
1364     utext_close(&fu);
1365 
1366     // Start pushing the optimal offset index into t_boundary (t for tentative).
1367     // prev[numCodePts] is guaranteed to be meaningful.
1368     // We'll first push in the reverse order, i.e.,
1369     // t_boundary[0] = numCodePts, and afterwards do a swap.
1370     UVector32 t_boundary(numCodePts+1, status);
1371 
1372     int32_t numBreaks = 0;
1373     // No segmentation found, set boundary to end of range
1374     if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
1375         t_boundary.addElement(numCodePts, status);
1376         numBreaks++;
1377     } else if (isPhraseBreaking) {
1378         t_boundary.addElement(numCodePts, status);
1379         if(U_SUCCESS(status)) {
1380             numBreaks++;
1381             int32_t prevIdx = numCodePts;
1382 
1383             int32_t codeUnitIdx = -1;
1384             int32_t prevCodeUnitIdx = -1;
1385             int32_t length = -1;
1386             for (int32_t i = prev.elementAti(numCodePts); i > 0; i = prev.elementAti(i)) {
1387                 codeUnitIdx = inString.moveIndex32(0, i);
1388                 prevCodeUnitIdx = inString.moveIndex32(0, prevIdx);
1389                 // Calculate the length by using the code unit.
1390                 length = prevCodeUnitIdx - codeUnitIdx;
1391                 prevIdx = i;
1392                 // Keep the breakpoint if the pattern is not in the fSkipSet and continuous Katakana
1393                 // characters don't occur.
1394                 if (!fSkipSet.containsKey(inString.tempSubString(codeUnitIdx, length))
1395                     && (!isKatakana(inString.char32At(inString.moveIndex32(codeUnitIdx, -1)))
1396                            || !isKatakana(inString.char32At(codeUnitIdx)))) {
1397                     t_boundary.addElement(i, status);
1398                     numBreaks++;
1399                 }
1400             }
1401         }
1402     } else {
1403         for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
1404             t_boundary.addElement(i, status);
1405             numBreaks++;
1406         }
1407         U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
1408     }
1409 
1410     // Add a break for the start of the dictionary range if there is not one
1411     // there already.
1412     if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
1413         t_boundary.addElement(0, status);
1414         numBreaks++;
1415     }
1416 
1417     // Now that we're done, convert positions in t_boundary[] (indices in
1418     // the normalized input string) back to indices in the original input UText
1419     // while reversing t_boundary and pushing values to foundBreaks.
1420     int32_t prevCPPos = -1;
1421     int32_t prevUTextPos = -1;
1422     int32_t correctedNumBreaks = 0;
1423     for (int32_t i = numBreaks - 1; i >= 0; i--) {
1424         int32_t cpPos = t_boundary.elementAti(i);
1425         U_ASSERT(cpPos > prevCPPos);
1426         int32_t utextPos =  inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
1427         U_ASSERT(utextPos >= prevUTextPos);
1428         if (utextPos > prevUTextPos) {
1429             // Boundaries are added to foundBreaks output in ascending order.
1430             U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
1431             // In phrase breaking, there has to be a breakpoint between Cj character and close
1432             // punctuation.
1433             // E.g.[携帯電話]正しい選択 -> [携帯▁電話]▁正しい▁選択 -> breakpoint between ] and 正
1434             if (utextPos != rangeStart
1435                 || (isPhraseBreaking && utextPos > 0
1436                        && fClosePunctuationSet.contains(utext_char32At(inText, utextPos - 1)))) {
1437                 foundBreaks.push(utextPos, status);
1438                 correctedNumBreaks++;
1439             }
1440         } else {
1441             // Normalization expanded the input text, the dictionary found a boundary
1442             // within the expansion, giving two boundaries with the same index in the
1443             // original text. Ignore the second. See ticket #12918.
1444             --numBreaks;
1445         }
1446         prevCPPos = cpPos;
1447         prevUTextPos = utextPos;
1448     }
1449     (void)prevCPPos; // suppress compiler warnings about unused variable
1450 
1451     UChar32 nextChar = utext_char32At(inText, rangeEnd);
1452     if (!foundBreaks.isEmpty() && foundBreaks.peeki() == rangeEnd) {
1453         // In phrase breaking, there has to be a breakpoint between Cj character and
1454         // the number/open punctuation.
1455         // E.g. る文字「そうだ、京都」->る▁文字▁「そうだ、▁京都」-> breakpoint between 字 and「
1456         // E.g. 乗車率90%程度だろうか -> 乗車▁率▁90%▁程度だろうか -> breakpoint between 率 and 9
1457         // E.g. しかもロゴがUnicode! -> しかも▁ロゴが▁Unicode!-> breakpoint between が and U
1458         if (isPhraseBreaking) {
1459             if (!fDigitOrOpenPunctuationOrAlphabetSet.contains(nextChar)) {
1460                 foundBreaks.popi();
1461                 correctedNumBreaks--;
1462             }
1463         } else {
1464             foundBreaks.popi();
1465             correctedNumBreaks--;
1466         }
1467     }
1468 
1469     // inString goes out of scope
1470     // inputMap goes out of scope
1471     return correctedNumBreaks;
1472 }
1473 
initJapanesePhraseParameter(UErrorCode & error)1474 void CjkBreakEngine::initJapanesePhraseParameter(UErrorCode& error) {
1475     loadJapaneseExtensions(error);
1476     loadHiragana(error);
1477 }
1478 
loadJapaneseExtensions(UErrorCode & error)1479 void CjkBreakEngine::loadJapaneseExtensions(UErrorCode& error) {
1480     const char* tag = "extensions";
1481     ResourceBundle ja(U_ICUDATA_BRKITR, "ja", error);
1482     if (U_SUCCESS(error)) {
1483         ResourceBundle bundle = ja.get(tag, error);
1484         while (U_SUCCESS(error) && bundle.hasNext()) {
1485             fSkipSet.puti(bundle.getNextString(error), 1, error);
1486         }
1487     }
1488 }
1489 
loadHiragana(UErrorCode & error)1490 void CjkBreakEngine::loadHiragana(UErrorCode& error) {
1491     UnicodeSet hiraganaWordSet(UnicodeString(u"[:Hiragana:]"), error);
1492     hiraganaWordSet.compact();
1493     UnicodeSetIterator iterator(hiraganaWordSet);
1494     while (iterator.next()) {
1495         fSkipSet.puti(UnicodeString(iterator.getCodepoint()), 1, error);
1496     }
1497 }
1498 #endif
1499 
1500 U_NAMESPACE_END
1501 
1502 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1503 
1504