• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2018 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//      https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// This library provides Symbolize() function that symbolizes program
16// counters to their corresponding symbol names on linux platforms.
17// This library has a minimal implementation of an ELF symbol table
18// reader (i.e. it doesn't depend on libelf, etc.).
19//
20// The algorithm used in Symbolize() is as follows.
21//
22//   1. Go through a list of maps in /proc/self/maps and find the map
23//   containing the program counter.
24//
25//   2. Open the mapped file and find a regular symbol table inside.
26//   Iterate over symbols in the symbol table and look for the symbol
27//   containing the program counter.  If such a symbol is found,
28//   obtain the symbol name, and demangle the symbol if possible.
29//   If the symbol isn't found in the regular symbol table (binary is
30//   stripped), try the same thing with a dynamic symbol table.
31//
32// Note that Symbolize() is originally implemented to be used in
33// signal handlers, hence it doesn't use malloc() and other unsafe
34// operations.  It should be both thread-safe and async-signal-safe.
35//
36// Implementation note:
37//
38// We don't use heaps but only use stacks.  We want to reduce the
39// stack consumption so that the symbolizer can run on small stacks.
40//
41// Here are some numbers collected with GCC 4.1.0 on x86:
42// - sizeof(Elf32_Sym)  = 16
43// - sizeof(Elf32_Shdr) = 40
44// - sizeof(Elf64_Sym)  = 24
45// - sizeof(Elf64_Shdr) = 64
46//
47// This implementation is intended to be async-signal-safe but uses some
48// functions which are not guaranteed to be so, such as memchr() and
49// memmove().  We assume they are async-signal-safe.
50
51#include <dlfcn.h>
52#include <elf.h>
53#include <fcntl.h>
54#include <link.h>  // For ElfW() macro.
55#include <sys/stat.h>
56#include <sys/types.h>
57#include <unistd.h>
58
59#include <algorithm>
60#include <array>
61#include <atomic>
62#include <cerrno>
63#include <cinttypes>
64#include <climits>
65#include <cstdint>
66#include <cstdio>
67#include <cstdlib>
68#include <cstring>
69
70#include "absl/base/casts.h"
71#include "absl/base/dynamic_annotations.h"
72#include "absl/base/internal/low_level_alloc.h"
73#include "absl/base/internal/raw_logging.h"
74#include "absl/base/internal/spinlock.h"
75#include "absl/base/port.h"
76#include "absl/debugging/internal/demangle.h"
77#include "absl/debugging/internal/vdso_support.h"
78#include "absl/strings/string_view.h"
79
80namespace absl {
81ABSL_NAMESPACE_BEGIN
82
83// Value of argv[0]. Used by MaybeInitializeObjFile().
84static char *argv0_value = nullptr;
85
86void InitializeSymbolizer(const char *argv0) {
87#ifdef ABSL_HAVE_VDSO_SUPPORT
88  // We need to make sure VDSOSupport::Init() is called before any setuid or
89  // chroot calls, so InitializeSymbolizer() should be called very early in the
90  // life of a program.
91  absl::debugging_internal::VDSOSupport::Init();
92#endif
93  if (argv0_value != nullptr) {
94    free(argv0_value);
95    argv0_value = nullptr;
96  }
97  if (argv0 != nullptr && argv0[0] != '\0') {
98    argv0_value = strdup(argv0);
99  }
100}
101
102namespace debugging_internal {
103namespace {
104
105// Re-runs fn until it doesn't cause EINTR.
106#define NO_INTR(fn) \
107  do {              \
108  } while ((fn) < 0 && errno == EINTR)
109
110// On Linux, ELF_ST_* are defined in <linux/elf.h>.  To make this portable
111// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
112#ifndef ELF_ST_BIND
113#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
114#endif
115
116#ifndef ELF_ST_TYPE
117#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
118#endif
119
120// Some platforms use a special .opd section to store function pointers.
121const char kOpdSectionName[] = ".opd";
122
123#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
124// Use opd section for function descriptors on these platforms, the function
125// address is the first word of the descriptor.
126enum { kPlatformUsesOPDSections = 1 };
127#else  // not PPC or IA64
128enum { kPlatformUsesOPDSections = 0 };
129#endif
130
131// This works for PowerPC & IA64 only.  A function descriptor consist of two
132// pointers and the first one is the function's entry.
133const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
134
135const int kMaxDecorators = 10;  // Seems like a reasonable upper limit.
136
137struct InstalledSymbolDecorator {
138  SymbolDecorator fn;
139  void *arg;
140  int ticket;
141};
142
143int g_num_decorators;
144InstalledSymbolDecorator g_decorators[kMaxDecorators];
145
146struct FileMappingHint {
147  const void *start;
148  const void *end;
149  uint64_t offset;
150  const char *filename;
151};
152
153// Protects g_decorators.
154// We are using SpinLock and not a Mutex here, because we may be called
155// from inside Mutex::Lock itself, and it prohibits recursive calls.
156// This happens in e.g. base/stacktrace_syscall_unittest.
157// Moreover, we are using only TryLock(), if the decorator list
158// is being modified (is busy), we skip all decorators, and possibly
159// loose some info. Sorry, that's the best we could do.
160ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu(
161    absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
162
163const int kMaxFileMappingHints = 8;
164int g_num_file_mapping_hints;
165FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
166// Protects g_file_mapping_hints.
167ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu(
168    absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
169
170// Async-signal-safe function to zero a buffer.
171// memset() is not guaranteed to be async-signal-safe.
172static void SafeMemZero(void* p, size_t size) {
173  unsigned char *c = static_cast<unsigned char *>(p);
174  while (size--) {
175    *c++ = 0;
176  }
177}
178
179struct ObjFile {
180  ObjFile()
181      : filename(nullptr),
182        start_addr(nullptr),
183        end_addr(nullptr),
184        offset(0),
185        fd(-1),
186        elf_type(-1) {
187    SafeMemZero(&elf_header, sizeof(elf_header));
188    SafeMemZero(&phdr[0], sizeof(phdr));
189  }
190
191  char *filename;
192  const void *start_addr;
193  const void *end_addr;
194  uint64_t offset;
195
196  // The following fields are initialized on the first access to the
197  // object file.
198  int fd;
199  int elf_type;
200  ElfW(Ehdr) elf_header;
201
202  // PT_LOAD program header describing executable code.
203  // Normally we expect just one, but SWIFT binaries have two.
204  std::array<ElfW(Phdr), 2> phdr;
205};
206
207// Build 4-way associative cache for symbols. Within each cache line, symbols
208// are replaced in LRU order.
209enum {
210  ASSOCIATIVITY = 4,
211};
212struct SymbolCacheLine {
213  const void *pc[ASSOCIATIVITY];
214  char *name[ASSOCIATIVITY];
215
216  // age[i] is incremented when a line is accessed. it's reset to zero if the
217  // i'th entry is read.
218  uint32_t age[ASSOCIATIVITY];
219};
220
221// ---------------------------------------------------------------
222// An async-signal-safe arena for LowLevelAlloc
223static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
224
225static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
226  return g_sig_safe_arena.load(std::memory_order_acquire);
227}
228
229static void InitSigSafeArena() {
230  if (SigSafeArena() == nullptr) {
231    base_internal::LowLevelAlloc::Arena *new_arena =
232        base_internal::LowLevelAlloc::NewArena(
233            base_internal::LowLevelAlloc::kAsyncSignalSafe);
234    base_internal::LowLevelAlloc::Arena *old_value = nullptr;
235    if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
236                                                  std::memory_order_release,
237                                                  std::memory_order_relaxed)) {
238      // We lost a race to allocate an arena; deallocate.
239      base_internal::LowLevelAlloc::DeleteArena(new_arena);
240    }
241  }
242}
243
244// ---------------------------------------------------------------
245// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
246
247class AddrMap {
248 public:
249  AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
250  ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
251  int Size() const { return size_; }
252  ObjFile *At(int i) { return &obj_[i]; }
253  ObjFile *Add();
254  void Clear();
255
256 private:
257  int size_;       // count of valid elements (<= allocated_)
258  int allocated_;  // count of allocated elements
259  ObjFile *obj_;   // array of allocated_ elements
260  AddrMap(const AddrMap &) = delete;
261  AddrMap &operator=(const AddrMap &) = delete;
262};
263
264void AddrMap::Clear() {
265  for (int i = 0; i != size_; i++) {
266    At(i)->~ObjFile();
267  }
268  size_ = 0;
269}
270
271ObjFile *AddrMap::Add() {
272  if (size_ == allocated_) {
273    int new_allocated = allocated_ * 2 + 50;
274    ObjFile *new_obj_ =
275        static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
276            new_allocated * sizeof(*new_obj_), SigSafeArena()));
277    if (obj_) {
278      memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
279      base_internal::LowLevelAlloc::Free(obj_);
280    }
281    obj_ = new_obj_;
282    allocated_ = new_allocated;
283  }
284  return new (&obj_[size_++]) ObjFile;
285}
286
287// ---------------------------------------------------------------
288
289enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
290
291class Symbolizer {
292 public:
293  Symbolizer();
294  ~Symbolizer();
295  const char *GetSymbol(const void *const pc);
296
297 private:
298  char *CopyString(const char *s) {
299    int len = strlen(s);
300    char *dst = static_cast<char *>(
301        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
302    ABSL_RAW_CHECK(dst != nullptr, "out of memory");
303    memcpy(dst, s, len + 1);
304    return dst;
305  }
306  ObjFile *FindObjFile(const void *const start,
307                       size_t size) ABSL_ATTRIBUTE_NOINLINE;
308  static bool RegisterObjFile(const char *filename,
309                              const void *const start_addr,
310                              const void *const end_addr, uint64_t offset,
311                              void *arg);
312  SymbolCacheLine *GetCacheLine(const void *const pc);
313  const char *FindSymbolInCache(const void *const pc);
314  const char *InsertSymbolInCache(const void *const pc, const char *name);
315  void AgeSymbols(SymbolCacheLine *line);
316  void ClearAddrMap();
317  FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
318                                           const void *const pc,
319                                           const ptrdiff_t relocation,
320                                           char *out, int out_size,
321                                           char *tmp_buf, int tmp_buf_size);
322
323  enum {
324    SYMBOL_BUF_SIZE = 3072,
325    TMP_BUF_SIZE = 1024,
326    SYMBOL_CACHE_LINES = 128,
327  };
328
329  AddrMap addr_map_;
330
331  bool ok_;
332  bool addr_map_read_;
333
334  char symbol_buf_[SYMBOL_BUF_SIZE];
335
336  // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
337  // so we ensure that tmp_buf_ is properly aligned to store either.
338  alignas(16) char tmp_buf_[TMP_BUF_SIZE];
339  static_assert(alignof(ElfW(Shdr)) <= 16,
340                "alignment of tmp buf too small for Shdr");
341  static_assert(alignof(ElfW(Sym)) <= 16,
342                "alignment of tmp buf too small for Sym");
343
344  SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
345};
346
347static std::atomic<Symbolizer *> g_cached_symbolizer;
348
349}  // namespace
350
351static int SymbolizerSize() {
352#if defined(__wasm__) || defined(__asmjs__)
353  int pagesize = getpagesize();
354#else
355  int pagesize = sysconf(_SC_PAGESIZE);
356#endif
357  return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
358}
359
360// Return (and set null) g_cached_symbolized_state if it is not null.
361// Otherwise return a new symbolizer.
362static Symbolizer *AllocateSymbolizer() {
363  InitSigSafeArena();
364  Symbolizer *symbolizer =
365      g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
366  if (symbolizer != nullptr) {
367    return symbolizer;
368  }
369  return new (base_internal::LowLevelAlloc::AllocWithArena(
370      SymbolizerSize(), SigSafeArena())) Symbolizer();
371}
372
373// Set g_cached_symbolize_state to s if it is null, otherwise
374// delete s.
375static void FreeSymbolizer(Symbolizer *s) {
376  Symbolizer *old_cached_symbolizer = nullptr;
377  if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
378                                                   std::memory_order_release,
379                                                   std::memory_order_relaxed)) {
380    s->~Symbolizer();
381    base_internal::LowLevelAlloc::Free(s);
382  }
383}
384
385Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
386  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
387    for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
388      symbol_cache_line.pc[j] = nullptr;
389      symbol_cache_line.name[j] = nullptr;
390      symbol_cache_line.age[j] = 0;
391    }
392  }
393}
394
395Symbolizer::~Symbolizer() {
396  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
397    for (char *s : symbol_cache_line.name) {
398      base_internal::LowLevelAlloc::Free(s);
399    }
400  }
401  ClearAddrMap();
402}
403
404// We don't use assert() since it's not guaranteed to be
405// async-signal-safe.  Instead we define a minimal assertion
406// macro. So far, we don't need pretty printing for __FILE__, etc.
407#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
408
409// Read up to "count" bytes from file descriptor "fd" into the buffer
410// starting at "buf" while handling short reads and EINTR.  On
411// success, return the number of bytes read.  Otherwise, return -1.
412static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
413  SAFE_ASSERT(fd >= 0);
414  SAFE_ASSERT(count <= SSIZE_MAX);
415  char *buf0 = reinterpret_cast<char *>(buf);
416  size_t num_bytes = 0;
417  while (num_bytes < count) {
418    ssize_t len;
419    NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
420    if (len < 0) {  // There was an error other than EINTR.
421      ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
422      return -1;
423    }
424    if (len == 0) {  // Reached EOF.
425      break;
426    }
427    num_bytes += len;
428  }
429  SAFE_ASSERT(num_bytes <= count);
430  return static_cast<ssize_t>(num_bytes);
431}
432
433// Read up to "count" bytes from "offset" in the file pointed by file
434// descriptor "fd" into the buffer starting at "buf".  On success,
435// return the number of bytes read.  Otherwise, return -1.
436static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,
437                              const off_t offset) {
438  off_t off = lseek(fd, offset, SEEK_SET);
439  if (off == (off_t)-1) {
440    ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,
441                 static_cast<uintmax_t>(offset), errno);
442    return -1;
443  }
444  return ReadPersistent(fd, buf, count);
445}
446
447// Try reading exactly "count" bytes from "offset" bytes in a file
448// pointed by "fd" into the buffer starting at "buf" while handling
449// short reads and EINTR.  On success, return true. Otherwise, return
450// false.
451static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,
452                                const off_t offset) {
453  ssize_t len = ReadFromOffset(fd, buf, count, offset);
454  return len >= 0 && static_cast<size_t>(len) == count;
455}
456
457// Returns elf_header.e_type if the file pointed by fd is an ELF binary.
458static int FileGetElfType(const int fd) {
459  ElfW(Ehdr) elf_header;
460  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
461    return -1;
462  }
463  if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
464    return -1;
465  }
466  return elf_header.e_type;
467}
468
469// Read the section headers in the given ELF binary, and if a section
470// of the specified type is found, set the output to this section header
471// and return true.  Otherwise, return false.
472// To keep stack consumption low, we would like this function to not get
473// inlined.
474static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
475    const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,
476    ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {
477  ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
478  const int buf_entries = tmp_buf_size / sizeof(buf[0]);
479  const int buf_bytes = buf_entries * sizeof(buf[0]);
480
481  for (int i = 0; i < sh_num;) {
482    const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
483    const ssize_t num_bytes_to_read =
484        (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
485    const off_t offset = sh_offset + i * sizeof(buf[0]);
486    const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);
487    if (len % sizeof(buf[0]) != 0) {
488      ABSL_RAW_LOG(
489          WARNING,
490          "Reading %zd bytes from offset %ju returned %zd which is not a "
491          "multiple of %zu.",
492          num_bytes_to_read, static_cast<uintmax_t>(offset), len,
493          sizeof(buf[0]));
494      return false;
495    }
496    const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
497    SAFE_ASSERT(num_headers_in_buf <= buf_entries);
498    for (int j = 0; j < num_headers_in_buf; ++j) {
499      if (buf[j].sh_type == type) {
500        *out = buf[j];
501        return true;
502      }
503    }
504    i += num_headers_in_buf;
505  }
506  return false;
507}
508
509// There is no particular reason to limit section name to 63 characters,
510// but there has (as yet) been no need for anything longer either.
511const int kMaxSectionNameLen = 64;
512
513bool ForEachSection(int fd,
514                    const std::function<bool(absl::string_view name,
515                                             const ElfW(Shdr) &)> &callback) {
516  ElfW(Ehdr) elf_header;
517  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
518    return false;
519  }
520
521  ElfW(Shdr) shstrtab;
522  off_t shstrtab_offset =
523      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
524  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
525    return false;
526  }
527
528  for (int i = 0; i < elf_header.e_shnum; ++i) {
529    ElfW(Shdr) out;
530    off_t section_header_offset =
531        (elf_header.e_shoff + elf_header.e_shentsize * i);
532    if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {
533      return false;
534    }
535    off_t name_offset = shstrtab.sh_offset + out.sh_name;
536    char header_name[kMaxSectionNameLen];
537    ssize_t n_read =
538        ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);
539    if (n_read == -1) {
540      return false;
541    } else if (n_read > kMaxSectionNameLen) {
542      // Long read?
543      return false;
544    }
545
546    absl::string_view name(header_name, strnlen(header_name, n_read));
547    if (!callback(name, out)) {
548      break;
549    }
550  }
551  return true;
552}
553
554// name_len should include terminating '\0'.
555bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
556                            ElfW(Shdr) * out) {
557  char header_name[kMaxSectionNameLen];
558  if (sizeof(header_name) < name_len) {
559    ABSL_RAW_LOG(WARNING,
560                 "Section name '%s' is too long (%zu); "
561                 "section will not be found (even if present).",
562                 name, name_len);
563    // No point in even trying.
564    return false;
565  }
566
567  ElfW(Ehdr) elf_header;
568  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
569    return false;
570  }
571
572  ElfW(Shdr) shstrtab;
573  off_t shstrtab_offset =
574      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
575  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
576    return false;
577  }
578
579  for (int i = 0; i < elf_header.e_shnum; ++i) {
580    off_t section_header_offset =
581        (elf_header.e_shoff + elf_header.e_shentsize * i);
582    if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
583      return false;
584    }
585    off_t name_offset = shstrtab.sh_offset + out->sh_name;
586    ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
587    if (n_read < 0) {
588      return false;
589    } else if (static_cast<size_t>(n_read) != name_len) {
590      // Short read -- name could be at end of file.
591      continue;
592    }
593    if (memcmp(header_name, name, name_len) == 0) {
594      return true;
595    }
596  }
597  return false;
598}
599
600// Compare symbols at in the same address.
601// Return true if we should pick symbol1.
602static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
603                                  const ElfW(Sym) & symbol2) {
604  // If one of the symbols is weak and the other is not, pick the one
605  // this is not a weak symbol.
606  char bind1 = ELF_ST_BIND(symbol1.st_info);
607  char bind2 = ELF_ST_BIND(symbol1.st_info);
608  if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
609  if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
610
611  // If one of the symbols has zero size and the other is not, pick the
612  // one that has non-zero size.
613  if (symbol1.st_size != 0 && symbol2.st_size == 0) {
614    return true;
615  }
616  if (symbol1.st_size == 0 && symbol2.st_size != 0) {
617    return false;
618  }
619
620  // If one of the symbols has no type and the other is not, pick the
621  // one that has a type.
622  char type1 = ELF_ST_TYPE(symbol1.st_info);
623  char type2 = ELF_ST_TYPE(symbol1.st_info);
624  if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
625    return true;
626  }
627  if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
628    return false;
629  }
630
631  // Pick the first one, if we still cannot decide.
632  return true;
633}
634
635// Return true if an address is inside a section.
636static bool InSection(const void *address, const ElfW(Shdr) * section) {
637  const char *start = reinterpret_cast<const char *>(section->sh_addr);
638  size_t size = static_cast<size_t>(section->sh_size);
639  return start <= address && address < (start + size);
640}
641
642static const char *ComputeOffset(const char *base, ptrdiff_t offset) {
643  // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to
644  // zero and offset is non-zero.
645  return reinterpret_cast<const char *>(
646      reinterpret_cast<uintptr_t>(base) + offset);
647}
648
649// Read a symbol table and look for the symbol containing the
650// pc. Iterate over symbols in a symbol table and look for the symbol
651// containing "pc".  If the symbol is found, and its name fits in
652// out_size, the name is written into out and SYMBOL_FOUND is returned.
653// If the name does not fit, truncated name is written into out,
654// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
655// If the symbol is not found, SYMBOL_NOT_FOUND is returned;
656// To keep stack consumption low, we would like this function to not get
657// inlined.
658static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
659    const void *const pc, const int fd, char *out, int out_size,
660    ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
661    const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {
662  if (symtab == nullptr) {
663    return SYMBOL_NOT_FOUND;
664  }
665
666  // Read multiple symbols at once to save read() calls.
667  ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
668  const int buf_entries = tmp_buf_size / sizeof(buf[0]);
669
670  const int num_symbols = symtab->sh_size / symtab->sh_entsize;
671
672  // On platforms using an .opd section (PowerPC & IA64), a function symbol
673  // has the address of a function descriptor, which contains the real
674  // starting address.  However, we do not always want to use the real
675  // starting address because we sometimes want to symbolize a function
676  // pointer into the .opd section, e.g. FindSymbol(&foo,...).
677  const bool pc_in_opd =
678      kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);
679  const bool deref_function_descriptor_pointer =
680      kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
681
682  ElfW(Sym) best_match;
683  SafeMemZero(&best_match, sizeof(best_match));
684  bool found_match = false;
685  for (int i = 0; i < num_symbols;) {
686    off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
687    const int num_remaining_symbols = num_symbols - i;
688    const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);
689    const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
690    const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);
691    SAFE_ASSERT(len % sizeof(buf[0]) == 0);
692    const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
693    SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
694    for (int j = 0; j < num_symbols_in_buf; ++j) {
695      const ElfW(Sym) &symbol = buf[j];
696
697      // For a DSO, a symbol address is relocated by the loading address.
698      // We keep the original address for opd redirection below.
699      const char *const original_start_address =
700          reinterpret_cast<const char *>(symbol.st_value);
701      const char *start_address =
702          ComputeOffset(original_start_address, relocation);
703
704      if (deref_function_descriptor_pointer &&
705          InSection(original_start_address, opd)) {
706        // The opd section is mapped into memory.  Just dereference
707        // start_address to get the first double word, which points to the
708        // function entry.
709        start_address = *reinterpret_cast<const char *const *>(start_address);
710      }
711
712      // If pc is inside the .opd section, it points to a function descriptor.
713      const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
714      const void *const end_address = ComputeOffset(start_address, size);
715      if (symbol.st_value != 0 &&  // Skip null value symbols.
716          symbol.st_shndx != 0 &&  // Skip undefined symbols.
717#ifdef STT_TLS
718          ELF_ST_TYPE(symbol.st_info) != STT_TLS &&  // Skip thread-local data.
719#endif                                               // STT_TLS
720          ((start_address <= pc && pc < end_address) ||
721           (start_address == pc && pc == end_address))) {
722        if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
723          found_match = true;
724          best_match = symbol;
725        }
726      }
727    }
728    i += num_symbols_in_buf;
729  }
730
731  if (found_match) {
732    const size_t off = strtab->sh_offset + best_match.st_name;
733    const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);
734    if (n_read <= 0) {
735      // This should never happen.
736      ABSL_RAW_LOG(WARNING,
737                   "Unable to read from fd %d at offset %zu: n_read = %zd", fd,
738                   off, n_read);
739      return SYMBOL_NOT_FOUND;
740    }
741    ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");
742
743    // strtab->sh_offset points into .strtab-like section that contains
744    // NUL-terminated strings: '\0foo\0barbaz\0...".
745    //
746    // sh_offset+st_name points to the start of symbol name, but we don't know
747    // how long the symbol is, so we try to read as much as we have space for,
748    // and usually over-read (i.e. there is a NUL somewhere before n_read).
749    if (memchr(out, '\0', n_read) == nullptr) {
750      // Either out_size was too small (n_read == out_size and no NUL), or
751      // we tried to read past the EOF (n_read < out_size) and .strtab is
752      // corrupt (missing terminating NUL; should never happen for valid ELF).
753      out[n_read - 1] = '\0';
754      return SYMBOL_TRUNCATED;
755    }
756    return SYMBOL_FOUND;
757  }
758
759  return SYMBOL_NOT_FOUND;
760}
761
762// Get the symbol name of "pc" from the file pointed by "fd".  Process
763// both regular and dynamic symbol tables if necessary.
764// See FindSymbol() comment for description of return value.
765FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
766    const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
767    char *out, int out_size, char *tmp_buf, int tmp_buf_size) {
768  ElfW(Shdr) symtab;
769  ElfW(Shdr) strtab;
770  ElfW(Shdr) opd;
771  ElfW(Shdr) *opd_ptr = nullptr;
772
773  // On platforms using an .opd sections for function descriptor, read
774  // the section header.  The .opd section is in data segment and should be
775  // loaded but we check that it is mapped just to be extra careful.
776  if (kPlatformUsesOPDSections) {
777    if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
778                               sizeof(kOpdSectionName) - 1, &opd) &&
779        FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
780                    opd.sh_size) != nullptr) {
781      opd_ptr = &opd;
782    } else {
783      return SYMBOL_NOT_FOUND;
784    }
785  }
786
787  // Consult a regular symbol table, then fall back to the dynamic symbol table.
788  for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {
789    if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
790                                obj.elf_header.e_shoff, symbol_table_type,
791                                &symtab, tmp_buf, tmp_buf_size)) {
792      continue;
793    }
794    if (!ReadFromOffsetExact(
795            obj.fd, &strtab, sizeof(strtab),
796            obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
797      continue;
798    }
799    const FindSymbolResult rc =
800        FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
801                   opd_ptr, tmp_buf, tmp_buf_size);
802    if (rc != SYMBOL_NOT_FOUND) {
803      return rc;
804    }
805  }
806
807  return SYMBOL_NOT_FOUND;
808}
809
810namespace {
811// Thin wrapper around a file descriptor so that the file descriptor
812// gets closed for sure.
813class FileDescriptor {
814 public:
815  explicit FileDescriptor(int fd) : fd_(fd) {}
816  FileDescriptor(const FileDescriptor &) = delete;
817  FileDescriptor &operator=(const FileDescriptor &) = delete;
818
819  ~FileDescriptor() {
820    if (fd_ >= 0) {
821      NO_INTR(close(fd_));
822    }
823  }
824
825  int get() const { return fd_; }
826
827 private:
828  const int fd_;
829};
830
831// Helper class for reading lines from file.
832//
833// Note: we don't use ProcMapsIterator since the object is big (it has
834// a 5k array member) and uses async-unsafe functions such as sscanf()
835// and snprintf().
836class LineReader {
837 public:
838  explicit LineReader(int fd, char *buf, int buf_len)
839      : fd_(fd),
840        buf_len_(buf_len),
841        buf_(buf),
842        bol_(buf),
843        eol_(buf),
844        eod_(buf) {}
845
846  LineReader(const LineReader &) = delete;
847  LineReader &operator=(const LineReader &) = delete;
848
849  // Read '\n'-terminated line from file.  On success, modify "bol"
850  // and "eol", then return true.  Otherwise, return false.
851  //
852  // Note: if the last line doesn't end with '\n', the line will be
853  // dropped.  It's an intentional behavior to make the code simple.
854  bool ReadLine(const char **bol, const char **eol) {
855    if (BufferIsEmpty()) {  // First time.
856      const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
857      if (num_bytes <= 0) {  // EOF or error.
858        return false;
859      }
860      eod_ = buf_ + num_bytes;
861      bol_ = buf_;
862    } else {
863      bol_ = eol_ + 1;            // Advance to the next line in the buffer.
864      SAFE_ASSERT(bol_ <= eod_);  // "bol_" can point to "eod_".
865      if (!HasCompleteLine()) {
866        const int incomplete_line_length = eod_ - bol_;
867        // Move the trailing incomplete line to the beginning.
868        memmove(buf_, bol_, incomplete_line_length);
869        // Read text from file and append it.
870        char *const append_pos = buf_ + incomplete_line_length;
871        const int capacity_left = buf_len_ - incomplete_line_length;
872        const ssize_t num_bytes =
873            ReadPersistent(fd_, append_pos, capacity_left);
874        if (num_bytes <= 0) {  // EOF or error.
875          return false;
876        }
877        eod_ = append_pos + num_bytes;
878        bol_ = buf_;
879      }
880    }
881    eol_ = FindLineFeed();
882    if (eol_ == nullptr) {  // '\n' not found.  Malformed line.
883      return false;
884    }
885    *eol_ = '\0';  // Replace '\n' with '\0'.
886
887    *bol = bol_;
888    *eol = eol_;
889    return true;
890  }
891
892 private:
893  char *FindLineFeed() const {
894    return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
895  }
896
897  bool BufferIsEmpty() const { return buf_ == eod_; }
898
899  bool HasCompleteLine() const {
900    return !BufferIsEmpty() && FindLineFeed() != nullptr;
901  }
902
903  const int fd_;
904  const int buf_len_;
905  char *const buf_;
906  char *bol_;
907  char *eol_;
908  const char *eod_;  // End of data in "buf_".
909};
910}  // namespace
911
912// Place the hex number read from "start" into "*hex".  The pointer to
913// the first non-hex character or "end" is returned.
914static const char *GetHex(const char *start, const char *end,
915                          uint64_t *const value) {
916  uint64_t hex = 0;
917  const char *p;
918  for (p = start; p < end; ++p) {
919    int ch = *p;
920    if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
921        (ch >= 'a' && ch <= 'f')) {
922      hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
923    } else {  // Encountered the first non-hex character.
924      break;
925    }
926  }
927  SAFE_ASSERT(p <= end);
928  *value = hex;
929  return p;
930}
931
932static const char *GetHex(const char *start, const char *end,
933                          const void **const addr) {
934  uint64_t hex = 0;
935  const char *p = GetHex(start, end, &hex);
936  *addr = reinterpret_cast<void *>(hex);
937  return p;
938}
939
940// Normally we are only interested in "r?x" maps.
941// On the PowerPC, function pointers point to descriptors in the .opd
942// section.  The descriptors themselves are not executable code, so
943// we need to relax the check below to "r??".
944static bool ShouldUseMapping(const char *const flags) {
945  return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');
946}
947
948// Read /proc/self/maps and run "callback" for each mmapped file found.  If
949// "callback" returns false, stop scanning and return true. Else continue
950// scanning /proc/self/maps. Return true if no parse error is found.
951static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
952    bool (*callback)(const char *filename, const void *const start_addr,
953                     const void *const end_addr, uint64_t offset, void *arg),
954    void *arg, void *tmp_buf, int tmp_buf_size) {
955  // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
956  // requires kernel to stop all threads, and is significantly slower when there
957  // are 1000s of threads.
958  char maps_path[80];
959  snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
960
961  int maps_fd;
962  NO_INTR(maps_fd = open(maps_path, O_RDONLY));
963  FileDescriptor wrapped_maps_fd(maps_fd);
964  if (wrapped_maps_fd.get() < 0) {
965    ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
966    return false;
967  }
968
969  // Iterate over maps and look for the map containing the pc.  Then
970  // look into the symbol tables inside.
971  LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
972                    tmp_buf_size);
973  while (true) {
974    const char *cursor;
975    const char *eol;
976    if (!reader.ReadLine(&cursor, &eol)) {  // EOF or malformed line.
977      break;
978    }
979
980    const char *line = cursor;
981    const void *start_address;
982    // Start parsing line in /proc/self/maps.  Here is an example:
983    //
984    // 08048000-0804c000 r-xp 00000000 08:01 2142121    /bin/cat
985    //
986    // We want start address (08048000), end address (0804c000), flags
987    // (r-xp) and file name (/bin/cat).
988
989    // Read start address.
990    cursor = GetHex(cursor, eol, &start_address);
991    if (cursor == eol || *cursor != '-') {
992      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
993      return false;
994    }
995    ++cursor;  // Skip '-'.
996
997    // Read end address.
998    const void *end_address;
999    cursor = GetHex(cursor, eol, &end_address);
1000    if (cursor == eol || *cursor != ' ') {
1001      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1002      return false;
1003    }
1004    ++cursor;  // Skip ' '.
1005
1006    // Read flags.  Skip flags until we encounter a space or eol.
1007    const char *const flags_start = cursor;
1008    while (cursor < eol && *cursor != ' ') {
1009      ++cursor;
1010    }
1011    // We expect at least four letters for flags (ex. "r-xp").
1012    if (cursor == eol || cursor < flags_start + 4) {
1013      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
1014      return false;
1015    }
1016
1017    // Check flags.
1018    if (!ShouldUseMapping(flags_start)) {
1019      continue;  // We skip this map.
1020    }
1021    ++cursor;  // Skip ' '.
1022
1023    // Read file offset.
1024    uint64_t offset;
1025    cursor = GetHex(cursor, eol, &offset);
1026    ++cursor;  // Skip ' '.
1027
1028    // Skip to file name.  "cursor" now points to dev.  We need to skip at least
1029    // two spaces for dev and inode.
1030    int num_spaces = 0;
1031    while (cursor < eol) {
1032      if (*cursor == ' ') {
1033        ++num_spaces;
1034      } else if (num_spaces >= 2) {
1035        // The first non-space character after  skipping two spaces
1036        // is the beginning of the file name.
1037        break;
1038      }
1039      ++cursor;
1040    }
1041
1042    // Check whether this entry corresponds to our hint table for the true
1043    // filename.
1044    bool hinted =
1045        GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
1046    if (!hinted && (cursor == eol || cursor[0] == '[')) {
1047      // not an object file, typically [vdso] or [vsyscall]
1048      continue;
1049    }
1050    if (!callback(cursor, start_address, end_address, offset, arg)) break;
1051  }
1052  return true;
1053}
1054
1055// Find the objfile mapped in address region containing [addr, addr + len).
1056ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
1057  for (int i = 0; i < 2; ++i) {
1058    if (!ok_) return nullptr;
1059
1060    // Read /proc/self/maps if necessary
1061    if (!addr_map_read_) {
1062      addr_map_read_ = true;
1063      if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
1064        ok_ = false;
1065        return nullptr;
1066      }
1067    }
1068
1069    int lo = 0;
1070    int hi = addr_map_.Size();
1071    while (lo < hi) {
1072      int mid = (lo + hi) / 2;
1073      if (addr < addr_map_.At(mid)->end_addr) {
1074        hi = mid;
1075      } else {
1076        lo = mid + 1;
1077      }
1078    }
1079    if (lo != addr_map_.Size()) {
1080      ObjFile *obj = addr_map_.At(lo);
1081      SAFE_ASSERT(obj->end_addr > addr);
1082      if (addr >= obj->start_addr &&
1083          reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
1084        return obj;
1085    }
1086
1087    // The address mapping may have changed since it was last read.  Retry.
1088    ClearAddrMap();
1089  }
1090  return nullptr;
1091}
1092
1093void Symbolizer::ClearAddrMap() {
1094  for (int i = 0; i != addr_map_.Size(); i++) {
1095    ObjFile *o = addr_map_.At(i);
1096    base_internal::LowLevelAlloc::Free(o->filename);
1097    if (o->fd >= 0) {
1098      NO_INTR(close(o->fd));
1099    }
1100  }
1101  addr_map_.Clear();
1102  addr_map_read_ = false;
1103}
1104
1105// Callback for ReadAddrMap to register objfiles in an in-memory table.
1106bool Symbolizer::RegisterObjFile(const char *filename,
1107                                 const void *const start_addr,
1108                                 const void *const end_addr, uint64_t offset,
1109                                 void *arg) {
1110  Symbolizer *impl = static_cast<Symbolizer *>(arg);
1111
1112  // Files are supposed to be added in the increasing address order.  Make
1113  // sure that's the case.
1114  int addr_map_size = impl->addr_map_.Size();
1115  if (addr_map_size != 0) {
1116    ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
1117    if (old->end_addr > end_addr) {
1118      ABSL_RAW_LOG(ERROR,
1119                   "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
1120                   ": %s",
1121                   reinterpret_cast<uintptr_t>(end_addr), filename,
1122                   reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1123      return true;
1124    } else if (old->end_addr == end_addr) {
1125      // The same entry appears twice. This sometimes happens for [vdso].
1126      if (old->start_addr != start_addr ||
1127          strcmp(old->filename, filename) != 0) {
1128        ABSL_RAW_LOG(ERROR,
1129                     "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
1130                     reinterpret_cast<uintptr_t>(end_addr), filename,
1131                     reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1132      }
1133      return true;
1134    }
1135  }
1136  ObjFile *obj = impl->addr_map_.Add();
1137  obj->filename = impl->CopyString(filename);
1138  obj->start_addr = start_addr;
1139  obj->end_addr = end_addr;
1140  obj->offset = offset;
1141  obj->elf_type = -1;  // filled on demand
1142  obj->fd = -1;        // opened on demand
1143  return true;
1144}
1145
1146// This function wraps the Demangle function to provide an interface
1147// where the input symbol is demangled in-place.
1148// To keep stack consumption low, we would like this function to not
1149// get inlined.
1150static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,
1151                                                    char *tmp_buf,
1152                                                    int tmp_buf_size) {
1153  if (Demangle(out, tmp_buf, tmp_buf_size)) {
1154    // Demangling succeeded. Copy to out if the space allows.
1155    int len = strlen(tmp_buf);
1156    if (len + 1 <= out_size) {  // +1 for '\0'.
1157      SAFE_ASSERT(len < tmp_buf_size);
1158      memmove(out, tmp_buf, len + 1);
1159    }
1160  }
1161}
1162
1163SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
1164  uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
1165  pc0 >>= 3;  // drop the low 3 bits
1166
1167  // Shuffle bits.
1168  pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
1169  return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
1170}
1171
1172void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
1173  for (uint32_t &age : line->age) {
1174    ++age;
1175  }
1176}
1177
1178const char *Symbolizer::FindSymbolInCache(const void *const pc) {
1179  if (pc == nullptr) return nullptr;
1180
1181  SymbolCacheLine *line = GetCacheLine(pc);
1182  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1183    if (line->pc[i] == pc) {
1184      AgeSymbols(line);
1185      line->age[i] = 0;
1186      return line->name[i];
1187    }
1188  }
1189  return nullptr;
1190}
1191
1192const char *Symbolizer::InsertSymbolInCache(const void *const pc,
1193                                            const char *name) {
1194  SAFE_ASSERT(pc != nullptr);
1195
1196  SymbolCacheLine *line = GetCacheLine(pc);
1197  uint32_t max_age = 0;
1198  int oldest_index = -1;
1199  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1200    if (line->pc[i] == nullptr) {
1201      AgeSymbols(line);
1202      line->pc[i] = pc;
1203      line->name[i] = CopyString(name);
1204      line->age[i] = 0;
1205      return line->name[i];
1206    }
1207    if (line->age[i] >= max_age) {
1208      max_age = line->age[i];
1209      oldest_index = i;
1210    }
1211  }
1212
1213  AgeSymbols(line);
1214  ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");
1215  base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
1216  line->pc[oldest_index] = pc;
1217  line->name[oldest_index] = CopyString(name);
1218  line->age[oldest_index] = 0;
1219  return line->name[oldest_index];
1220}
1221
1222static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
1223  if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
1224    return;
1225  }
1226  int fd = open("/proc/self/exe", O_RDONLY);
1227  if (fd == -1) {
1228    return;
1229  }
1230  // Verify that contents of /proc/self/exe matches in-memory image of
1231  // the binary. This can fail if the "deleted" binary is in fact not
1232  // the main executable, or for binaries that have the first PT_LOAD
1233  // segment smaller than 4K. We do it in four steps so that the
1234  // buffer is smaller and we don't consume too much stack space.
1235  const char *mem = reinterpret_cast<const char *>(obj->start_addr);
1236  for (int i = 0; i < 4; ++i) {
1237    char buf[1024];
1238    ssize_t n = read(fd, buf, sizeof(buf));
1239    if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
1240      close(fd);
1241      return;
1242    }
1243    mem += sizeof(buf);
1244  }
1245  obj->fd = fd;
1246}
1247
1248static bool MaybeInitializeObjFile(ObjFile *obj) {
1249  if (obj->fd < 0) {
1250    obj->fd = open(obj->filename, O_RDONLY);
1251
1252    if (obj->fd < 0) {
1253      // Getting /proc/self/exe here means that we were hinted.
1254      if (strcmp(obj->filename, "/proc/self/exe") == 0) {
1255        // /proc/self/exe may be inaccessible (due to setuid, etc.), so try
1256        // accessing the binary via argv0.
1257        if (argv0_value != nullptr) {
1258          obj->fd = open(argv0_value, O_RDONLY);
1259        }
1260      } else {
1261        MaybeOpenFdFromSelfExe(obj);
1262      }
1263    }
1264
1265    if (obj->fd < 0) {
1266      ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
1267      return false;
1268    }
1269    obj->elf_type = FileGetElfType(obj->fd);
1270    if (obj->elf_type < 0) {
1271      ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
1272                   obj->elf_type);
1273      return false;
1274    }
1275
1276    if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),
1277                             0)) {
1278      ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
1279      return false;
1280    }
1281    const int phnum = obj->elf_header.e_phnum;
1282    const int phentsize = obj->elf_header.e_phentsize;
1283    size_t phoff = obj->elf_header.e_phoff;
1284    int num_executable_load_segments = 0;
1285    for (int j = 0; j < phnum; j++) {
1286      ElfW(Phdr) phdr;
1287      if (!ReadFromOffsetExact(obj->fd, &phdr, sizeof(phdr), phoff)) {
1288        ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d",
1289                     obj->filename, j);
1290        return false;
1291      }
1292      phoff += phentsize;
1293      constexpr int rx = PF_X | PF_R;
1294      if (phdr.p_type != PT_LOAD || (phdr.p_flags & rx) != rx) {
1295        // Not a LOAD segment, or not executable code.
1296        continue;
1297      }
1298      if (num_executable_load_segments < obj->phdr.size()) {
1299        memcpy(&obj->phdr[num_executable_load_segments++], &phdr, sizeof(phdr));
1300      } else {
1301        ABSL_RAW_LOG(WARNING, "%s: too many executable LOAD segments",
1302                     obj->filename);
1303        break;
1304      }
1305    }
1306    if (num_executable_load_segments == 0) {
1307      // This object has no "r-x" LOAD segments. That's unexpected.
1308      ABSL_RAW_LOG(WARNING, "%s: no executable LOAD segments", obj->filename);
1309      return false;
1310    }
1311  }
1312  return true;
1313}
1314
1315// The implementation of our symbolization routine.  If it
1316// successfully finds the symbol containing "pc" and obtains the
1317// symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
1318// If any symbol decorators have been installed via InstallSymbolDecorator(),
1319// they are called here as well.
1320// To keep stack consumption low, we would like this function to not
1321// get inlined.
1322const char *Symbolizer::GetSymbol(const void *const pc) {
1323  const char *entry = FindSymbolInCache(pc);
1324  if (entry != nullptr) {
1325    return entry;
1326  }
1327  symbol_buf_[0] = '\0';
1328
1329  ObjFile *const obj = FindObjFile(pc, 1);
1330  ptrdiff_t relocation = 0;
1331  int fd = -1;
1332  if (obj != nullptr) {
1333    if (MaybeInitializeObjFile(obj)) {
1334      const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr);
1335      if (obj->elf_type == ET_DYN && start_addr >= obj->offset) {
1336        // This object was relocated.
1337        //
1338        // For obj->offset > 0, adjust the relocation since a mapping at offset
1339        // X in the file will have a start address of [true relocation]+X.
1340        relocation = start_addr - obj->offset;
1341
1342        // Note: some binaries have multiple "rx" LOAD segments. We must
1343        // find the right one.
1344        ElfW(Phdr) *phdr = nullptr;
1345        for (int j = 0; j < obj->phdr.size(); j++) {
1346          ElfW(Phdr) &p = obj->phdr[j];
1347          if (p.p_type != PT_LOAD) {
1348            // We only expect PT_LOADs. This must be PT_NULL that we didn't
1349            // write over (i.e. we exhausted all interesting PT_LOADs).
1350            ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type");
1351            break;
1352          }
1353          if (pc < reinterpret_cast<void *>(start_addr + p.p_memsz)) {
1354            phdr = &p;
1355            break;
1356          }
1357        }
1358        if (phdr == nullptr) {
1359          // That's unexpected. Hope for the best.
1360          ABSL_RAW_LOG(
1361              WARNING,
1362              "%s: unable to find LOAD segment for pc: %p, start_addr: %zx",
1363              obj->filename, pc, start_addr);
1364        } else {
1365          // Adjust relocation in case phdr.p_vaddr != 0.
1366          // This happens for binaries linked with `lld --rosegment`, and for
1367          // binaries linked with BFD `ld -z separate-code`.
1368          relocation -= phdr->p_vaddr - phdr->p_offset;
1369        }
1370      }
1371
1372      fd = obj->fd;
1373      if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
1374                                  sizeof(symbol_buf_), tmp_buf_,
1375                                  sizeof(tmp_buf_)) == SYMBOL_FOUND) {
1376        // Only try to demangle the symbol name if it fit into symbol_buf_.
1377        DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
1378                        sizeof(tmp_buf_));
1379      }
1380    }
1381  } else {
1382#if ABSL_HAVE_VDSO_SUPPORT
1383    VDSOSupport vdso;
1384    if (vdso.IsPresent()) {
1385      VDSOSupport::SymbolInfo symbol_info;
1386      if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
1387        // All VDSO symbols are known to be short.
1388        size_t len = strlen(symbol_info.name);
1389        ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
1390                       "VDSO symbol unexpectedly long");
1391        memcpy(symbol_buf_, symbol_info.name, len + 1);
1392      }
1393    }
1394#endif
1395  }
1396
1397  if (g_decorators_mu.TryLock()) {
1398    if (g_num_decorators > 0) {
1399      SymbolDecoratorArgs decorator_args = {
1400          pc,       relocation,       fd,     symbol_buf_, sizeof(symbol_buf_),
1401          tmp_buf_, sizeof(tmp_buf_), nullptr};
1402      for (int i = 0; i < g_num_decorators; ++i) {
1403        decorator_args.arg = g_decorators[i].arg;
1404        g_decorators[i].fn(&decorator_args);
1405      }
1406    }
1407    g_decorators_mu.Unlock();
1408  }
1409  if (symbol_buf_[0] == '\0') {
1410    return nullptr;
1411  }
1412  symbol_buf_[sizeof(symbol_buf_) - 1] = '\0';  // Paranoia.
1413  return InsertSymbolInCache(pc, symbol_buf_);
1414}
1415
1416bool RemoveAllSymbolDecorators(void) {
1417  if (!g_decorators_mu.TryLock()) {
1418    // Someone else is using decorators. Get out.
1419    return false;
1420  }
1421  g_num_decorators = 0;
1422  g_decorators_mu.Unlock();
1423  return true;
1424}
1425
1426bool RemoveSymbolDecorator(int ticket) {
1427  if (!g_decorators_mu.TryLock()) {
1428    // Someone else is using decorators. Get out.
1429    return false;
1430  }
1431  for (int i = 0; i < g_num_decorators; ++i) {
1432    if (g_decorators[i].ticket == ticket) {
1433      while (i < g_num_decorators - 1) {
1434        g_decorators[i] = g_decorators[i + 1];
1435        ++i;
1436      }
1437      g_num_decorators = i;
1438      break;
1439    }
1440  }
1441  g_decorators_mu.Unlock();
1442  return true;  // Decorator is known to be removed.
1443}
1444
1445int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
1446  static int ticket = 0;
1447
1448  if (!g_decorators_mu.TryLock()) {
1449    // Someone else is using decorators. Get out.
1450    return -2;
1451  }
1452  int ret = ticket;
1453  if (g_num_decorators >= kMaxDecorators) {
1454    ret = -1;
1455  } else {
1456    g_decorators[g_num_decorators] = {decorator, arg, ticket++};
1457    ++g_num_decorators;
1458  }
1459  g_decorators_mu.Unlock();
1460  return ret;
1461}
1462
1463bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
1464                             const char *filename) {
1465  SAFE_ASSERT(start <= end);
1466  SAFE_ASSERT(filename != nullptr);
1467
1468  InitSigSafeArena();
1469
1470  if (!g_file_mapping_mu.TryLock()) {
1471    return false;
1472  }
1473
1474  bool ret = true;
1475  if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
1476    ret = false;
1477  } else {
1478    // TODO(ckennelly): Move this into a string copy routine.
1479    int len = strlen(filename);
1480    char *dst = static_cast<char *>(
1481        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
1482    ABSL_RAW_CHECK(dst != nullptr, "out of memory");
1483    memcpy(dst, filename, len + 1);
1484
1485    auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
1486    hint.start = start;
1487    hint.end = end;
1488    hint.offset = offset;
1489    hint.filename = dst;
1490  }
1491
1492  g_file_mapping_mu.Unlock();
1493  return ret;
1494}
1495
1496bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
1497                        const char **filename) {
1498  if (!g_file_mapping_mu.TryLock()) {
1499    return false;
1500  }
1501  bool found = false;
1502  for (int i = 0; i < g_num_file_mapping_hints; i++) {
1503    if (g_file_mapping_hints[i].start <= *start &&
1504        *end <= g_file_mapping_hints[i].end) {
1505      // We assume that the start_address for the mapping is the base
1506      // address of the ELF section, but when [start_address,end_address) is
1507      // not strictly equal to [hint.start, hint.end), that assumption is
1508      // invalid.
1509      //
1510      // This uses the hint's start address (even though hint.start is not
1511      // necessarily equal to start_address) to ensure the correct
1512      // relocation is computed later.
1513      *start = g_file_mapping_hints[i].start;
1514      *end = g_file_mapping_hints[i].end;
1515      *offset = g_file_mapping_hints[i].offset;
1516      *filename = g_file_mapping_hints[i].filename;
1517      found = true;
1518      break;
1519    }
1520  }
1521  g_file_mapping_mu.Unlock();
1522  return found;
1523}
1524
1525}  // namespace debugging_internal
1526
1527bool Symbolize(const void *pc, char *out, int out_size) {
1528  // Symbolization is very slow under tsan.
1529  ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1530  SAFE_ASSERT(out_size >= 0);
1531  debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
1532  const char *name = s->GetSymbol(pc);
1533  bool ok = false;
1534  if (name != nullptr && out_size > 0) {
1535    strncpy(out, name, out_size);
1536    ok = true;
1537    if (out[out_size - 1] != '\0') {
1538      // strncpy() does not '\0' terminate when it truncates.  Do so, with
1539      // trailing ellipsis.
1540      static constexpr char kEllipsis[] = "...";
1541      int ellipsis_size =
1542          std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);
1543      memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);
1544      out[out_size - 1] = '\0';
1545    }
1546  }
1547  debugging_internal::FreeSymbolizer(s);
1548  ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1549  return ok;
1550}
1551
1552ABSL_NAMESPACE_END
1553}  // namespace absl
1554
1555extern "C" bool AbslInternalGetFileMappingHint(const void **start,
1556                                               const void **end, uint64_t *offset,
1557                                               const char **filename) {
1558  return absl::debugging_internal::GetFileMappingHint(start, end, offset,
1559                                                      filename);
1560}
1561