1 /* SPDX-License-Identifier: MIT */
2 // https://syzkaller.appspot.com/bug?id=5f5a44abb4cba056fe24255c4fcb7e7bbe13de7a
3 // autogenerated by syzkaller (https://github.com/google/syzkaller)
4
5 #include <dirent.h>
6 #include <endian.h>
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <pthread.h>
10 #include <signal.h>
11 #include <stdarg.h>
12 #include <stdbool.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <sys/mman.h>
18 #include <sys/prctl.h>
19 #include <sys/stat.h>
20 #include <sys/syscall.h>
21 #include <sys/types.h>
22 #include <sys/wait.h>
23 #include <time.h>
24 #include <unistd.h>
25
26 #include <linux/futex.h>
27
28 #ifdef __NR_futex
29
sleep_ms(uint64_t ms)30 static void sleep_ms(uint64_t ms)
31 {
32 usleep(ms * 1000);
33 }
34
current_time_ms(void)35 static uint64_t current_time_ms(void)
36 {
37 struct timespec ts;
38 if (clock_gettime(CLOCK_MONOTONIC, &ts))
39 exit(1);
40 return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
41 }
42
thread_start(void * (* fn)(void *),void * arg)43 static void thread_start(void* (*fn)(void*), void* arg)
44 {
45 pthread_t th;
46 pthread_attr_t attr;
47 pthread_attr_init(&attr);
48 pthread_attr_setstacksize(&attr, 128 << 10);
49 int i = 0;
50 for (; i < 100; i++) {
51 if (pthread_create(&th, &attr, fn, arg) == 0) {
52 pthread_attr_destroy(&attr);
53 return;
54 }
55 if (errno == EAGAIN) {
56 usleep(50);
57 continue;
58 }
59 break;
60 }
61 exit(1);
62 }
63
64 typedef struct {
65 int state;
66 } event_t;
67
event_init(event_t * ev)68 static void event_init(event_t* ev)
69 {
70 ev->state = 0;
71 }
72
event_reset(event_t * ev)73 static void event_reset(event_t* ev)
74 {
75 ev->state = 0;
76 }
77
event_set(event_t * ev)78 static void event_set(event_t* ev)
79 {
80 if (ev->state)
81 exit(1);
82 __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
83 syscall(__NR_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000);
84 }
85
event_wait(event_t * ev)86 static void event_wait(event_t* ev)
87 {
88 while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
89 syscall(__NR_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0);
90 }
91
event_isset(event_t * ev)92 static int event_isset(event_t* ev)
93 {
94 return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
95 }
96
event_timedwait(event_t * ev,uint64_t timeout)97 static int event_timedwait(event_t* ev, uint64_t timeout)
98 {
99 uint64_t start = current_time_ms();
100 uint64_t now = start;
101 for (;;) {
102 uint64_t remain = timeout - (now - start);
103 struct timespec ts;
104 ts.tv_sec = remain / 1000;
105 ts.tv_nsec = (remain % 1000) * 1000 * 1000;
106 syscall(__NR_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts);
107 if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
108 return 1;
109 now = current_time_ms();
110 if (now - start > timeout)
111 return 0;
112 }
113 }
114
115 #define SIZEOF_IO_URING_SQE 64
116 #define SIZEOF_IO_URING_CQE 16
117 #define SQ_HEAD_OFFSET 0
118 #define SQ_TAIL_OFFSET 64
119 #define SQ_RING_MASK_OFFSET 256
120 #define SQ_RING_ENTRIES_OFFSET 264
121 #define SQ_FLAGS_OFFSET 276
122 #define SQ_DROPPED_OFFSET 272
123 #define CQ_HEAD_OFFSET 128
124 #define CQ_TAIL_OFFSET 192
125 #define CQ_RING_MASK_OFFSET 260
126 #define CQ_RING_ENTRIES_OFFSET 268
127 #define CQ_RING_OVERFLOW_OFFSET 284
128 #define CQ_FLAGS_OFFSET 280
129 #define CQ_CQES_OFFSET 320
130
131 struct io_sqring_offsets {
132 uint32_t head;
133 uint32_t tail;
134 uint32_t ring_mask;
135 uint32_t ring_entries;
136 uint32_t flags;
137 uint32_t dropped;
138 uint32_t array;
139 uint32_t resv1;
140 uint64_t resv2;
141 };
142
143 struct io_cqring_offsets {
144 uint32_t head;
145 uint32_t tail;
146 uint32_t ring_mask;
147 uint32_t ring_entries;
148 uint32_t overflow;
149 uint32_t cqes;
150 uint64_t resv[2];
151 };
152
153 struct io_uring_params {
154 uint32_t sq_entries;
155 uint32_t cq_entries;
156 uint32_t flags;
157 uint32_t sq_thread_cpu;
158 uint32_t sq_thread_idle;
159 uint32_t features;
160 uint32_t resv[4];
161 struct io_sqring_offsets sq_off;
162 struct io_cqring_offsets cq_off;
163 };
164
165 #define IORING_OFF_SQ_RING 0
166 #define IORING_OFF_SQES 0x10000000ULL
167
168 #define sys_io_uring_setup 425
syz_io_uring_setup(volatile long a0,volatile long a1,volatile long a2,volatile long a3,volatile long a4,volatile long a5)169 static long syz_io_uring_setup(volatile long a0, volatile long a1,
170 volatile long a2, volatile long a3,
171 volatile long a4, volatile long a5)
172 {
173 uint32_t entries = (uint32_t)a0;
174 struct io_uring_params* setup_params = (struct io_uring_params*)a1;
175 void* vma1 = (void*)a2;
176 void* vma2 = (void*)a3;
177 void** ring_ptr_out = (void**)a4;
178 void** sqes_ptr_out = (void**)a5;
179 uint32_t fd_io_uring = syscall(sys_io_uring_setup, entries, setup_params);
180 uint32_t sq_ring_sz =
181 setup_params->sq_off.array + setup_params->sq_entries * sizeof(uint32_t);
182 uint32_t cq_ring_sz = setup_params->cq_off.cqes +
183 setup_params->cq_entries * SIZEOF_IO_URING_CQE;
184 uint32_t ring_sz = sq_ring_sz > cq_ring_sz ? sq_ring_sz : cq_ring_sz;
185 *ring_ptr_out = mmap(vma1, ring_sz, PROT_READ | PROT_WRITE,
186 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd_io_uring,
187 IORING_OFF_SQ_RING);
188 uint32_t sqes_sz = setup_params->sq_entries * SIZEOF_IO_URING_SQE;
189 *sqes_ptr_out =
190 mmap(vma2, sqes_sz, PROT_READ | PROT_WRITE,
191 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd_io_uring, IORING_OFF_SQES);
192 return fd_io_uring;
193 }
194
syz_io_uring_submit(volatile long a0,volatile long a1,volatile long a2,volatile long a3)195 static long syz_io_uring_submit(volatile long a0, volatile long a1,
196 volatile long a2, volatile long a3)
197 {
198 char* ring_ptr = (char*)a0;
199 char* sqes_ptr = (char*)a1;
200 char* sqe = (char*)a2;
201 uint32_t sqes_index = (uint32_t)a3;
202 uint32_t sq_ring_entries = *(uint32_t*)(ring_ptr + SQ_RING_ENTRIES_OFFSET);
203 uint32_t cq_ring_entries = *(uint32_t*)(ring_ptr + CQ_RING_ENTRIES_OFFSET);
204 uint32_t sq_array_off =
205 (CQ_CQES_OFFSET + cq_ring_entries * SIZEOF_IO_URING_CQE + 63) & ~63;
206 if (sq_ring_entries)
207 sqes_index %= sq_ring_entries;
208 char* sqe_dest = sqes_ptr + sqes_index * SIZEOF_IO_URING_SQE;
209 memcpy(sqe_dest, sqe, SIZEOF_IO_URING_SQE);
210 uint32_t sq_ring_mask = *(uint32_t*)(ring_ptr + SQ_RING_MASK_OFFSET);
211 uint32_t* sq_tail_ptr = (uint32_t*)(ring_ptr + SQ_TAIL_OFFSET);
212 uint32_t sq_tail = *sq_tail_ptr & sq_ring_mask;
213 uint32_t sq_tail_next = *sq_tail_ptr + 1;
214 uint32_t* sq_array = (uint32_t*)(ring_ptr + sq_array_off);
215 *(sq_array + sq_tail) = sqes_index;
216 __atomic_store_n(sq_tail_ptr, sq_tail_next, __ATOMIC_RELEASE);
217 return 0;
218 }
219
kill_and_wait(int pid,int * status)220 static void kill_and_wait(int pid, int* status)
221 {
222 kill(-pid, SIGKILL);
223 kill(pid, SIGKILL);
224 for (int i = 0; i < 100; i++) {
225 if (waitpid(-1, status, WNOHANG | __WALL) == pid)
226 return;
227 usleep(1000);
228 }
229 DIR* dir = opendir("/sys/fs/fuse/connections");
230 if (dir) {
231 for (;;) {
232 struct dirent* ent = readdir(dir);
233 if (!ent)
234 break;
235 if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
236 continue;
237 char abort[300];
238 snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort",
239 ent->d_name);
240 int fd = open(abort, O_WRONLY);
241 if (fd == -1) {
242 continue;
243 }
244 if (write(fd, abort, 1) < 0) {
245 }
246 close(fd);
247 }
248 closedir(dir);
249 } else {
250 }
251 while (waitpid(-1, status, __WALL) != pid) {
252 }
253 }
254
setup_test()255 static void setup_test()
256 {
257 prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
258 setpgrp();
259 }
260
261 struct thread_t {
262 int created, call;
263 event_t ready, done;
264 };
265
266 static struct thread_t threads[16];
267 static void execute_call(int call);
268 static int running;
269
thr(void * arg)270 static void* thr(void* arg)
271 {
272 struct thread_t* th = (struct thread_t*)arg;
273 for (;;) {
274 event_wait(&th->ready);
275 event_reset(&th->ready);
276 execute_call(th->call);
277 __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED);
278 event_set(&th->done);
279 }
280 return 0;
281 }
282
execute_one(void)283 static void execute_one(void)
284 {
285 int i, call, thread;
286 for (call = 0; call < 4; call++) {
287 for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0]));
288 thread++) {
289 struct thread_t* th = &threads[thread];
290 if (!th->created) {
291 th->created = 1;
292 event_init(&th->ready);
293 event_init(&th->done);
294 event_set(&th->done);
295 thread_start(thr, th);
296 }
297 if (!event_isset(&th->done))
298 continue;
299 event_reset(&th->done);
300 th->call = call;
301 __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED);
302 event_set(&th->ready);
303 event_timedwait(&th->done, 50);
304 break;
305 }
306 }
307 for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++)
308 sleep_ms(1);
309 }
310
311 static void execute_one(void);
312
313 #define WAIT_FLAGS __WALL
314
loop(void)315 static void loop(void)
316 {
317 int iter = 0;
318 for (; iter < 5000; iter++) {
319 int pid = fork();
320 if (pid < 0)
321 exit(1);
322 if (pid == 0) {
323 setup_test();
324 execute_one();
325 exit(0);
326 }
327 int status = 0;
328 uint64_t start = current_time_ms();
329 for (;;) {
330 if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
331 break;
332 sleep_ms(1);
333 if (current_time_ms() - start < 5000)
334 continue;
335 kill_and_wait(pid, &status);
336 break;
337 }
338 }
339 }
340
341 #ifndef __NR_io_uring_enter
342 #define __NR_io_uring_enter 426
343 #endif
344
345 uint64_t r[4] = {0xffffffffffffffff, 0xffffffffffffffff, 0x0, 0x0};
346
execute_call(int call)347 void execute_call(int call)
348 {
349 intptr_t res = 0;
350 switch (call) {
351 case 0:
352 *(uint64_t*)0x200000c0 = 0;
353 res = syscall(__NR_signalfd4, -1, 0x200000c0ul, 8ul, 0ul);
354 if (res != -1)
355 r[0] = res;
356 break;
357 case 1:
358 *(uint32_t*)0x20000a84 = 0;
359 *(uint32_t*)0x20000a88 = 0;
360 *(uint32_t*)0x20000a8c = 0;
361 *(uint32_t*)0x20000a90 = 0;
362 *(uint32_t*)0x20000a98 = -1;
363 memset((void*)0x20000a9c, 0, 12);
364 res = -1;
365 res = syz_io_uring_setup(0x87, 0x20000a80, 0x206d6000, 0x206d7000,
366 0x20000000, 0x20000040);
367 if (res != -1) {
368 r[1] = res;
369 r[2] = *(uint64_t*)0x20000000;
370 r[3] = *(uint64_t*)0x20000040;
371 }
372 break;
373 case 2:
374 *(uint8_t*)0x20002240 = 6;
375 *(uint8_t*)0x20002241 = 0;
376 *(uint16_t*)0x20002242 = 0;
377 *(uint32_t*)0x20002244 = r[0];
378 *(uint64_t*)0x20002248 = 0;
379 *(uint64_t*)0x20002250 = 0;
380 *(uint32_t*)0x20002258 = 0;
381 *(uint16_t*)0x2000225c = 0;
382 *(uint16_t*)0x2000225e = 0;
383 *(uint64_t*)0x20002260 = 0;
384 *(uint16_t*)0x20002268 = 0;
385 *(uint16_t*)0x2000226a = 0;
386 memset((void*)0x2000226c, 0, 20);
387 syz_io_uring_submit(r[2], r[3], 0x20002240, 0);
388 break;
389 case 3:
390 syscall(__NR_io_uring_enter, r[1], 0x1523a, 0, 0ul, 0ul, 0xaul);
391 break;
392 }
393 }
394
main(int argc,char * argv[])395 int main(int argc, char *argv[])
396 {
397 void *ret;
398
399 #if !defined(__i386) && !defined(__x86_64__)
400 return 0;
401 #endif
402
403 if (argc > 1)
404 return 0;
405
406 ret = mmap((void *)0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
407 if (ret == MAP_FAILED)
408 return 0;
409 ret = mmap((void *)0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul);
410 if (ret == MAP_FAILED)
411 return 0;
412 ret = mmap((void *)0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
413 if (ret == MAP_FAILED)
414 return 0;
415 loop();
416 return 0;
417 }
418
419 #else /* __NR_futex */
420
main(int argc,char * argv[])421 int main(int argc, char *argv[])
422 {
423 return 0;
424 }
425
426 #endif /* __NR_futex */
427