• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // The implementation of the absl::Duration class, which is declared in
16 // //absl/time.h.  This class behaves like a numeric type; it has no public
17 // methods and is used only through the operators defined here.
18 //
19 // Implementation notes:
20 //
21 // An absl::Duration is represented as
22 //
23 //   rep_hi_ : (int64_t)  Whole seconds
24 //   rep_lo_ : (uint32_t) Fractions of a second
25 //
26 // The seconds value (rep_hi_) may be positive or negative as appropriate.
27 // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
28 // The API for Duration guarantees at least nanosecond resolution, which
29 // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
30 // However, to utilize more of the available 32 bits of space in rep_lo_,
31 // we instead store quarters of a nanosecond in rep_lo_ resulting in a max
32 // value of 4B - 1.  This allows us to correctly handle calculations like
33 // 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual
34 // Duration rep using quarters of a nanosecond.
35 //
36 //    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000
37 //   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
38 //
39 // Infinite durations are represented as Durations with the rep_lo_ field set
40 // to all 1s.
41 //
42 //   +InfiniteDuration:
43 //     rep_hi_ : kint64max
44 //     rep_lo_ : ~0U
45 //
46 //   -InfiniteDuration:
47 //     rep_hi_ : kint64min
48 //     rep_lo_ : ~0U
49 //
50 // Arithmetic overflows/underflows to +/- infinity and saturates.
51 
52 #if defined(_MSC_VER)
53 #include <winsock2.h>  // for timeval
54 #endif
55 
56 #include <algorithm>
57 #include <cassert>
58 #include <cctype>
59 #include <cerrno>
60 #include <cmath>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <cstring>
64 #include <ctime>
65 #include <functional>
66 #include <limits>
67 #include <string>
68 
69 #include "absl/base/casts.h"
70 #include "absl/base/macros.h"
71 #include "absl/numeric/int128.h"
72 #include "absl/strings/string_view.h"
73 #include "absl/strings/strip.h"
74 #include "absl/time/time.h"
75 
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
78 
79 namespace {
80 
81 using time_internal::kTicksPerNanosecond;
82 using time_internal::kTicksPerSecond;
83 
84 constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
85 constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
86 
87 // Can't use std::isinfinite() because it doesn't exist on windows.
IsFinite(double d)88 inline bool IsFinite(double d) {
89   if (std::isnan(d)) return false;
90   return d != std::numeric_limits<double>::infinity() &&
91          d != -std::numeric_limits<double>::infinity();
92 }
93 
IsValidDivisor(double d)94 inline bool IsValidDivisor(double d) {
95   if (std::isnan(d)) return false;
96   return d != 0.0;
97 }
98 
99 // Can't use std::round() because it is only available in C++11.
100 // Note that we ignore the possibility of floating-point over/underflow.
101 template <typename Double>
Round(Double d)102 inline double Round(Double d) {
103   return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
104 }
105 
106 // *sec may be positive or negative.  *ticks must be in the range
107 // -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it
108 // will be normalized to a positive value by adjusting *sec accordingly.
NormalizeTicks(int64_t * sec,int64_t * ticks)109 inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
110   if (*ticks < 0) {
111     --*sec;
112     *ticks += kTicksPerSecond;
113   }
114 }
115 
116 // Makes a uint128 from the absolute value of the given scalar.
MakeU128(int64_t a)117 inline uint128 MakeU128(int64_t a) {
118   uint128 u128 = 0;
119   if (a < 0) {
120     ++u128;
121     ++a;  // Makes it safe to negate 'a'
122     a = -a;
123   }
124   u128 += static_cast<uint64_t>(a);
125   return u128;
126 }
127 
128 // Makes a uint128 count of ticks out of the absolute value of the Duration.
MakeU128Ticks(Duration d)129 inline uint128 MakeU128Ticks(Duration d) {
130   int64_t rep_hi = time_internal::GetRepHi(d);
131   uint32_t rep_lo = time_internal::GetRepLo(d);
132   if (rep_hi < 0) {
133     ++rep_hi;
134     rep_hi = -rep_hi;
135     rep_lo = kTicksPerSecond - rep_lo;
136   }
137   uint128 u128 = static_cast<uint64_t>(rep_hi);
138   u128 *= static_cast<uint64_t>(kTicksPerSecond);
139   u128 += rep_lo;
140   return u128;
141 }
142 
143 // Breaks a uint128 of ticks into a Duration.
MakeDurationFromU128(uint128 u128,bool is_neg)144 inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
145   int64_t rep_hi;
146   uint32_t rep_lo;
147   const uint64_t h64 = Uint128High64(u128);
148   const uint64_t l64 = Uint128Low64(u128);
149   if (h64 == 0) {  // fastpath
150     const uint64_t hi = l64 / kTicksPerSecond;
151     rep_hi = static_cast<int64_t>(hi);
152     rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
153   } else {
154     // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
155     // Any positive tick count whose high 64 bits are >= kMaxRepHi64
156     // is not representable as a Duration.  A negative tick count can
157     // have its high 64 bits == kMaxRepHi64 but only when the low 64
158     // bits are all zero, otherwise it is not representable either.
159     const uint64_t kMaxRepHi64 = 0x77359400UL;
160     if (h64 >= kMaxRepHi64) {
161       if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
162         // Avoid trying to represent -kint64min below.
163         return time_internal::MakeDuration(kint64min);
164       }
165       return is_neg ? -InfiniteDuration() : InfiniteDuration();
166     }
167     const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
168     const uint128 hi = u128 / kTicksPerSecond128;
169     rep_hi = static_cast<int64_t>(Uint128Low64(hi));
170     rep_lo =
171         static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
172   }
173   if (is_neg) {
174     rep_hi = -rep_hi;
175     if (rep_lo != 0) {
176       --rep_hi;
177       rep_lo = kTicksPerSecond - rep_lo;
178     }
179   }
180   return time_internal::MakeDuration(rep_hi, rep_lo);
181 }
182 
183 // Convert between int64_t and uint64_t, preserving representation. This
184 // allows us to do arithmetic in the unsigned domain, where overflow has
185 // well-defined behavior. See operator+=() and operator-=().
186 //
187 // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
188 // name intN_t designates a signed integer type with width N, no padding
189 // bits, and a two's complement representation." So, we can convert to
190 // and from the corresponding uint64_t value using a bit cast.
EncodeTwosComp(int64_t v)191 inline uint64_t EncodeTwosComp(int64_t v) {
192   return absl::bit_cast<uint64_t>(v);
193 }
DecodeTwosComp(uint64_t v)194 inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
195 
196 // Note: The overflow detection in this function is done using greater/less *or
197 // equal* because kint64max/min is too large to be represented exactly in a
198 // double (which only has 53 bits of precision). In order to avoid assigning to
199 // rep->hi a double value that is too large for an int64_t (and therefore is
200 // undefined), we must consider computations that equal kint64max/min as a
201 // double as overflow cases.
SafeAddRepHi(double a_hi,double b_hi,Duration * d)202 inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
203   double c = a_hi + b_hi;
204   if (c >= static_cast<double>(kint64max)) {
205     *d = InfiniteDuration();
206     return false;
207   }
208   if (c <= static_cast<double>(kint64min)) {
209     *d = -InfiniteDuration();
210     return false;
211   }
212   *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
213   return true;
214 }
215 
216 // A functor that's similar to std::multiplies<T>, except this returns the max
217 // T value instead of overflowing. This is only defined for uint128.
218 template <typename Ignored>
219 struct SafeMultiply {
operator ()absl::__anonf9cf0f3e0111::SafeMultiply220   uint128 operator()(uint128 a, uint128 b) const {
221     // b hi is always zero because it originated as an int64_t.
222     assert(Uint128High64(b) == 0);
223     // Fastpath to avoid the expensive overflow check with division.
224     if (Uint128High64(a) == 0) {
225       return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
226                  ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
227                  : a * b;
228     }
229     return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
230   }
231 };
232 
233 // Scales (i.e., multiplies or divides, depending on the Operation template)
234 // the Duration d by the int64_t r.
235 template <template <typename> class Operation>
ScaleFixed(Duration d,int64_t r)236 inline Duration ScaleFixed(Duration d, int64_t r) {
237   const uint128 a = MakeU128Ticks(d);
238   const uint128 b = MakeU128(r);
239   const uint128 q = Operation<uint128>()(a, b);
240   const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
241   return MakeDurationFromU128(q, is_neg);
242 }
243 
244 // Scales (i.e., multiplies or divides, depending on the Operation template)
245 // the Duration d by the double r.
246 template <template <typename> class Operation>
ScaleDouble(Duration d,double r)247 inline Duration ScaleDouble(Duration d, double r) {
248   Operation<double> op;
249   double hi_doub = op(time_internal::GetRepHi(d), r);
250   double lo_doub = op(time_internal::GetRepLo(d), r);
251 
252   double hi_int = 0;
253   double hi_frac = std::modf(hi_doub, &hi_int);
254 
255   // Moves hi's fractional bits to lo.
256   lo_doub /= kTicksPerSecond;
257   lo_doub += hi_frac;
258 
259   double lo_int = 0;
260   double lo_frac = std::modf(lo_doub, &lo_int);
261 
262   // Rolls lo into hi if necessary.
263   int64_t lo64 = Round(lo_frac * kTicksPerSecond);
264 
265   Duration ans;
266   if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
267   int64_t hi64 = time_internal::GetRepHi(ans);
268   if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
269   hi64 = time_internal::GetRepHi(ans);
270   lo64 %= kTicksPerSecond;
271   NormalizeTicks(&hi64, &lo64);
272   return time_internal::MakeDuration(hi64, lo64);
273 }
274 
275 // Tries to divide num by den as fast as possible by looking for common, easy
276 // cases. If the division was done, the quotient is in *q and the remainder is
277 // in *rem and true will be returned.
IDivFastPath(const Duration num,const Duration den,int64_t * q,Duration * rem)278 inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
279                          Duration* rem) {
280   // Bail if num or den is an infinity.
281   if (time_internal::IsInfiniteDuration(num) ||
282       time_internal::IsInfiniteDuration(den))
283     return false;
284 
285   int64_t num_hi = time_internal::GetRepHi(num);
286   uint32_t num_lo = time_internal::GetRepLo(num);
287   int64_t den_hi = time_internal::GetRepHi(den);
288   uint32_t den_lo = time_internal::GetRepLo(den);
289 
290   if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
291     // Dividing by 1ns
292     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
293       *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
294       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
295       return true;
296     }
297   } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
298     // Dividing by 100ns (common when converting to Universal time)
299     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
300       *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
301       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
302       return true;
303     }
304   } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
305     // Dividing by 1us
306     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
307       *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
308       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
309       return true;
310     }
311   } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
312     // Dividing by 1ms
313     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
314       *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
315       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
316       return true;
317     }
318   } else if (den_hi > 0 && den_lo == 0) {
319     // Dividing by positive multiple of 1s
320     if (num_hi >= 0) {
321       if (den_hi == 1) {
322         *q = num_hi;
323         *rem = time_internal::MakeDuration(0, num_lo);
324         return true;
325       }
326       *q = num_hi / den_hi;
327       *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
328       return true;
329     }
330     if (num_lo != 0) {
331       num_hi += 1;
332     }
333     int64_t quotient = num_hi / den_hi;
334     int64_t rem_sec = num_hi % den_hi;
335     if (rem_sec > 0) {
336       rem_sec -= den_hi;
337       quotient += 1;
338     }
339     if (num_lo != 0) {
340       rem_sec -= 1;
341     }
342     *q = quotient;
343     *rem = time_internal::MakeDuration(rem_sec, num_lo);
344     return true;
345   }
346 
347   return false;
348 }
349 
350 }  // namespace
351 
352 namespace time_internal {
353 
354 // The 'satq' argument indicates whether the quotient should saturate at the
355 // bounds of int64_t.  If it does saturate, the difference will spill over to
356 // the remainder.  If it does not saturate, the remainder remain accurate,
357 // but the returned quotient will over/underflow int64_t and should not be used.
IDivDuration(bool satq,const Duration num,const Duration den,Duration * rem)358 int64_t IDivDuration(bool satq, const Duration num, const Duration den,
359                    Duration* rem) {
360   int64_t q = 0;
361   if (IDivFastPath(num, den, &q, rem)) {
362     return q;
363   }
364 
365   const bool num_neg = num < ZeroDuration();
366   const bool den_neg = den < ZeroDuration();
367   const bool quotient_neg = num_neg != den_neg;
368 
369   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
370     *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
371     return quotient_neg ? kint64min : kint64max;
372   }
373   if (time_internal::IsInfiniteDuration(den)) {
374     *rem = num;
375     return 0;
376   }
377 
378   const uint128 a = MakeU128Ticks(num);
379   const uint128 b = MakeU128Ticks(den);
380   uint128 quotient128 = a / b;
381 
382   if (satq) {
383     // Limits the quotient to the range of int64_t.
384     if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
385       quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
386                                  : uint128(static_cast<uint64_t>(kint64max));
387     }
388   }
389 
390   const uint128 remainder128 = a - quotient128 * b;
391   *rem = MakeDurationFromU128(remainder128, num_neg);
392 
393   if (!quotient_neg || quotient128 == 0) {
394     return Uint128Low64(quotient128) & kint64max;
395   }
396   // The quotient needs to be negated, but we need to carefully handle
397   // quotient128s with the top bit on.
398   return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
399 }
400 
401 }  // namespace time_internal
402 
403 //
404 // Additive operators.
405 //
406 
operator +=(Duration rhs)407 Duration& Duration::operator+=(Duration rhs) {
408   if (time_internal::IsInfiniteDuration(*this)) return *this;
409   if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
410   const int64_t orig_rep_hi = rep_hi_;
411   rep_hi_ =
412       DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
413   if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
414     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
415     rep_lo_ -= kTicksPerSecond;
416   }
417   rep_lo_ += rhs.rep_lo_;
418   if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
419     return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
420   }
421   return *this;
422 }
423 
operator -=(Duration rhs)424 Duration& Duration::operator-=(Duration rhs) {
425   if (time_internal::IsInfiniteDuration(*this)) return *this;
426   if (time_internal::IsInfiniteDuration(rhs)) {
427     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
428   }
429   const int64_t orig_rep_hi = rep_hi_;
430   rep_hi_ =
431       DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
432   if (rep_lo_ < rhs.rep_lo_) {
433     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
434     rep_lo_ += kTicksPerSecond;
435   }
436   rep_lo_ -= rhs.rep_lo_;
437   if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
438     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
439   }
440   return *this;
441 }
442 
443 //
444 // Multiplicative operators.
445 //
446 
operator *=(int64_t r)447 Duration& Duration::operator*=(int64_t r) {
448   if (time_internal::IsInfiniteDuration(*this)) {
449     const bool is_neg = (r < 0) != (rep_hi_ < 0);
450     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
451   }
452   return *this = ScaleFixed<SafeMultiply>(*this, r);
453 }
454 
operator *=(double r)455 Duration& Duration::operator*=(double r) {
456   if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
457     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
458     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
459   }
460   return *this = ScaleDouble<std::multiplies>(*this, r);
461 }
462 
operator /=(int64_t r)463 Duration& Duration::operator/=(int64_t r) {
464   if (time_internal::IsInfiniteDuration(*this) || r == 0) {
465     const bool is_neg = (r < 0) != (rep_hi_ < 0);
466     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
467   }
468   return *this = ScaleFixed<std::divides>(*this, r);
469 }
470 
operator /=(double r)471 Duration& Duration::operator/=(double r) {
472   if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
473     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
474     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
475   }
476   return *this = ScaleDouble<std::divides>(*this, r);
477 }
478 
operator %=(Duration rhs)479 Duration& Duration::operator%=(Duration rhs) {
480   time_internal::IDivDuration(false, *this, rhs, this);
481   return *this;
482 }
483 
FDivDuration(Duration num,Duration den)484 double FDivDuration(Duration num, Duration den) {
485   // Arithmetic with infinity is sticky.
486   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
487     return (num < ZeroDuration()) == (den < ZeroDuration())
488                ? std::numeric_limits<double>::infinity()
489                : -std::numeric_limits<double>::infinity();
490   }
491   if (time_internal::IsInfiniteDuration(den)) return 0.0;
492 
493   double a =
494       static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
495       time_internal::GetRepLo(num);
496   double b =
497       static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
498       time_internal::GetRepLo(den);
499   return a / b;
500 }
501 
502 //
503 // Trunc/Floor/Ceil.
504 //
505 
Trunc(Duration d,Duration unit)506 Duration Trunc(Duration d, Duration unit) {
507   return d - (d % unit);
508 }
509 
Floor(const Duration d,const Duration unit)510 Duration Floor(const Duration d, const Duration unit) {
511   const absl::Duration td = Trunc(d, unit);
512   return td <= d ? td : td - AbsDuration(unit);
513 }
514 
Ceil(const Duration d,const Duration unit)515 Duration Ceil(const Duration d, const Duration unit) {
516   const absl::Duration td = Trunc(d, unit);
517   return td >= d ? td : td + AbsDuration(unit);
518 }
519 
520 //
521 // Factory functions.
522 //
523 
DurationFromTimespec(timespec ts)524 Duration DurationFromTimespec(timespec ts) {
525   if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
526     int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
527     return time_internal::MakeDuration(ts.tv_sec, ticks);
528   }
529   return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
530 }
531 
DurationFromTimeval(timeval tv)532 Duration DurationFromTimeval(timeval tv) {
533   if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
534     int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
535     return time_internal::MakeDuration(tv.tv_sec, ticks);
536   }
537   return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
538 }
539 
540 //
541 // Conversion to other duration types.
542 //
543 
ToInt64Nanoseconds(Duration d)544 int64_t ToInt64Nanoseconds(Duration d) {
545   if (time_internal::GetRepHi(d) >= 0 &&
546       time_internal::GetRepHi(d) >> 33 == 0) {
547     return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
548            (time_internal::GetRepLo(d) / kTicksPerNanosecond);
549   }
550   return d / Nanoseconds(1);
551 }
ToInt64Microseconds(Duration d)552 int64_t ToInt64Microseconds(Duration d) {
553   if (time_internal::GetRepHi(d) >= 0 &&
554       time_internal::GetRepHi(d) >> 43 == 0) {
555     return (time_internal::GetRepHi(d) * 1000 * 1000) +
556            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
557   }
558   return d / Microseconds(1);
559 }
ToInt64Milliseconds(Duration d)560 int64_t ToInt64Milliseconds(Duration d) {
561   if (time_internal::GetRepHi(d) >= 0 &&
562       time_internal::GetRepHi(d) >> 53 == 0) {
563     return (time_internal::GetRepHi(d) * 1000) +
564            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
565   }
566   return d / Milliseconds(1);
567 }
ToInt64Seconds(Duration d)568 int64_t ToInt64Seconds(Duration d) {
569   int64_t hi = time_internal::GetRepHi(d);
570   if (time_internal::IsInfiniteDuration(d)) return hi;
571   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
572   return hi;
573 }
ToInt64Minutes(Duration d)574 int64_t ToInt64Minutes(Duration d) {
575   int64_t hi = time_internal::GetRepHi(d);
576   if (time_internal::IsInfiniteDuration(d)) return hi;
577   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
578   return hi / 60;
579 }
ToInt64Hours(Duration d)580 int64_t ToInt64Hours(Duration d) {
581   int64_t hi = time_internal::GetRepHi(d);
582   if (time_internal::IsInfiniteDuration(d)) return hi;
583   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
584   return hi / (60 * 60);
585 }
586 
ToDoubleNanoseconds(Duration d)587 double ToDoubleNanoseconds(Duration d) {
588   return FDivDuration(d, Nanoseconds(1));
589 }
ToDoubleMicroseconds(Duration d)590 double ToDoubleMicroseconds(Duration d) {
591   return FDivDuration(d, Microseconds(1));
592 }
ToDoubleMilliseconds(Duration d)593 double ToDoubleMilliseconds(Duration d) {
594   return FDivDuration(d, Milliseconds(1));
595 }
ToDoubleSeconds(Duration d)596 double ToDoubleSeconds(Duration d) {
597   return FDivDuration(d, Seconds(1));
598 }
ToDoubleMinutes(Duration d)599 double ToDoubleMinutes(Duration d) {
600   return FDivDuration(d, Minutes(1));
601 }
ToDoubleHours(Duration d)602 double ToDoubleHours(Duration d) {
603   return FDivDuration(d, Hours(1));
604 }
605 
ToTimespec(Duration d)606 timespec ToTimespec(Duration d) {
607   timespec ts;
608   if (!time_internal::IsInfiniteDuration(d)) {
609     int64_t rep_hi = time_internal::GetRepHi(d);
610     uint32_t rep_lo = time_internal::GetRepLo(d);
611     if (rep_hi < 0) {
612       // Tweak the fields so that unsigned division of rep_lo
613       // maps to truncation (towards zero) for the timespec.
614       rep_lo += kTicksPerNanosecond - 1;
615       if (rep_lo >= kTicksPerSecond) {
616         rep_hi += 1;
617         rep_lo -= kTicksPerSecond;
618       }
619     }
620     ts.tv_sec = rep_hi;
621     if (ts.tv_sec == rep_hi) {  // no time_t narrowing
622       ts.tv_nsec = rep_lo / kTicksPerNanosecond;
623       return ts;
624     }
625   }
626   if (d >= ZeroDuration()) {
627     ts.tv_sec = std::numeric_limits<time_t>::max();
628     ts.tv_nsec = 1000 * 1000 * 1000 - 1;
629   } else {
630     ts.tv_sec = std::numeric_limits<time_t>::min();
631     ts.tv_nsec = 0;
632   }
633   return ts;
634 }
635 
ToTimeval(Duration d)636 timeval ToTimeval(Duration d) {
637   timeval tv;
638   timespec ts = ToTimespec(d);
639   if (ts.tv_sec < 0) {
640     // Tweak the fields so that positive division of tv_nsec
641     // maps to truncation (towards zero) for the timeval.
642     ts.tv_nsec += 1000 - 1;
643     if (ts.tv_nsec >= 1000 * 1000 * 1000) {
644       ts.tv_sec += 1;
645       ts.tv_nsec -= 1000 * 1000 * 1000;
646     }
647   }
648   tv.tv_sec = ts.tv_sec;
649   if (tv.tv_sec != ts.tv_sec) {  // narrowing
650     if (ts.tv_sec < 0) {
651       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
652       tv.tv_usec = 0;
653     } else {
654       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
655       tv.tv_usec = 1000 * 1000 - 1;
656     }
657     return tv;
658   }
659   tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t
660   return tv;
661 }
662 
ToChronoNanoseconds(Duration d)663 std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
664   return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
665 }
ToChronoMicroseconds(Duration d)666 std::chrono::microseconds ToChronoMicroseconds(Duration d) {
667   return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
668 }
ToChronoMilliseconds(Duration d)669 std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
670   return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
671 }
ToChronoSeconds(Duration d)672 std::chrono::seconds ToChronoSeconds(Duration d) {
673   return time_internal::ToChronoDuration<std::chrono::seconds>(d);
674 }
ToChronoMinutes(Duration d)675 std::chrono::minutes ToChronoMinutes(Duration d) {
676   return time_internal::ToChronoDuration<std::chrono::minutes>(d);
677 }
ToChronoHours(Duration d)678 std::chrono::hours ToChronoHours(Duration d) {
679   return time_internal::ToChronoDuration<std::chrono::hours>(d);
680 }
681 
682 //
683 // To/From string formatting.
684 //
685 
686 namespace {
687 
688 // Formats a positive 64-bit integer in the given field width.  Note that
689 // it is up to the caller of Format64() to ensure that there is sufficient
690 // space before ep to hold the conversion.
Format64(char * ep,int width,int64_t v)691 char* Format64(char* ep, int width, int64_t v) {
692   do {
693     --width;
694     *--ep = '0' + (v % 10);  // contiguous digits
695   } while (v /= 10);
696   while (--width >= 0) *--ep = '0';  // zero pad
697   return ep;
698 }
699 
700 // Helpers for FormatDuration() that format 'n' and append it to 'out'
701 // followed by the given 'unit'.  If 'n' formats to "0", nothing is
702 // appended (not even the unit).
703 
704 // A type that encapsulates how to display a value of a particular unit. For
705 // values that are displayed with fractional parts, the precision indicates
706 // where to round the value. The precision varies with the display unit because
707 // a Duration can hold only quarters of a nanosecond, so displaying information
708 // beyond that is just noise.
709 //
710 // For example, a microsecond value of 42.00025xxxxx should not display beyond 5
711 // fractional digits, because it is in the noise of what a Duration can
712 // represent.
713 struct DisplayUnit {
714   absl::string_view abbr;
715   int prec;
716   double pow10;
717 };
718 ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
719 ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
720 ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
721 ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11};
722 ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0};  // prec ignored
723 ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1,
724                                                   0.0};  // prec ignored
725 
AppendNumberUnit(std::string * out,int64_t n,DisplayUnit unit)726 void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
727   char buf[sizeof("2562047788015216")];  // hours in max duration
728   char* const ep = buf + sizeof(buf);
729   char* bp = Format64(ep, 0, n);
730   if (*bp != '0' || bp + 1 != ep) {
731     out->append(bp, ep - bp);
732     out->append(unit.abbr.data(), unit.abbr.size());
733   }
734 }
735 
736 // Note: unit.prec is limited to double's digits10 value (typically 15) so it
737 // always fits in buf[].
AppendNumberUnit(std::string * out,double n,DisplayUnit unit)738 void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
739   constexpr int kBufferSize = std::numeric_limits<double>::digits10;
740   const int prec = std::min(kBufferSize, unit.prec);
741   char buf[kBufferSize];  // also large enough to hold integer part
742   char* ep = buf + sizeof(buf);
743   double d = 0;
744   int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
745   int64_t int_part = d;
746   if (int_part != 0 || frac_part != 0) {
747     char* bp = Format64(ep, 0, int_part);  // always < 1000
748     out->append(bp, ep - bp);
749     if (frac_part != 0) {
750       out->push_back('.');
751       bp = Format64(ep, prec, frac_part);
752       while (ep[-1] == '0') --ep;
753       out->append(bp, ep - bp);
754     }
755     out->append(unit.abbr.data(), unit.abbr.size());
756   }
757 }
758 
759 }  // namespace
760 
761 // From Go's doc at https://golang.org/pkg/time/#Duration.String
762 //   [FormatDuration] returns a string representing the duration in the
763 //   form "72h3m0.5s". Leading zero units are omitted.  As a special
764 //   case, durations less than one second format use a smaller unit
765 //   (milli-, micro-, or nanoseconds) to ensure that the leading digit
766 //   is non-zero.  The zero duration formats as 0, with no unit.
FormatDuration(Duration d)767 std::string FormatDuration(Duration d) {
768   const Duration min_duration = Seconds(kint64min);
769   if (d == min_duration) {
770     // Avoid needing to negate kint64min by directly returning what the
771     // following code should produce in that case.
772     return "-2562047788015215h30m8s";
773   }
774   std::string s;
775   if (d < ZeroDuration()) {
776     s.append("-");
777     d = -d;
778   }
779   if (d == InfiniteDuration()) {
780     s.append("inf");
781   } else if (d < Seconds(1)) {
782     // Special case for durations with a magnitude < 1 second.  The duration
783     // is printed as a fraction of a single unit, e.g., "1.2ms".
784     if (d < Microseconds(1)) {
785       AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
786     } else if (d < Milliseconds(1)) {
787       AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
788     } else {
789       AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
790     }
791   } else {
792     AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
793     AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
794     AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
795   }
796   if (s.empty() || s == "-") {
797     s = "0";
798   }
799   return s;
800 }
801 
802 namespace {
803 
804 // A helper for ParseDuration() that parses a leading number from the given
805 // string and stores the result in *int_part/*frac_part/*frac_scale.  The
806 // given string pointer is modified to point to the first unconsumed char.
ConsumeDurationNumber(const char ** dpp,const char * ep,int64_t * int_part,int64_t * frac_part,int64_t * frac_scale)807 bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part,
808                            int64_t* frac_part, int64_t* frac_scale) {
809   *int_part = 0;
810   *frac_part = 0;
811   *frac_scale = 1;  // invariant: *frac_part < *frac_scale
812   const char* start = *dpp;
813   for (; *dpp != ep; *dpp += 1) {
814     const int d = **dpp - '0';  // contiguous digits
815     if (d < 0 || 10 <= d) break;
816 
817     if (*int_part > kint64max / 10) return false;
818     *int_part *= 10;
819     if (*int_part > kint64max - d) return false;
820     *int_part += d;
821   }
822   const bool int_part_empty = (*dpp == start);
823   if (*dpp == ep || **dpp != '.') return !int_part_empty;
824 
825   for (*dpp += 1; *dpp != ep; *dpp += 1) {
826     const int d = **dpp - '0';  // contiguous digits
827     if (d < 0 || 10 <= d) break;
828     if (*frac_scale <= kint64max / 10) {
829       *frac_part *= 10;
830       *frac_part += d;
831       *frac_scale *= 10;
832     }
833   }
834   return !int_part_empty || *frac_scale != 1;
835 }
836 
837 // A helper for ParseDuration() that parses a leading unit designator (e.g.,
838 // ns, us, ms, s, m, h) from the given string and stores the resulting unit
839 // in "*unit".  The given string pointer is modified to point to the first
840 // unconsumed char.
ConsumeDurationUnit(const char ** start,const char * end,Duration * unit)841 bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) {
842   size_t size = end - *start;
843   switch (size) {
844     case 0:
845       return false;
846     default:
847       switch (**start) {
848         case 'n':
849           if (*(*start + 1) == 's') {
850             *start += 2;
851             *unit = Nanoseconds(1);
852             return true;
853           }
854           break;
855         case 'u':
856           if (*(*start + 1) == 's') {
857             *start += 2;
858             *unit = Microseconds(1);
859             return true;
860           }
861           break;
862         case 'm':
863           if (*(*start + 1) == 's') {
864             *start += 2;
865             *unit = Milliseconds(1);
866             return true;
867           }
868           break;
869         default:
870           break;
871       }
872       ABSL_FALLTHROUGH_INTENDED;
873     case 1:
874       switch (**start) {
875         case 's':
876           *unit = Seconds(1);
877           *start += 1;
878           return true;
879         case 'm':
880           *unit = Minutes(1);
881           *start += 1;
882           return true;
883         case 'h':
884           *unit = Hours(1);
885           *start += 1;
886           return true;
887         default:
888           return false;
889       }
890   }
891 }
892 
893 }  // namespace
894 
895 // From Go's doc at https://golang.org/pkg/time/#ParseDuration
896 //   [ParseDuration] parses a duration string. A duration string is
897 //   a possibly signed sequence of decimal numbers, each with optional
898 //   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
899 //   Valid time units are "ns", "us" "ms", "s", "m", "h".
ParseDuration(absl::string_view dur_sv,Duration * d)900 bool ParseDuration(absl::string_view dur_sv, Duration* d) {
901   int sign = 1;
902   if (absl::ConsumePrefix(&dur_sv, "-")) {
903     sign = -1;
904   } else {
905     absl::ConsumePrefix(&dur_sv, "+");
906   }
907   if (dur_sv.empty()) return false;
908 
909   // Special case for a string of "0".
910   if (dur_sv == "0") {
911     *d = ZeroDuration();
912     return true;
913   }
914 
915   if (dur_sv == "inf") {
916     *d = sign * InfiniteDuration();
917     return true;
918   }
919 
920   const char* start = dur_sv.data();
921   const char* end = start + dur_sv.size();
922 
923   Duration dur;
924   while (start != end) {
925     int64_t int_part;
926     int64_t frac_part;
927     int64_t frac_scale;
928     Duration unit;
929     if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part,
930                                &frac_scale) ||
931         !ConsumeDurationUnit(&start, end, &unit)) {
932       return false;
933     }
934     if (int_part != 0) dur += sign * int_part * unit;
935     if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
936   }
937   *d = dur;
938   return true;
939 }
940 
AbslParseFlag(absl::string_view text,Duration * dst,std::string *)941 bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
942   return ParseDuration(text, dst);
943 }
944 
AbslUnparseFlag(Duration d)945 std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
ParseFlag(const std::string & text,Duration * dst,std::string *)946 bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
947   return ParseDuration(text, dst);
948 }
949 
UnparseFlag(Duration d)950 std::string UnparseFlag(Duration d) { return FormatDuration(d); }
951 
952 ABSL_NAMESPACE_END
953 }  // namespace absl
954