• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
16 #define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
17 
18 #include <algorithm>
19 #include <cstdint>
20 #include <iostream>
21 #include <string>
22 
23 #include "absl/base/config.h"
24 #include "absl/strings/ascii.h"
25 #include "absl/strings/internal/charconv_parse.h"
26 #include "absl/strings/string_view.h"
27 
28 namespace absl {
29 ABSL_NAMESPACE_BEGIN
30 namespace strings_internal {
31 
32 // The largest power that 5 that can be raised to, and still fit in a uint32_t.
33 constexpr int kMaxSmallPowerOfFive = 13;
34 // The largest power that 10 that can be raised to, and still fit in a uint32_t.
35 constexpr int kMaxSmallPowerOfTen = 9;
36 
37 ABSL_DLL extern const uint32_t
38     kFiveToNth[kMaxSmallPowerOfFive + 1];
39 ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
40 
41 // Large, fixed-width unsigned integer.
42 //
43 // Exact rounding for decimal-to-binary floating point conversion requires very
44 // large integer math, but a design goal of absl::from_chars is to avoid
45 // allocating memory.  The integer precision needed for decimal-to-binary
46 // conversions is large but bounded, so a huge fixed-width integer class
47 // suffices.
48 //
49 // This is an intentionally limited big integer class.  Only needed operations
50 // are implemented.  All storage lives in an array data member, and all
51 // arithmetic is done in-place, to avoid requiring separate storage for operand
52 // and result.
53 //
54 // This is an internal class.  Some methods live in the .cc file, and are
55 // instantiated only for the values of max_words we need.
56 template <int max_words>
57 class BigUnsigned {
58  public:
59   static_assert(max_words == 4 || max_words == 84,
60                 "unsupported max_words value");
61 
BigUnsigned()62   BigUnsigned() : size_(0), words_{} {}
BigUnsigned(uint64_t v)63   explicit constexpr BigUnsigned(uint64_t v)
64       : size_((v >> 32) ? 2 : v ? 1 : 0),
65         words_{static_cast<uint32_t>(v & 0xffffffffu),
66                static_cast<uint32_t>(v >> 32)} {}
67 
68   // Constructs a BigUnsigned from the given string_view containing a decimal
69   // value.  If the input string is not a decimal integer, constructs a 0
70   // instead.
BigUnsigned(absl::string_view sv)71   explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
72     // Check for valid input, returning a 0 otherwise.  This is reasonable
73     // behavior only because this constructor is for unit tests.
74     if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
75         sv.empty()) {
76       return;
77     }
78     int exponent_adjust =
79         ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
80     if (exponent_adjust > 0) {
81       MultiplyByTenToTheNth(exponent_adjust);
82     }
83   }
84 
85   // Loads the mantissa value of a previously-parsed float.
86   //
87   // Returns the associated decimal exponent.  The value of the parsed float is
88   // exactly *this * 10**exponent.
89   int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
90 
91   // Returns the number of decimal digits of precision this type provides.  All
92   // numbers with this many decimal digits or fewer are representable by this
93   // type.
94   //
95   // Analagous to std::numeric_limits<BigUnsigned>::digits10.
Digits10()96   static constexpr int Digits10() {
97     // 9975007/1035508 is very slightly less than log10(2**32).
98     return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
99   }
100 
101   // Shifts left by the given number of bits.
ShiftLeft(int count)102   void ShiftLeft(int count) {
103     if (count > 0) {
104       const int word_shift = count / 32;
105       if (word_shift >= max_words) {
106         SetToZero();
107         return;
108       }
109       size_ = (std::min)(size_ + word_shift, max_words);
110       count %= 32;
111       if (count == 0) {
112         std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
113       } else {
114         for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) {
115           words_[i] = (words_[i - word_shift] << count) |
116                       (words_[i - word_shift - 1] >> (32 - count));
117         }
118         words_[word_shift] = words_[0] << count;
119         // Grow size_ if necessary.
120         if (size_ < max_words && words_[size_]) {
121           ++size_;
122         }
123       }
124       std::fill(words_, words_ + word_shift, 0u);
125     }
126   }
127 
128 
129   // Multiplies by v in-place.
MultiplyBy(uint32_t v)130   void MultiplyBy(uint32_t v) {
131     if (size_ == 0 || v == 1) {
132       return;
133     }
134     if (v == 0) {
135       SetToZero();
136       return;
137     }
138     const uint64_t factor = v;
139     uint64_t window = 0;
140     for (int i = 0; i < size_; ++i) {
141       window += factor * words_[i];
142       words_[i] = window & 0xffffffff;
143       window >>= 32;
144     }
145     // If carry bits remain and there's space for them, grow size_.
146     if (window && size_ < max_words) {
147       words_[size_] = window & 0xffffffff;
148       ++size_;
149     }
150   }
151 
MultiplyBy(uint64_t v)152   void MultiplyBy(uint64_t v) {
153     uint32_t words[2];
154     words[0] = static_cast<uint32_t>(v);
155     words[1] = static_cast<uint32_t>(v >> 32);
156     if (words[1] == 0) {
157       MultiplyBy(words[0]);
158     } else {
159       MultiplyBy(2, words);
160     }
161   }
162 
163   // Multiplies in place by 5 to the power of n.  n must be non-negative.
MultiplyByFiveToTheNth(int n)164   void MultiplyByFiveToTheNth(int n) {
165     while (n >= kMaxSmallPowerOfFive) {
166       MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
167       n -= kMaxSmallPowerOfFive;
168     }
169     if (n > 0) {
170       MultiplyBy(kFiveToNth[n]);
171     }
172   }
173 
174   // Multiplies in place by 10 to the power of n.  n must be non-negative.
MultiplyByTenToTheNth(int n)175   void MultiplyByTenToTheNth(int n) {
176     if (n > kMaxSmallPowerOfTen) {
177       // For large n, raise to a power of 5, then shift left by the same amount.
178       // (10**n == 5**n * 2**n.)  This requires fewer multiplications overall.
179       MultiplyByFiveToTheNth(n);
180       ShiftLeft(n);
181     } else if (n > 0) {
182       // We can do this more quickly for very small N by using a single
183       // multiplication.
184       MultiplyBy(kTenToNth[n]);
185     }
186   }
187 
188   // Returns the value of 5**n, for non-negative n.  This implementation uses
189   // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
190   // MultiplyByFiveToTheNth().
191   static BigUnsigned FiveToTheNth(int n);
192 
193   // Multiplies by another BigUnsigned, in-place.
194   template <int M>
MultiplyBy(const BigUnsigned<M> & other)195   void MultiplyBy(const BigUnsigned<M>& other) {
196     MultiplyBy(other.size(), other.words());
197   }
198 
SetToZero()199   void SetToZero() {
200     std::fill(words_, words_ + size_, 0u);
201     size_ = 0;
202   }
203 
204   // Returns the value of the nth word of this BigUnsigned.  This is
205   // range-checked, and returns 0 on out-of-bounds accesses.
GetWord(int index)206   uint32_t GetWord(int index) const {
207     if (index < 0 || index >= size_) {
208       return 0;
209     }
210     return words_[index];
211   }
212 
213   // Returns this integer as a decimal string.  This is not used in the decimal-
214   // to-binary conversion; it is intended to aid in testing.
215   std::string ToString() const;
216 
size()217   int size() const { return size_; }
words()218   const uint32_t* words() const { return words_; }
219 
220  private:
221   // Reads the number between [begin, end), possibly containing a decimal point,
222   // into this BigUnsigned.
223   //
224   // Callers are required to ensure [begin, end) contains a valid number, with
225   // one or more decimal digits and at most one decimal point.  This routine
226   // will behave unpredictably if these preconditions are not met.
227   //
228   // Only the first `significant_digits` digits are read.  Digits beyond this
229   // limit are "sticky": If the final significant digit is 0 or 5, and if any
230   // dropped digit is nonzero, then that final significant digit is adjusted up
231   // to 1 or 6.  This adjustment allows for precise rounding.
232   //
233   // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
234   // account for the decimal point and for dropped significant digits.  After
235   // this function returns,
236   //   actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
237   int ReadDigits(const char* begin, const char* end, int significant_digits);
238 
239   // Performs a step of big integer multiplication.  This computes the full
240   // (64-bit-wide) values that should be added at the given index (step), and
241   // adds to that location in-place.
242   //
243   // Because our math all occurs in place, we must multiply starting from the
244   // highest word working downward.  (This is a bit more expensive due to the
245   // extra carries involved.)
246   //
247   // This must be called in steps, for each word to be calculated, starting from
248   // the high end and working down to 0.  The first value of `step` should be
249   //   `std::min(original_size + other.size_ - 2, max_words - 1)`.
250   // The reason for this expression is that multiplying the i'th word from one
251   // multiplicand and the j'th word of another multiplicand creates a
252   // two-word-wide value to be stored at the (i+j)'th element.  The highest
253   // word indices we will access are `original_size - 1` from this object, and
254   // `other.size_ - 1` from our operand.  Therefore,
255   // `original_size + other.size_ - 2` is the first step we should calculate,
256   // but limited on an upper bound by max_words.
257 
258   // Working from high-to-low ensures that we do not overwrite the portions of
259   // the initial value of *this which are still needed for later steps.
260   //
261   // Once called with step == 0, *this contains the result of the
262   // multiplication.
263   //
264   // `original_size` is the size_ of *this before the first call to
265   // MultiplyStep().  `other_words` and `other_size` are the contents of our
266   // operand.  `step` is the step to perform, as described above.
267   void MultiplyStep(int original_size, const uint32_t* other_words,
268                     int other_size, int step);
269 
MultiplyBy(int other_size,const uint32_t * other_words)270   void MultiplyBy(int other_size, const uint32_t* other_words) {
271     const int original_size = size_;
272     const int first_step =
273         (std::min)(original_size + other_size - 2, max_words - 1);
274     for (int step = first_step; step >= 0; --step) {
275       MultiplyStep(original_size, other_words, other_size, step);
276     }
277   }
278 
279   // Adds a 32-bit value to the index'th word, with carry.
AddWithCarry(int index,uint32_t value)280   void AddWithCarry(int index, uint32_t value) {
281     if (value) {
282       while (index < max_words && value > 0) {
283         words_[index] += value;
284         // carry if we overflowed in this word:
285         if (value > words_[index]) {
286           value = 1;
287           ++index;
288         } else {
289           value = 0;
290         }
291       }
292       size_ = (std::min)(max_words, (std::max)(index + 1, size_));
293     }
294   }
295 
AddWithCarry(int index,uint64_t value)296   void AddWithCarry(int index, uint64_t value) {
297     if (value && index < max_words) {
298       uint32_t high = value >> 32;
299       uint32_t low = value & 0xffffffff;
300       words_[index] += low;
301       if (words_[index] < low) {
302         ++high;
303         if (high == 0) {
304           // Carry from the low word caused our high word to overflow.
305           // Short circuit here to do the right thing.
306           AddWithCarry(index + 2, static_cast<uint32_t>(1));
307           return;
308         }
309       }
310       if (high > 0) {
311         AddWithCarry(index + 1, high);
312       } else {
313         // Normally 32-bit AddWithCarry() sets size_, but since we don't call
314         // it when `high` is 0, do it ourselves here.
315         size_ = (std::min)(max_words, (std::max)(index + 1, size_));
316       }
317     }
318   }
319 
320   // Divide this in place by a constant divisor.  Returns the remainder of the
321   // division.
322   template <uint32_t divisor>
DivMod()323   uint32_t DivMod() {
324     uint64_t accumulator = 0;
325     for (int i = size_ - 1; i >= 0; --i) {
326       accumulator <<= 32;
327       accumulator += words_[i];
328       // accumulator / divisor will never overflow an int32_t in this loop
329       words_[i] = static_cast<uint32_t>(accumulator / divisor);
330       accumulator = accumulator % divisor;
331     }
332     while (size_ > 0 && words_[size_ - 1] == 0) {
333       --size_;
334     }
335     return static_cast<uint32_t>(accumulator);
336   }
337 
338   // The number of elements in words_ that may carry significant values.
339   // All elements beyond this point are 0.
340   //
341   // When size_ is 0, this BigUnsigned stores the value 0.
342   // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
343   // nonzero.  This can occur due to overflow truncation.
344   // In particular, x.size_ != y.size_ does *not* imply x != y.
345   int size_;
346   uint32_t words_[max_words];
347 };
348 
349 // Compares two big integer instances.
350 //
351 // Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
352 template <int N, int M>
Compare(const BigUnsigned<N> & lhs,const BigUnsigned<M> & rhs)353 int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
354   int limit = (std::max)(lhs.size(), rhs.size());
355   for (int i = limit - 1; i >= 0; --i) {
356     const uint32_t lhs_word = lhs.GetWord(i);
357     const uint32_t rhs_word = rhs.GetWord(i);
358     if (lhs_word < rhs_word) {
359       return -1;
360     } else if (lhs_word > rhs_word) {
361       return 1;
362     }
363   }
364   return 0;
365 }
366 
367 template <int N, int M>
368 bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
369   int limit = (std::max)(lhs.size(), rhs.size());
370   for (int i = 0; i < limit; ++i) {
371     if (lhs.GetWord(i) != rhs.GetWord(i)) {
372       return false;
373     }
374   }
375   return true;
376 }
377 
378 template <int N, int M>
379 bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
380   return !(lhs == rhs);
381 }
382 
383 template <int N, int M>
384 bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
385   return Compare(lhs, rhs) == -1;
386 }
387 
388 template <int N, int M>
389 bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
390   return rhs < lhs;
391 }
392 template <int N, int M>
393 bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
394   return !(rhs < lhs);
395 }
396 template <int N, int M>
397 bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
398   return !(lhs < rhs);
399 }
400 
401 // Output operator for BigUnsigned, for testing purposes only.
402 template <int N>
403 std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
404   return os << num.ToString();
405 }
406 
407 // Explicit instantiation declarations for the sizes of BigUnsigned that we
408 // are using.
409 //
410 // For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
411 // still bigger than an int128, and 84 is a large value we will want to use
412 // in the from_chars implementation.
413 //
414 // Comments justifying the use of 84 belong in the from_chars implementation,
415 // and will be added in a follow-up CL.
416 extern template class BigUnsigned<4>;
417 extern template class BigUnsigned<84>;
418 
419 }  // namespace strings_internal
420 ABSL_NAMESPACE_END
421 }  // namespace absl
422 
423 #endif  // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
424