1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15
16 #include "config/aom_dsp_rtcd.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_scale/yv12config.h"
19 #include "aom/aom_integer.h"
20 #include "av1/common/reconinter.h"
21 #include "av1/encoder/reconinter_enc.h"
22 #include "av1/encoder/context_tree.h"
23 #include "av1/encoder/av1_temporal_denoiser.h"
24 #include "av1/encoder/encoder.h"
25
26 #ifdef OUTPUT_YUV_DENOISED
27 static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
28 #endif
29
absdiff_thresh(BLOCK_SIZE bs,int increase_denoising)30 static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
31 (void)bs;
32 return 3 + (increase_denoising ? 1 : 0);
33 }
34
delta_thresh(BLOCK_SIZE bs,int increase_denoising)35 static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
36 (void)bs;
37 (void)increase_denoising;
38 return 4;
39 }
40
noise_motion_thresh(BLOCK_SIZE bs,int increase_denoising)41 static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
42 (void)bs;
43 (void)increase_denoising;
44 return 625;
45 }
46
sse_thresh(BLOCK_SIZE bs,int increase_denoising)47 static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
48 return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40);
49 }
50
sse_diff_thresh(BLOCK_SIZE bs,int increase_denoising,int motion_magnitude)51 static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
52 int motion_magnitude) {
53 if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) {
54 if (increase_denoising)
55 return (1 << num_pels_log2_lookup[bs]) << 2;
56 else
57 return 0;
58 } else {
59 return (1 << num_pels_log2_lookup[bs]) << 4;
60 }
61 }
62
total_adj_weak_thresh(BLOCK_SIZE bs,int increase_denoising)63 static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
64 return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
65 }
66
67 // TODO(kyslov): If increase_denoising is enabled in the future,
68 // we might need to update the code for calculating 'total_adj' in
69 // case the C code is not bit-exact with corresponding sse2 code.
av1_denoiser_filter_c(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)70 int av1_denoiser_filter_c(const uint8_t *sig, int sig_stride,
71 const uint8_t *mc_avg, int mc_avg_stride,
72 uint8_t *avg, int avg_stride, int increase_denoising,
73 BLOCK_SIZE bs, int motion_magnitude) {
74 int r, c;
75 const uint8_t *sig_start = sig;
76 const uint8_t *mc_avg_start = mc_avg;
77 uint8_t *avg_start = avg;
78 int diff, adj, absdiff, delta;
79 int adj_val[] = { 3, 4, 6 };
80 int total_adj = 0;
81 int shift_inc = 1;
82
83 // If motion_magnitude is small, making the denoiser more aggressive by
84 // increasing the adjustment for each level. Add another increment for
85 // blocks that are labeled for increase denoising.
86 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
87 if (increase_denoising) {
88 shift_inc = 2;
89 }
90 adj_val[0] += shift_inc;
91 adj_val[1] += shift_inc;
92 adj_val[2] += shift_inc;
93 }
94
95 // First attempt to apply a strong temporal denoising filter.
96 for (r = 0; r < block_size_high[bs]; ++r) {
97 for (c = 0; c < block_size_wide[bs]; ++c) {
98 diff = mc_avg[c] - sig[c];
99 absdiff = abs(diff);
100
101 if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
102 avg[c] = mc_avg[c];
103 total_adj += diff;
104 } else {
105 switch (absdiff) {
106 case 4:
107 case 5:
108 case 6:
109 case 7: adj = adj_val[0]; break;
110 case 8:
111 case 9:
112 case 10:
113 case 11:
114 case 12:
115 case 13:
116 case 14:
117 case 15: adj = adj_val[1]; break;
118 default: adj = adj_val[2];
119 }
120 if (diff > 0) {
121 avg[c] = AOMMIN(UINT8_MAX, sig[c] + adj);
122 total_adj += adj;
123 } else {
124 avg[c] = AOMMAX(0, sig[c] - adj);
125 total_adj -= adj;
126 }
127 }
128 }
129 sig += sig_stride;
130 avg += avg_stride;
131 mc_avg += mc_avg_stride;
132 }
133
134 // If the strong filter did not modify the signal too much, we're all set.
135 if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
136 return FILTER_BLOCK;
137 }
138
139 // Otherwise, we try to dampen the filter if the delta is not too high.
140 delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >>
141 num_pels_log2_lookup[bs]) +
142 1;
143
144 if (delta >= delta_thresh(bs, increase_denoising)) {
145 return COPY_BLOCK;
146 }
147
148 mc_avg = mc_avg_start;
149 avg = avg_start;
150 sig = sig_start;
151 for (r = 0; r < block_size_high[bs]; ++r) {
152 for (c = 0; c < block_size_wide[bs]; ++c) {
153 diff = mc_avg[c] - sig[c];
154 adj = abs(diff);
155 if (adj > delta) {
156 adj = delta;
157 }
158 if (diff > 0) {
159 // Diff positive means we made positive adjustment above
160 // (in first try/attempt), so now make negative adjustment to bring
161 // denoised signal down.
162 avg[c] = AOMMAX(0, avg[c] - adj);
163 total_adj -= adj;
164 } else {
165 // Diff negative means we made negative adjustment above
166 // (in first try/attempt), so now make positive adjustment to bring
167 // denoised signal up.
168 avg[c] = AOMMIN(UINT8_MAX, avg[c] + adj);
169 total_adj += adj;
170 }
171 }
172 sig += sig_stride;
173 avg += avg_stride;
174 mc_avg += mc_avg_stride;
175 }
176
177 // We can use the filter if it has been sufficiently dampened
178 if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
179 return FILTER_BLOCK;
180 }
181 return COPY_BLOCK;
182 }
183
block_start(uint8_t * framebuf,int stride,int mi_row,int mi_col)184 static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row,
185 int mi_col) {
186 return framebuf + (stride * mi_row << 2) + (mi_col << 2);
187 }
188
perform_motion_compensation(AV1_COMMON * const cm,AV1_DENOISER * denoiser,MACROBLOCK * mb,BLOCK_SIZE bs,int increase_denoising,int mi_row,int mi_col,PICK_MODE_CONTEXT * ctx,int motion_magnitude,int * zeromv_filter,int num_spatial_layers,int width,int lst_fb_idx,int gld_fb_idx,int use_svc,int spatial_layer,int use_gf_temporal_ref)189 static AV1_DENOISER_DECISION perform_motion_compensation(
190 AV1_COMMON *const cm, AV1_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs,
191 int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx,
192 int motion_magnitude, int *zeromv_filter, int num_spatial_layers, int width,
193 int lst_fb_idx, int gld_fb_idx, int use_svc, int spatial_layer,
194 int use_gf_temporal_ref) {
195 const int sse_diff = (ctx->newmv_sse == UINT_MAX)
196 ? 0
197 : ((int)ctx->zeromv_sse - (int)ctx->newmv_sse);
198 int frame;
199 int denoise_layer_idx = 0;
200 MACROBLOCKD *filter_mbd = &mb->e_mbd;
201 MB_MODE_INFO *mi = filter_mbd->mi[0];
202 MB_MODE_INFO saved_mi;
203 int i;
204 struct buf_2d saved_dst[MAX_MB_PLANE];
205 struct buf_2d saved_pre[MAX_MB_PLANE];
206 // const RefBuffer *saved_block_refs[2];
207 MV_REFERENCE_FRAME saved_frame;
208
209 frame = ctx->best_reference_frame;
210
211 saved_mi = *mi;
212
213 // Avoid denoising small blocks. When noise > kDenLow or frame width > 480,
214 // denoise 16x16 blocks.
215 if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 ||
216 (bs == BLOCK_16X16 && width > 480 &&
217 denoiser->denoising_level <= kDenLow))
218 return COPY_BLOCK;
219
220 // If the best reference frame uses inter-prediction and there is enough of a
221 // difference in sum-squared-error, use it.
222 if (frame != INTRA_FRAME && frame != ALTREF_FRAME && frame != GOLDEN_FRAME &&
223 sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
224 mi->ref_frame[0] = ctx->best_reference_frame;
225 mi->mode = ctx->best_sse_inter_mode;
226 mi->mv[0] = ctx->best_sse_mv;
227 } else {
228 // Otherwise, use the zero reference frame.
229 frame = ctx->best_zeromv_reference_frame;
230 ctx->newmv_sse = ctx->zeromv_sse;
231 // Bias to last reference.
232 if ((num_spatial_layers > 1 && !use_gf_temporal_ref) ||
233 frame == ALTREF_FRAME ||
234 (frame == GOLDEN_FRAME && use_gf_temporal_ref) ||
235 (frame != LAST_FRAME &&
236 ((ctx->zeromv_lastref_sse < (5 * ctx->zeromv_sse) >> 2) ||
237 denoiser->denoising_level >= kDenHigh))) {
238 frame = LAST_FRAME;
239 ctx->newmv_sse = ctx->zeromv_lastref_sse;
240 }
241 mi->ref_frame[0] = frame;
242 mi->mode = GLOBALMV;
243 mi->mv[0].as_int = 0;
244 ctx->best_sse_inter_mode = GLOBALMV;
245 ctx->best_sse_mv.as_int = 0;
246 *zeromv_filter = 1;
247 if (denoiser->denoising_level > kDenMedium) {
248 motion_magnitude = 0;
249 }
250 }
251
252 saved_frame = frame;
253 // When using SVC, we need to map REF_FRAME to the frame buffer index.
254 if (use_svc) {
255 if (frame == LAST_FRAME)
256 frame = lst_fb_idx + 1;
257 else if (frame == GOLDEN_FRAME)
258 frame = gld_fb_idx + 1;
259 // Shift for the second spatial layer.
260 if (num_spatial_layers - spatial_layer == 2)
261 frame = frame + denoiser->num_ref_frames;
262 denoise_layer_idx = num_spatial_layers - spatial_layer - 1;
263 }
264
265 // Force copy (no denoise, copy source in denoised buffer) if
266 // running_avg_y[frame] is NULL.
267 if (denoiser->running_avg_y[frame].buffer_alloc == NULL) {
268 // Restore everything to its original state
269 *mi = saved_mi;
270 return COPY_BLOCK;
271 }
272
273 if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
274 // Restore everything to its original state
275 *mi = saved_mi;
276 return COPY_BLOCK;
277 }
278 if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) {
279 // Restore everything to its original state
280 *mi = saved_mi;
281 return COPY_BLOCK;
282 }
283
284 // We will restore these after motion compensation.
285 for (i = 0; i < MAX_MB_PLANE; ++i) {
286 saved_pre[i] = filter_mbd->plane[i].pre[0];
287 saved_dst[i] = filter_mbd->plane[i].dst;
288 }
289
290 // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
291 // struct.
292 set_ref_ptrs(cm, filter_mbd, saved_frame, NONE);
293 av1_setup_pre_planes(filter_mbd, 0, &(denoiser->running_avg_y[frame]), mi_row,
294 mi_col, filter_mbd->block_ref_scale_factors[0], 1);
295 av1_setup_dst_planes(filter_mbd->plane, bs,
296 &(denoiser->mc_running_avg_y[denoise_layer_idx]), mi_row,
297 mi_col, 0, 1);
298
299 av1_enc_build_inter_predictor_y(filter_mbd, mi_row, mi_col);
300
301 // Restore everything to its original state
302 *mi = saved_mi;
303 for (i = 0; i < MAX_MB_PLANE; ++i) {
304 filter_mbd->plane[i].pre[0] = saved_pre[i];
305 filter_mbd->plane[i].dst = saved_dst[i];
306 }
307
308 return FILTER_BLOCK;
309 }
310
av1_denoiser_denoise(AV1_COMP * cpi,MACROBLOCK * mb,int mi_row,int mi_col,BLOCK_SIZE bs,PICK_MODE_CONTEXT * ctx,AV1_DENOISER_DECISION * denoiser_decision,int use_gf_temporal_ref)311 void av1_denoiser_denoise(AV1_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col,
312 BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx,
313 AV1_DENOISER_DECISION *denoiser_decision,
314 int use_gf_temporal_ref) {
315 int mv_col, mv_row;
316 int motion_magnitude = 0;
317 int zeromv_filter = 0;
318 AV1_DENOISER *denoiser = &cpi->denoiser;
319 AV1_DENOISER_DECISION decision = COPY_BLOCK;
320
321 const int shift =
322 cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2
323 ? denoiser->num_ref_frames
324 : 0;
325 YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift];
326 const int denoise_layer_index =
327 cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1;
328 YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index];
329 uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
330
331 uint8_t *mc_avg_start =
332 block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col);
333 struct buf_2d src = mb->plane[0].src;
334 int increase_denoising = 0;
335 int last_is_reference = cpi->ref_frame_flags & AOM_LAST_FLAG;
336 mv_col = ctx->best_sse_mv.as_mv.col;
337 mv_row = ctx->best_sse_mv.as_mv.row;
338 motion_magnitude = mv_row * mv_row + mv_col * mv_col;
339
340 if (denoiser->denoising_level == kDenHigh) increase_denoising = 1;
341
342 // Copy block if LAST_FRAME is not a reference.
343 // Last doesn't always exist when SVC layers are dynamically changed, e.g. top
344 // spatial layer doesn't have last reference when it's brought up for the
345 // first time on the fly.
346 if (last_is_reference && denoiser->denoising_level >= kDenLow &&
347 !ctx->sb_skip_denoising)
348 decision = perform_motion_compensation(
349 &cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx,
350 motion_magnitude, &zeromv_filter, cpi->svc.number_spatial_layers,
351 cpi->source->y_width, cpi->ppi->rtc_ref.ref_idx[0],
352 cpi->ppi->rtc_ref.ref_idx[3], cpi->ppi->use_svc,
353 cpi->svc.spatial_layer_id, use_gf_temporal_ref);
354
355 if (decision == FILTER_BLOCK) {
356 decision = av1_denoiser_filter(src.buf, src.stride, mc_avg_start,
357 mc_avg.y_stride, avg_start, avg.y_stride,
358 increase_denoising, bs, motion_magnitude);
359 }
360
361 if (decision == FILTER_BLOCK) {
362 aom_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
363 block_size_wide[bs], block_size_high[bs]);
364 } else { // COPY_BLOCK
365 aom_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
366 block_size_wide[bs], block_size_high[bs]);
367 }
368 *denoiser_decision = decision;
369 if (decision == FILTER_BLOCK && zeromv_filter == 1)
370 *denoiser_decision = FILTER_ZEROMV_BLOCK;
371 }
372
copy_frame(YV12_BUFFER_CONFIG * const dest,const YV12_BUFFER_CONFIG * const src)373 static void copy_frame(YV12_BUFFER_CONFIG *const dest,
374 const YV12_BUFFER_CONFIG *const src) {
375 int r;
376 const uint8_t *srcbuf = src->y_buffer;
377 uint8_t *destbuf = dest->y_buffer;
378
379 assert(dest->y_width == src->y_width);
380 assert(dest->y_height == src->y_height);
381
382 for (r = 0; r < dest->y_height; ++r) {
383 memcpy(destbuf, srcbuf, dest->y_width);
384 destbuf += dest->y_stride;
385 srcbuf += src->y_stride;
386 }
387 }
388
swap_frame_buffer(YV12_BUFFER_CONFIG * const dest,YV12_BUFFER_CONFIG * const src)389 static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest,
390 YV12_BUFFER_CONFIG *const src) {
391 uint8_t *tmp_buf = dest->y_buffer;
392 assert(dest->y_width == src->y_width);
393 assert(dest->y_height == src->y_height);
394 dest->y_buffer = src->y_buffer;
395 src->y_buffer = tmp_buf;
396 }
397
av1_denoiser_update_frame_info(AV1_DENOISER * denoiser,YV12_BUFFER_CONFIG src,struct RTC_REF * rtc_ref,struct SVC * svc,FRAME_TYPE frame_type,int refresh_alt_ref_frame,int refresh_golden_frame,int refresh_last_frame,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx,int resized,int svc_refresh_denoiser_buffers,int second_spatial_layer)398 void av1_denoiser_update_frame_info(
399 AV1_DENOISER *denoiser, YV12_BUFFER_CONFIG src, struct RTC_REF *rtc_ref,
400 struct SVC *svc, FRAME_TYPE frame_type, int refresh_alt_ref_frame,
401 int refresh_golden_frame, int refresh_last_frame, int alt_fb_idx,
402 int gld_fb_idx, int lst_fb_idx, int resized,
403 int svc_refresh_denoiser_buffers, int second_spatial_layer) {
404 const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0;
405 // Copy source into denoised reference buffers on KEY_FRAME or
406 // if the just encoded frame was resized. For SVC, copy source if the base
407 // spatial layer was key frame.
408 if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset ||
409 svc_refresh_denoiser_buffers) {
410 int i;
411 // Start at 1 so as not to overwrite the INTRA_FRAME
412 for (i = 1; i < denoiser->num_ref_frames; ++i) {
413 if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL)
414 copy_frame(&denoiser->running_avg_y[i + shift], &src);
415 }
416 denoiser->reset = 0;
417 return;
418 }
419
420 if (rtc_ref->set_ref_frame_config) {
421 int i;
422 for (i = 0; i < REF_FRAMES; i++) {
423 if (rtc_ref->refresh[svc->spatial_layer_id] & (1 << i))
424 copy_frame(&denoiser->running_avg_y[i + 1 + shift],
425 &denoiser->running_avg_y[INTRA_FRAME + shift]);
426 }
427 } else {
428 // If more than one refresh occurs, must copy frame buffer.
429 if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) >
430 1) {
431 if (refresh_alt_ref_frame) {
432 copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
433 &denoiser->running_avg_y[INTRA_FRAME + shift]);
434 }
435 if (refresh_golden_frame) {
436 copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
437 &denoiser->running_avg_y[INTRA_FRAME + shift]);
438 }
439 if (refresh_last_frame) {
440 copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
441 &denoiser->running_avg_y[INTRA_FRAME + shift]);
442 }
443 } else {
444 if (refresh_alt_ref_frame) {
445 swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
446 &denoiser->running_avg_y[INTRA_FRAME + shift]);
447 }
448 if (refresh_golden_frame) {
449 swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
450 &denoiser->running_avg_y[INTRA_FRAME + shift]);
451 }
452 if (refresh_last_frame) {
453 swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
454 &denoiser->running_avg_y[INTRA_FRAME + shift]);
455 }
456 }
457 }
458 }
459
av1_denoiser_reset_frame_stats(PICK_MODE_CONTEXT * ctx)460 void av1_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
461 ctx->zeromv_sse = INT64_MAX;
462 ctx->newmv_sse = INT64_MAX;
463 ctx->zeromv_lastref_sse = INT64_MAX;
464 ctx->best_sse_mv.as_int = 0;
465 }
466
av1_denoiser_update_frame_stats(MB_MODE_INFO * mi,int64_t sse,PREDICTION_MODE mode,PICK_MODE_CONTEXT * ctx)467 void av1_denoiser_update_frame_stats(MB_MODE_INFO *mi, int64_t sse,
468 PREDICTION_MODE mode,
469 PICK_MODE_CONTEXT *ctx) {
470 if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
471 ctx->zeromv_sse = sse;
472 ctx->best_zeromv_reference_frame = mi->ref_frame[0];
473 if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse;
474 }
475
476 if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
477 ctx->newmv_sse = sse;
478 ctx->best_sse_inter_mode = mode;
479 ctx->best_sse_mv = mi->mv[0];
480 ctx->best_reference_frame = mi->ref_frame[0];
481 }
482 }
483
av1_denoiser_realloc_svc_helper(AV1_COMMON * cm,AV1_DENOISER * denoiser,int fb_idx)484 static int av1_denoiser_realloc_svc_helper(AV1_COMMON *cm,
485 AV1_DENOISER *denoiser, int fb_idx) {
486 int fail = 0;
487 if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) {
488 fail = aom_alloc_frame_buffer(
489 &denoiser->running_avg_y[fb_idx], cm->width, cm->height,
490 cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
491 cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
492 cm->features.byte_alignment, 0);
493 if (fail) {
494 av1_denoiser_free(denoiser);
495 return 1;
496 }
497 }
498 return 0;
499 }
500
av1_denoiser_realloc_svc(AV1_COMMON * cm,AV1_DENOISER * denoiser,struct RTC_REF * rtc_ref,struct SVC * svc,int svc_buf_shift,int refresh_alt,int refresh_gld,int refresh_lst,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx)501 int av1_denoiser_realloc_svc(AV1_COMMON *cm, AV1_DENOISER *denoiser,
502 struct RTC_REF *rtc_ref, struct SVC *svc,
503 int svc_buf_shift, int refresh_alt,
504 int refresh_gld, int refresh_lst, int alt_fb_idx,
505 int gld_fb_idx, int lst_fb_idx) {
506 int fail = 0;
507 if (rtc_ref->set_ref_frame_config) {
508 int i;
509 for (i = 0; i < REF_FRAMES; i++) {
510 if (cm->current_frame.frame_type == KEY_FRAME ||
511 rtc_ref->refresh[svc->spatial_layer_id] & (1 << i)) {
512 fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
513 i + 1 + svc_buf_shift);
514 }
515 }
516 } else {
517 if (refresh_alt) {
518 // Increase the frame buffer index by 1 to map it to the buffer index in
519 // the denoiser.
520 fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
521 alt_fb_idx + 1 + svc_buf_shift);
522 if (fail) return 1;
523 }
524 if (refresh_gld) {
525 fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
526 gld_fb_idx + 1 + svc_buf_shift);
527 if (fail) return 1;
528 }
529 if (refresh_lst) {
530 fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
531 lst_fb_idx + 1 + svc_buf_shift);
532 if (fail) return 1;
533 }
534 }
535 return 0;
536 }
537
av1_denoiser_alloc(AV1_COMMON * cm,struct SVC * svc,AV1_DENOISER * denoiser,int use_svc,int noise_sen,int width,int height,int ssx,int ssy,int use_highbitdepth,int border)538 int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
539 int use_svc, int noise_sen, int width, int height,
540 int ssx, int ssy, int use_highbitdepth, int border) {
541 int i, layer, fail, init_num_ref_frames;
542 const int legacy_byte_alignment = 0;
543 int num_layers = 1;
544 int scaled_width = width;
545 int scaled_height = height;
546 if (use_svc) {
547 LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id *
548 svc->number_temporal_layers +
549 svc->temporal_layer_id];
550 av1_get_layer_resolution(width, height, lc->scaling_factor_num,
551 lc->scaling_factor_den, &scaled_width,
552 &scaled_height);
553 // For SVC: only denoise at most 2 spatial (highest) layers.
554 if (noise_sen >= 2)
555 // Denoise from one spatial layer below the top.
556 svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 2, 0);
557 else
558 // Only denoise the top spatial layer.
559 svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 1, 0);
560 num_layers = svc->number_spatial_layers - svc->first_layer_denoise;
561 }
562 assert(denoiser != NULL);
563 denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES;
564 init_num_ref_frames = use_svc ? REF_FRAMES : NONSVC_REF_FRAMES;
565 denoiser->num_layers = num_layers;
566 CHECK_MEM_ERROR(cm, denoiser->running_avg_y,
567 aom_calloc(denoiser->num_ref_frames * num_layers,
568 sizeof(denoiser->running_avg_y[0])));
569 CHECK_MEM_ERROR(
570 cm, denoiser->mc_running_avg_y,
571 aom_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0])));
572
573 for (layer = 0; layer < num_layers; ++layer) {
574 const int denoise_width = (layer == 0) ? width : scaled_width;
575 const int denoise_height = (layer == 0) ? height : scaled_height;
576 for (i = 0; i < init_num_ref_frames; ++i) {
577 fail = aom_alloc_frame_buffer(
578 &denoiser->running_avg_y[i + denoiser->num_ref_frames * layer],
579 denoise_width, denoise_height, ssx, ssy, use_highbitdepth, border,
580 legacy_byte_alignment, 0);
581 if (fail) {
582 av1_denoiser_free(denoiser);
583 return 1;
584 }
585 #ifdef OUTPUT_YUV_DENOISED
586 make_grayscale(&denoiser->running_avg_y[i]);
587 #endif
588 }
589
590 fail = aom_alloc_frame_buffer(
591 &denoiser->mc_running_avg_y[layer], denoise_width, denoise_height, ssx,
592 ssy, use_highbitdepth, border, legacy_byte_alignment, 0);
593 if (fail) {
594 av1_denoiser_free(denoiser);
595 return 1;
596 }
597 }
598
599 // denoiser->last_source only used for noise_estimation, so only for top
600 // layer.
601 fail = aom_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
602 use_highbitdepth, border, legacy_byte_alignment,
603 0);
604 if (fail) {
605 av1_denoiser_free(denoiser);
606 return 1;
607 }
608 #ifdef OUTPUT_YUV_DENOISED
609 make_grayscale(&denoiser->running_avg_y[i]);
610 #endif
611 denoiser->frame_buffer_initialized = 1;
612 denoiser->denoising_level = kDenMedium;
613 denoiser->prev_denoising_level = kDenMedium;
614 denoiser->reset = 0;
615 denoiser->current_denoiser_frame = 0;
616 return 0;
617 }
618
av1_denoiser_free(AV1_DENOISER * denoiser)619 void av1_denoiser_free(AV1_DENOISER *denoiser) {
620 int i;
621 if (denoiser == NULL) {
622 return;
623 }
624 denoiser->frame_buffer_initialized = 0;
625 for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) {
626 aom_free_frame_buffer(&denoiser->running_avg_y[i]);
627 }
628 aom_free(denoiser->running_avg_y);
629 denoiser->running_avg_y = NULL;
630
631 for (i = 0; i < denoiser->num_layers; ++i) {
632 aom_free_frame_buffer(&denoiser->mc_running_avg_y[i]);
633 }
634
635 aom_free(denoiser->mc_running_avg_y);
636 denoiser->mc_running_avg_y = NULL;
637 aom_free_frame_buffer(&denoiser->last_source);
638 }
639
640 // TODO(kyslov) Enable when SVC temporal denosing is implemented
641 #if 0
642 static void force_refresh_longterm_ref(AV1_COMP *const cpi) {
643 SVC *const svc = &cpi->svc;
644 // If long term reference is used, force refresh of that slot, so
645 // denoiser buffer for long term reference stays in sync.
646 if (svc->use_gf_temporal_ref_current_layer) {
647 int index = svc->spatial_layer_id;
648 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
649 assert(index >= 0);
650 cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
651 cpi->refresh_alt_ref_frame = 1;
652 }
653 }
654 #endif
655
av1_denoiser_set_noise_level(AV1_COMP * const cpi,int noise_level)656 void av1_denoiser_set_noise_level(AV1_COMP *const cpi, int noise_level) {
657 AV1_DENOISER *const denoiser = &cpi->denoiser;
658 denoiser->denoising_level = noise_level;
659 if (denoiser->denoising_level > kDenLowLow &&
660 denoiser->prev_denoising_level == kDenLowLow) {
661 denoiser->reset = 1;
662 // TODO(kyslov) Enable when SVC temporal denosing is implemented
663 #if 0
664 force_refresh_longterm_ref(cpi);
665 #endif
666 } else {
667 denoiser->reset = 0;
668 }
669 denoiser->prev_denoising_level = denoiser->denoising_level;
670 }
671
672 // Scale/increase the partition threshold
673 // for denoiser speed-up.
av1_scale_part_thresh(int64_t threshold,AV1_DENOISER_LEVEL noise_level,CONTENT_STATE_SB content_state,int temporal_layer_id)674 int64_t av1_scale_part_thresh(int64_t threshold, AV1_DENOISER_LEVEL noise_level,
675 CONTENT_STATE_SB content_state,
676 int temporal_layer_id) {
677 if ((content_state.source_sad_nonrd <= kLowSad &&
678 content_state.low_sumdiff) ||
679 (content_state.source_sad_nonrd == kHighSad &&
680 content_state.low_sumdiff) ||
681 (content_state.lighting_change && !content_state.low_sumdiff) ||
682 (noise_level == kDenHigh) || (temporal_layer_id != 0)) {
683 int64_t scaled_thr =
684 (temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2;
685 return scaled_thr;
686 } else {
687 return (5 * threshold) >> 2;
688 }
689 }
690
691 // Scale/increase the ac skip threshold for
692 // denoiser speed-up.
av1_scale_acskip_thresh(int64_t threshold,AV1_DENOISER_LEVEL noise_level,int abs_sumdiff,int temporal_layer_id)693 int64_t av1_scale_acskip_thresh(int64_t threshold,
694 AV1_DENOISER_LEVEL noise_level, int abs_sumdiff,
695 int temporal_layer_id) {
696 if (noise_level >= kDenLow && abs_sumdiff < 5)
697 threshold *= (noise_level == kDenLow) ? 2
698 : (temporal_layer_id == 2) ? 10
699 : 6;
700 return threshold;
701 }
702
av1_denoiser_reset_on_first_frame(AV1_COMP * const cpi)703 void av1_denoiser_reset_on_first_frame(AV1_COMP *const cpi) {
704 if (/*av1_denoise_svc_non_key(cpi) &&*/
705 cpi->denoiser.current_denoiser_frame == 0) {
706 cpi->denoiser.reset = 1;
707 // TODO(kyslov) Enable when SVC temporal denosing is implemented
708 #if 0
709 force_refresh_longterm_ref(cpi);
710 #endif
711 }
712 }
713
av1_denoiser_update_ref_frame(AV1_COMP * const cpi)714 void av1_denoiser_update_ref_frame(AV1_COMP *const cpi) {
715 AV1_COMMON *const cm = &cpi->common;
716 RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
717 SVC *const svc = &cpi->svc;
718
719 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
720 cpi->denoiser.denoising_level > kDenLowLow) {
721 int svc_refresh_denoiser_buffers = 0;
722 int denoise_svc_second_layer = 0;
723 FRAME_TYPE frame_type = cm->current_frame.frame_type == INTRA_ONLY_FRAME
724 ? KEY_FRAME
725 : cm->current_frame.frame_type;
726 cpi->denoiser.current_denoiser_frame++;
727 const int resize_pending = is_frame_resize_pending(cpi);
728
729 if (cpi->ppi->use_svc) {
730 // TODO(kyslov) Enable when SVC temporal denosing is implemented
731 #if 0
732 const int svc_buf_shift =
733 svc->number_spatial_layers - svc->spatial_layer_id == 2
734 ? cpi->denoiser.num_ref_frames
735 : 0;
736 int layer =
737 LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
738 svc->number_temporal_layers);
739 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
740 svc_refresh_denoiser_buffers =
741 lc->is_key_frame || svc->spatial_layer_sync[svc->spatial_layer_id];
742 denoise_svc_second_layer =
743 svc->number_spatial_layers - svc->spatial_layer_id == 2 ? 1 : 0;
744 // Check if we need to allocate extra buffers in the denoiser
745 // for refreshed frames.
746 if (av1_denoiser_realloc_svc(cm, &cpi->denoiser, rtc_ref,
747 svc, svc_buf_shift,
748 cpi->refresh_alt_ref_frame,
749 cpi->refresh_golden_frame,
750 cpi->refresh_last_frame, cpi->alt_fb_idx,
751 cpi->gld_fb_idx, cpi->lst_fb_idx))
752 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
753 "Failed to re-allocate denoiser for SVC");
754 #endif
755 }
756 av1_denoiser_update_frame_info(
757 &cpi->denoiser, *cpi->source, rtc_ref, svc, frame_type,
758 cpi->refresh_frame.alt_ref_frame, cpi->refresh_frame.golden_frame, 1,
759 rtc_ref->ref_idx[6], rtc_ref->ref_idx[3], rtc_ref->ref_idx[0],
760 resize_pending, svc_refresh_denoiser_buffers, denoise_svc_second_layer);
761 }
762 }
763
764 #ifdef OUTPUT_YUV_DENOISED
make_grayscale(YV12_BUFFER_CONFIG * yuv)765 static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
766 int r, c;
767 uint8_t *u = yuv->u_buffer;
768 uint8_t *v = yuv->v_buffer;
769
770 for (r = 0; r < yuv->uv_height; ++r) {
771 for (c = 0; c < yuv->uv_width; ++c) {
772 u[c] = UINT8_MAX / 2;
773 v[c] = UINT8_MAX / 2;
774 }
775 u += yuv->uv_stride;
776 v += yuv->uv_stride;
777 }
778 }
779
aom_write_yuv_frame(FILE * yuv_file,YV12_BUFFER_CONFIG * s)780 void aom_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) {
781 unsigned char *src = s->y_buffer;
782 int h = s->y_crop_height;
783
784 do {
785 fwrite(src, s->y_width, 1, yuv_file);
786 src += s->y_stride;
787 } while (--h);
788
789 src = s->u_buffer;
790 h = s->uv_crop_height;
791
792 do {
793 fwrite(src, s->uv_width, 1, yuv_file);
794 src += s->uv_stride;
795 } while (--h);
796
797 src = s->v_buffer;
798 h = s->uv_crop_height;
799
800 do {
801 fwrite(src, s->uv_width, 1, yuv_file);
802 src += s->uv_stride;
803 } while (--h);
804 }
805 #endif
806