1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
16 #define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
17
18 #include <algorithm>
19 #include <cstdint>
20 #include <iostream>
21 #include <string>
22
23 #include "absl/base/config.h"
24 #include "absl/strings/ascii.h"
25 #include "absl/strings/internal/charconv_parse.h"
26 #include "absl/strings/string_view.h"
27
28 namespace absl {
29 ABSL_NAMESPACE_BEGIN
30 namespace strings_internal {
31
32 // The largest power that 5 that can be raised to, and still fit in a uint32_t.
33 constexpr int kMaxSmallPowerOfFive = 13;
34 // The largest power that 10 that can be raised to, and still fit in a uint32_t.
35 constexpr int kMaxSmallPowerOfTen = 9;
36
37 ABSL_DLL extern const uint32_t
38 kFiveToNth[kMaxSmallPowerOfFive + 1];
39 ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
40
41 // Large, fixed-width unsigned integer.
42 //
43 // Exact rounding for decimal-to-binary floating point conversion requires very
44 // large integer math, but a design goal of absl::from_chars is to avoid
45 // allocating memory. The integer precision needed for decimal-to-binary
46 // conversions is large but bounded, so a huge fixed-width integer class
47 // suffices.
48 //
49 // This is an intentionally limited big integer class. Only needed operations
50 // are implemented. All storage lives in an array data member, and all
51 // arithmetic is done in-place, to avoid requiring separate storage for operand
52 // and result.
53 //
54 // This is an internal class. Some methods live in the .cc file, and are
55 // instantiated only for the values of max_words we need.
56 template <int max_words>
57 class BigUnsigned {
58 public:
59 static_assert(max_words == 4 || max_words == 84,
60 "unsupported max_words value");
61
BigUnsigned()62 BigUnsigned() : size_(0), words_{} {}
BigUnsigned(uint64_t v)63 explicit constexpr BigUnsigned(uint64_t v)
64 : size_((v >> 32) ? 2 : v ? 1 : 0),
65 words_{static_cast<uint32_t>(v & 0xffffffffu),
66 static_cast<uint32_t>(v >> 32)} {}
67
68 // Constructs a BigUnsigned from the given string_view containing a decimal
69 // value. If the input string is not a decimal integer, constructs a 0
70 // instead.
BigUnsigned(absl::string_view sv)71 explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
72 // Check for valid input, returning a 0 otherwise. This is reasonable
73 // behavior only because this constructor is for unit tests.
74 if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
75 sv.empty()) {
76 return;
77 }
78 int exponent_adjust =
79 ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
80 if (exponent_adjust > 0) {
81 MultiplyByTenToTheNth(exponent_adjust);
82 }
83 }
84
85 // Loads the mantissa value of a previously-parsed float.
86 //
87 // Returns the associated decimal exponent. The value of the parsed float is
88 // exactly *this * 10**exponent.
89 int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
90
91 // Returns the number of decimal digits of precision this type provides. All
92 // numbers with this many decimal digits or fewer are representable by this
93 // type.
94 //
95 // Analagous to std::numeric_limits<BigUnsigned>::digits10.
Digits10()96 static constexpr int Digits10() {
97 // 9975007/1035508 is very slightly less than log10(2**32).
98 return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
99 }
100
101 // Shifts left by the given number of bits.
ShiftLeft(int count)102 void ShiftLeft(int count) {
103 if (count > 0) {
104 const int word_shift = count / 32;
105 if (word_shift >= max_words) {
106 SetToZero();
107 return;
108 }
109 size_ = (std::min)(size_ + word_shift, max_words);
110 count %= 32;
111 if (count == 0) {
112 std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
113 } else {
114 for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) {
115 words_[i] = (words_[i - word_shift] << count) |
116 (words_[i - word_shift - 1] >> (32 - count));
117 }
118 words_[word_shift] = words_[0] << count;
119 // Grow size_ if necessary.
120 if (size_ < max_words && words_[size_]) {
121 ++size_;
122 }
123 }
124 std::fill(words_, words_ + word_shift, 0u);
125 }
126 }
127
128
129 // Multiplies by v in-place.
MultiplyBy(uint32_t v)130 void MultiplyBy(uint32_t v) {
131 if (size_ == 0 || v == 1) {
132 return;
133 }
134 if (v == 0) {
135 SetToZero();
136 return;
137 }
138 const uint64_t factor = v;
139 uint64_t window = 0;
140 for (int i = 0; i < size_; ++i) {
141 window += factor * words_[i];
142 words_[i] = window & 0xffffffff;
143 window >>= 32;
144 }
145 // If carry bits remain and there's space for them, grow size_.
146 if (window && size_ < max_words) {
147 words_[size_] = window & 0xffffffff;
148 ++size_;
149 }
150 }
151
MultiplyBy(uint64_t v)152 void MultiplyBy(uint64_t v) {
153 uint32_t words[2];
154 words[0] = static_cast<uint32_t>(v);
155 words[1] = static_cast<uint32_t>(v >> 32);
156 if (words[1] == 0) {
157 MultiplyBy(words[0]);
158 } else {
159 MultiplyBy(2, words);
160 }
161 }
162
163 // Multiplies in place by 5 to the power of n. n must be non-negative.
MultiplyByFiveToTheNth(int n)164 void MultiplyByFiveToTheNth(int n) {
165 while (n >= kMaxSmallPowerOfFive) {
166 MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
167 n -= kMaxSmallPowerOfFive;
168 }
169 if (n > 0) {
170 MultiplyBy(kFiveToNth[n]);
171 }
172 }
173
174 // Multiplies in place by 10 to the power of n. n must be non-negative.
MultiplyByTenToTheNth(int n)175 void MultiplyByTenToTheNth(int n) {
176 if (n > kMaxSmallPowerOfTen) {
177 // For large n, raise to a power of 5, then shift left by the same amount.
178 // (10**n == 5**n * 2**n.) This requires fewer multiplications overall.
179 MultiplyByFiveToTheNth(n);
180 ShiftLeft(n);
181 } else if (n > 0) {
182 // We can do this more quickly for very small N by using a single
183 // multiplication.
184 MultiplyBy(kTenToNth[n]);
185 }
186 }
187
188 // Returns the value of 5**n, for non-negative n. This implementation uses
189 // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
190 // MultiplyByFiveToTheNth().
191 static BigUnsigned FiveToTheNth(int n);
192
193 // Multiplies by another BigUnsigned, in-place.
194 template <int M>
MultiplyBy(const BigUnsigned<M> & other)195 void MultiplyBy(const BigUnsigned<M>& other) {
196 MultiplyBy(other.size(), other.words());
197 }
198
SetToZero()199 void SetToZero() {
200 std::fill(words_, words_ + size_, 0u);
201 size_ = 0;
202 }
203
204 // Returns the value of the nth word of this BigUnsigned. This is
205 // range-checked, and returns 0 on out-of-bounds accesses.
GetWord(int index)206 uint32_t GetWord(int index) const {
207 if (index < 0 || index >= size_) {
208 return 0;
209 }
210 return words_[index];
211 }
212
213 // Returns this integer as a decimal string. This is not used in the decimal-
214 // to-binary conversion; it is intended to aid in testing.
215 std::string ToString() const;
216
size()217 int size() const { return size_; }
words()218 const uint32_t* words() const { return words_; }
219
220 private:
221 // Reads the number between [begin, end), possibly containing a decimal point,
222 // into this BigUnsigned.
223 //
224 // Callers are required to ensure [begin, end) contains a valid number, with
225 // one or more decimal digits and at most one decimal point. This routine
226 // will behave unpredictably if these preconditions are not met.
227 //
228 // Only the first `significant_digits` digits are read. Digits beyond this
229 // limit are "sticky": If the final significant digit is 0 or 5, and if any
230 // dropped digit is nonzero, then that final significant digit is adjusted up
231 // to 1 or 6. This adjustment allows for precise rounding.
232 //
233 // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
234 // account for the decimal point and for dropped significant digits. After
235 // this function returns,
236 // actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
237 int ReadDigits(const char* begin, const char* end, int significant_digits);
238
239 // Performs a step of big integer multiplication. This computes the full
240 // (64-bit-wide) values that should be added at the given index (step), and
241 // adds to that location in-place.
242 //
243 // Because our math all occurs in place, we must multiply starting from the
244 // highest word working downward. (This is a bit more expensive due to the
245 // extra carries involved.)
246 //
247 // This must be called in steps, for each word to be calculated, starting from
248 // the high end and working down to 0. The first value of `step` should be
249 // `std::min(original_size + other.size_ - 2, max_words - 1)`.
250 // The reason for this expression is that multiplying the i'th word from one
251 // multiplicand and the j'th word of another multiplicand creates a
252 // two-word-wide value to be stored at the (i+j)'th element. The highest
253 // word indices we will access are `original_size - 1` from this object, and
254 // `other.size_ - 1` from our operand. Therefore,
255 // `original_size + other.size_ - 2` is the first step we should calculate,
256 // but limited on an upper bound by max_words.
257
258 // Working from high-to-low ensures that we do not overwrite the portions of
259 // the initial value of *this which are still needed for later steps.
260 //
261 // Once called with step == 0, *this contains the result of the
262 // multiplication.
263 //
264 // `original_size` is the size_ of *this before the first call to
265 // MultiplyStep(). `other_words` and `other_size` are the contents of our
266 // operand. `step` is the step to perform, as described above.
267 void MultiplyStep(int original_size, const uint32_t* other_words,
268 int other_size, int step);
269
MultiplyBy(int other_size,const uint32_t * other_words)270 void MultiplyBy(int other_size, const uint32_t* other_words) {
271 const int original_size = size_;
272 const int first_step =
273 (std::min)(original_size + other_size - 2, max_words - 1);
274 for (int step = first_step; step >= 0; --step) {
275 MultiplyStep(original_size, other_words, other_size, step);
276 }
277 }
278
279 // Adds a 32-bit value to the index'th word, with carry.
AddWithCarry(int index,uint32_t value)280 void AddWithCarry(int index, uint32_t value) {
281 if (value) {
282 while (index < max_words && value > 0) {
283 words_[index] += value;
284 // carry if we overflowed in this word:
285 if (value > words_[index]) {
286 value = 1;
287 ++index;
288 } else {
289 value = 0;
290 }
291 }
292 size_ = (std::min)(max_words, (std::max)(index + 1, size_));
293 }
294 }
295
AddWithCarry(int index,uint64_t value)296 void AddWithCarry(int index, uint64_t value) {
297 if (value && index < max_words) {
298 uint32_t high = value >> 32;
299 uint32_t low = value & 0xffffffff;
300 words_[index] += low;
301 if (words_[index] < low) {
302 ++high;
303 if (high == 0) {
304 // Carry from the low word caused our high word to overflow.
305 // Short circuit here to do the right thing.
306 AddWithCarry(index + 2, static_cast<uint32_t>(1));
307 return;
308 }
309 }
310 if (high > 0) {
311 AddWithCarry(index + 1, high);
312 } else {
313 // Normally 32-bit AddWithCarry() sets size_, but since we don't call
314 // it when `high` is 0, do it ourselves here.
315 size_ = (std::min)(max_words, (std::max)(index + 1, size_));
316 }
317 }
318 }
319
320 // Divide this in place by a constant divisor. Returns the remainder of the
321 // division.
322 template <uint32_t divisor>
DivMod()323 uint32_t DivMod() {
324 uint64_t accumulator = 0;
325 for (int i = size_ - 1; i >= 0; --i) {
326 accumulator <<= 32;
327 accumulator += words_[i];
328 // accumulator / divisor will never overflow an int32_t in this loop
329 words_[i] = static_cast<uint32_t>(accumulator / divisor);
330 accumulator = accumulator % divisor;
331 }
332 while (size_ > 0 && words_[size_ - 1] == 0) {
333 --size_;
334 }
335 return static_cast<uint32_t>(accumulator);
336 }
337
338 // The number of elements in words_ that may carry significant values.
339 // All elements beyond this point are 0.
340 //
341 // When size_ is 0, this BigUnsigned stores the value 0.
342 // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
343 // nonzero. This can occur due to overflow truncation.
344 // In particular, x.size_ != y.size_ does *not* imply x != y.
345 int size_;
346 uint32_t words_[max_words];
347 };
348
349 // Compares two big integer instances.
350 //
351 // Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
352 template <int N, int M>
Compare(const BigUnsigned<N> & lhs,const BigUnsigned<M> & rhs)353 int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
354 int limit = (std::max)(lhs.size(), rhs.size());
355 for (int i = limit - 1; i >= 0; --i) {
356 const uint32_t lhs_word = lhs.GetWord(i);
357 const uint32_t rhs_word = rhs.GetWord(i);
358 if (lhs_word < rhs_word) {
359 return -1;
360 } else if (lhs_word > rhs_word) {
361 return 1;
362 }
363 }
364 return 0;
365 }
366
367 template <int N, int M>
368 bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
369 int limit = (std::max)(lhs.size(), rhs.size());
370 for (int i = 0; i < limit; ++i) {
371 if (lhs.GetWord(i) != rhs.GetWord(i)) {
372 return false;
373 }
374 }
375 return true;
376 }
377
378 template <int N, int M>
379 bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
380 return !(lhs == rhs);
381 }
382
383 template <int N, int M>
384 bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
385 return Compare(lhs, rhs) == -1;
386 }
387
388 template <int N, int M>
389 bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
390 return rhs < lhs;
391 }
392 template <int N, int M>
393 bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
394 return !(rhs < lhs);
395 }
396 template <int N, int M>
397 bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
398 return !(lhs < rhs);
399 }
400
401 // Output operator for BigUnsigned, for testing purposes only.
402 template <int N>
403 std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
404 return os << num.ToString();
405 }
406
407 // Explicit instantiation declarations for the sizes of BigUnsigned that we
408 // are using.
409 //
410 // For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
411 // still bigger than an int128, and 84 is a large value we will want to use
412 // in the from_chars implementation.
413 //
414 // Comments justifying the use of 84 belong in the from_chars implementation,
415 // and will be added in a follow-up CL.
416 extern template class BigUnsigned<4>;
417 extern template class BigUnsigned<84>;
418
419 } // namespace strings_internal
420 ABSL_NAMESPACE_END
421 } // namespace absl
422
423 #endif // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
424