• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A memslot-related performance benchmark.
4  *
5  * Copyright (C) 2021 Oracle and/or its affiliates.
6  *
7  * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
8  */
9 #include <pthread.h>
10 #include <sched.h>
11 #include <semaphore.h>
12 #include <stdatomic.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/mman.h>
19 #include <time.h>
20 #include <unistd.h>
21 
22 #include <linux/compiler.h>
23 
24 #include <test_util.h>
25 #include <kvm_util.h>
26 #include <processor.h>
27 
28 #define VCPU_ID 0
29 
30 #define MEM_SIZE		((512U << 20) + 4096)
31 #define MEM_SIZE_PAGES		(MEM_SIZE / 4096)
32 #define MEM_GPA		0x10000000UL
33 #define MEM_AUX_GPA		MEM_GPA
34 #define MEM_SYNC_GPA		MEM_AUX_GPA
35 #define MEM_TEST_GPA		(MEM_AUX_GPA + 4096)
36 #define MEM_TEST_SIZE		(MEM_SIZE - 4096)
37 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
38 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
39 
40 /*
41  * 32 MiB is max size that gets well over 100 iterations on 509 slots.
42  * Considering that each slot needs to have at least one page up to
43  * 8194 slots in use can then be tested (although with slightly
44  * limited resolution).
45  */
46 #define MEM_SIZE_MAP		((32U << 20) + 4096)
47 #define MEM_SIZE_MAP_PAGES	(MEM_SIZE_MAP / 4096)
48 #define MEM_TEST_MAP_SIZE	(MEM_SIZE_MAP - 4096)
49 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
50 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
51 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
52 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
53 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
54 
55 /*
56  * 128 MiB is min size that fills 32k slots with at least one page in each
57  * while at the same time gets 100+ iterations in such test
58  */
59 #define MEM_TEST_UNMAP_SIZE		(128U << 20)
60 #define MEM_TEST_UNMAP_SIZE_PAGES	(MEM_TEST_UNMAP_SIZE / 4096)
61 /* 2 MiB chunk size like a typical huge page */
62 #define MEM_TEST_UNMAP_CHUNK_PAGES	(2U << (20 - 12))
63 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
64 	      "invalid unmap test region size");
65 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
66 	      "invalid unmap test region size");
67 static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
68 	      (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
69 	      "invalid unmap test region size");
70 
71 /*
72  * For the move active test the middle of the test area is placed on
73  * a memslot boundary: half lies in the memslot being moved, half in
74  * other memslot(s).
75  *
76  * When running this test with 32k memslots (32764, really) each memslot
77  * contains 4 pages.
78  * The last one additionally contains the remaining 21 pages of memory,
79  * for the total size of 25 pages.
80  * Hence, the maximum size here is 50 pages.
81  */
82 #define MEM_TEST_MOVE_SIZE_PAGES	(50)
83 #define MEM_TEST_MOVE_SIZE		(MEM_TEST_MOVE_SIZE_PAGES * 4096)
84 #define MEM_TEST_MOVE_GPA_DEST		(MEM_GPA + MEM_SIZE)
85 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
86 	      "invalid move test region size");
87 
88 #define MEM_TEST_VAL_1 0x1122334455667788
89 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
90 
91 struct vm_data {
92 	struct kvm_vm *vm;
93 	pthread_t vcpu_thread;
94 	uint32_t nslots;
95 	uint64_t npages;
96 	uint64_t pages_per_slot;
97 	void **hva_slots;
98 	bool mmio_ok;
99 	uint64_t mmio_gpa_min;
100 	uint64_t mmio_gpa_max;
101 };
102 
103 struct sync_area {
104 	atomic_bool start_flag;
105 	atomic_bool exit_flag;
106 	atomic_bool sync_flag;
107 	void *move_area_ptr;
108 };
109 
110 /*
111  * Technically, we need also for the atomic bool to be address-free, which
112  * is recommended, but not strictly required, by C11 for lockless
113  * implementations.
114  * However, in practice both GCC and Clang fulfill this requirement on
115  * all KVM-supported platforms.
116  */
117 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
118 
119 static sem_t vcpu_ready;
120 
121 static bool map_unmap_verify;
122 
123 static bool verbose;
124 #define pr_info_v(...)				\
125 	do {					\
126 		if (verbose)			\
127 			pr_info(__VA_ARGS__);	\
128 	} while (0)
129 
check_mmio_access(struct vm_data * vm,struct kvm_run * run)130 static void check_mmio_access(struct vm_data *vm, struct kvm_run *run)
131 {
132 	TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit");
133 	TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
134 	TEST_ASSERT(run->mmio.len == 8,
135 		    "Unexpected exit mmio size = %u", run->mmio.len);
136 	TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min &&
137 		    run->mmio.phys_addr <= vm->mmio_gpa_max,
138 		    "Unexpected exit mmio address = 0x%llx",
139 		    run->mmio.phys_addr);
140 }
141 
vcpu_worker(void * data)142 static void *vcpu_worker(void *data)
143 {
144 	struct vm_data *vm = data;
145 	struct kvm_run *run;
146 	struct ucall uc;
147 
148 	run = vcpu_state(vm->vm, VCPU_ID);
149 	while (1) {
150 		vcpu_run(vm->vm, VCPU_ID);
151 
152 		switch (get_ucall(vm->vm, VCPU_ID, &uc)) {
153 		case UCALL_SYNC:
154 			TEST_ASSERT(uc.args[1] == 0,
155 				"Unexpected sync ucall, got %lx",
156 				(ulong)uc.args[1]);
157 			sem_post(&vcpu_ready);
158 			continue;
159 		case UCALL_NONE:
160 			if (run->exit_reason == KVM_EXIT_MMIO)
161 				check_mmio_access(vm, run);
162 			else
163 				goto done;
164 			break;
165 		case UCALL_ABORT:
166 			TEST_FAIL("%s at %s:%ld, val = %lu",
167 					(const char *)uc.args[0],
168 					__FILE__, uc.args[1], uc.args[2]);
169 			break;
170 		case UCALL_DONE:
171 			goto done;
172 		default:
173 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
174 		}
175 	}
176 
177 done:
178 	return NULL;
179 }
180 
wait_for_vcpu(void)181 static void wait_for_vcpu(void)
182 {
183 	struct timespec ts;
184 
185 	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
186 		    "clock_gettime() failed: %d\n", errno);
187 
188 	ts.tv_sec += 2;
189 	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
190 		    "sem_timedwait() failed: %d\n", errno);
191 }
192 
vm_gpa2hva(struct vm_data * data,uint64_t gpa,uint64_t * rempages)193 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
194 {
195 	uint64_t gpage, pgoffs;
196 	uint32_t slot, slotoffs;
197 	void *base;
198 
199 	TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
200 	TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
201 		    "Too high gpa to translate");
202 	gpa -= MEM_GPA;
203 
204 	gpage = gpa / 4096;
205 	pgoffs = gpa % 4096;
206 	slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
207 	slotoffs = gpage - (slot * data->pages_per_slot);
208 
209 	if (rempages) {
210 		uint64_t slotpages;
211 
212 		if (slot == data->nslots - 1)
213 			slotpages = data->npages - slot * data->pages_per_slot;
214 		else
215 			slotpages = data->pages_per_slot;
216 
217 		TEST_ASSERT(!pgoffs,
218 			    "Asking for remaining pages in slot but gpa not page aligned");
219 		*rempages = slotpages - slotoffs;
220 	}
221 
222 	base = data->hva_slots[slot];
223 	return (uint8_t *)base + slotoffs * 4096 + pgoffs;
224 }
225 
vm_slot2gpa(struct vm_data * data,uint32_t slot)226 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
227 {
228 	TEST_ASSERT(slot < data->nslots, "Too high slot number");
229 
230 	return MEM_GPA + slot * data->pages_per_slot * 4096;
231 }
232 
alloc_vm(void)233 static struct vm_data *alloc_vm(void)
234 {
235 	struct vm_data *data;
236 
237 	data = malloc(sizeof(*data));
238 	TEST_ASSERT(data, "malloc(vmdata) failed");
239 
240 	data->vm = NULL;
241 	data->hva_slots = NULL;
242 
243 	return data;
244 }
245 
prepare_vm(struct vm_data * data,int nslots,uint64_t * maxslots,void * guest_code,uint64_t mempages,struct timespec * slot_runtime)246 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
247 		       void *guest_code, uint64_t mempages,
248 		       struct timespec *slot_runtime)
249 {
250 	uint32_t max_mem_slots;
251 	uint64_t rempages;
252 	uint64_t guest_addr;
253 	uint32_t slot;
254 	struct timespec tstart;
255 	struct sync_area *sync;
256 
257 	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
258 	TEST_ASSERT(max_mem_slots > 1,
259 		    "KVM_CAP_NR_MEMSLOTS should be greater than 1");
260 	TEST_ASSERT(nslots > 1 || nslots == -1,
261 		    "Slot count cap should be greater than 1");
262 	if (nslots != -1)
263 		max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
264 	pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
265 
266 	TEST_ASSERT(mempages > 1,
267 		    "Can't test without any memory");
268 
269 	data->npages = mempages;
270 	data->nslots = max_mem_slots - 1;
271 	data->pages_per_slot = mempages / data->nslots;
272 	if (!data->pages_per_slot) {
273 		*maxslots = mempages + 1;
274 		return false;
275 	}
276 
277 	rempages = mempages % data->nslots;
278 	data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
279 	TEST_ASSERT(data->hva_slots, "malloc() fail");
280 
281 	data->vm = vm_create_default(VCPU_ID, mempages, guest_code);
282 	ucall_init(data->vm, NULL);
283 
284 	pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
285 		max_mem_slots - 1, data->pages_per_slot, rempages);
286 
287 	clock_gettime(CLOCK_MONOTONIC, &tstart);
288 	for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
289 		uint64_t npages;
290 
291 		npages = data->pages_per_slot;
292 		if (slot == max_mem_slots - 1)
293 			npages += rempages;
294 
295 		vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
296 					    guest_addr, slot, npages,
297 					    0);
298 		guest_addr += npages * 4096;
299 	}
300 	*slot_runtime = timespec_elapsed(tstart);
301 
302 	for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
303 		uint64_t npages;
304 		uint64_t gpa;
305 
306 		npages = data->pages_per_slot;
307 		if (slot == max_mem_slots - 2)
308 			npages += rempages;
309 
310 		gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
311 					 slot + 1);
312 		TEST_ASSERT(gpa == guest_addr,
313 			    "vm_phy_pages_alloc() failed\n");
314 
315 		data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
316 		memset(data->hva_slots[slot], 0, npages * 4096);
317 
318 		guest_addr += npages * 4096;
319 	}
320 
321 	virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);
322 
323 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
324 	atomic_init(&sync->start_flag, false);
325 	atomic_init(&sync->exit_flag, false);
326 	atomic_init(&sync->sync_flag, false);
327 
328 	data->mmio_ok = false;
329 
330 	return true;
331 }
332 
launch_vm(struct vm_data * data)333 static void launch_vm(struct vm_data *data)
334 {
335 	pr_info_v("Launching the test VM\n");
336 
337 	pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
338 
339 	/* Ensure the guest thread is spun up. */
340 	wait_for_vcpu();
341 }
342 
free_vm(struct vm_data * data)343 static void free_vm(struct vm_data *data)
344 {
345 	kvm_vm_free(data->vm);
346 	free(data->hva_slots);
347 	free(data);
348 }
349 
wait_guest_exit(struct vm_data * data)350 static void wait_guest_exit(struct vm_data *data)
351 {
352 	pthread_join(data->vcpu_thread, NULL);
353 }
354 
let_guest_run(struct sync_area * sync)355 static void let_guest_run(struct sync_area *sync)
356 {
357 	atomic_store_explicit(&sync->start_flag, true, memory_order_release);
358 }
359 
guest_spin_until_start(void)360 static void guest_spin_until_start(void)
361 {
362 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
363 
364 	while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
365 		;
366 }
367 
make_guest_exit(struct sync_area * sync)368 static void make_guest_exit(struct sync_area *sync)
369 {
370 	atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
371 }
372 
_guest_should_exit(void)373 static bool _guest_should_exit(void)
374 {
375 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
376 
377 	return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
378 }
379 
380 #define guest_should_exit() unlikely(_guest_should_exit())
381 
382 /*
383  * noinline so we can easily see how much time the host spends waiting
384  * for the guest.
385  * For the same reason use alarm() instead of polling clock_gettime()
386  * to implement a wait timeout.
387  */
host_perform_sync(struct sync_area * sync)388 static noinline void host_perform_sync(struct sync_area *sync)
389 {
390 	alarm(2);
391 
392 	atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
393 	while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
394 		;
395 
396 	alarm(0);
397 }
398 
guest_perform_sync(void)399 static bool guest_perform_sync(void)
400 {
401 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
402 	bool expected;
403 
404 	do {
405 		if (guest_should_exit())
406 			return false;
407 
408 		expected = true;
409 	} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
410 							&expected, false,
411 							memory_order_acq_rel,
412 							memory_order_relaxed));
413 
414 	return true;
415 }
416 
guest_code_test_memslot_move(void)417 static void guest_code_test_memslot_move(void)
418 {
419 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
420 	uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
421 
422 	GUEST_SYNC(0);
423 
424 	guest_spin_until_start();
425 
426 	while (!guest_should_exit()) {
427 		uintptr_t ptr;
428 
429 		for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
430 		     ptr += 4096)
431 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
432 
433 		/*
434 		 * No host sync here since the MMIO exits are so expensive
435 		 * that the host would spend most of its time waiting for
436 		 * the guest and so instead of measuring memslot move
437 		 * performance we would measure the performance and
438 		 * likelihood of MMIO exits
439 		 */
440 	}
441 
442 	GUEST_DONE();
443 }
444 
guest_code_test_memslot_map(void)445 static void guest_code_test_memslot_map(void)
446 {
447 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
448 
449 	GUEST_SYNC(0);
450 
451 	guest_spin_until_start();
452 
453 	while (1) {
454 		uintptr_t ptr;
455 
456 		for (ptr = MEM_TEST_GPA;
457 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
458 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
459 
460 		if (!guest_perform_sync())
461 			break;
462 
463 		for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
464 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
465 			*(uint64_t *)ptr = MEM_TEST_VAL_2;
466 
467 		if (!guest_perform_sync())
468 			break;
469 	}
470 
471 	GUEST_DONE();
472 }
473 
guest_code_test_memslot_unmap(void)474 static void guest_code_test_memslot_unmap(void)
475 {
476 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
477 
478 	GUEST_SYNC(0);
479 
480 	guest_spin_until_start();
481 
482 	while (1) {
483 		uintptr_t ptr = MEM_TEST_GPA;
484 
485 		/*
486 		 * We can afford to access (map) just a small number of pages
487 		 * per host sync as otherwise the host will spend
488 		 * a significant amount of its time waiting for the guest
489 		 * (instead of doing unmap operations), so this will
490 		 * effectively turn this test into a map performance test.
491 		 *
492 		 * Just access a single page to be on the safe side.
493 		 */
494 		*(uint64_t *)ptr = MEM_TEST_VAL_1;
495 
496 		if (!guest_perform_sync())
497 			break;
498 
499 		ptr += MEM_TEST_UNMAP_SIZE / 2;
500 		*(uint64_t *)ptr = MEM_TEST_VAL_2;
501 
502 		if (!guest_perform_sync())
503 			break;
504 	}
505 
506 	GUEST_DONE();
507 }
508 
guest_code_test_memslot_rw(void)509 static void guest_code_test_memslot_rw(void)
510 {
511 	GUEST_SYNC(0);
512 
513 	guest_spin_until_start();
514 
515 	while (1) {
516 		uintptr_t ptr;
517 
518 		for (ptr = MEM_TEST_GPA;
519 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
520 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
521 
522 		if (!guest_perform_sync())
523 			break;
524 
525 		for (ptr = MEM_TEST_GPA + 4096 / 2;
526 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
527 			uint64_t val = *(uint64_t *)ptr;
528 
529 			GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
530 			*(uint64_t *)ptr = 0;
531 		}
532 
533 		if (!guest_perform_sync())
534 			break;
535 	}
536 
537 	GUEST_DONE();
538 }
539 
test_memslot_move_prepare(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots,bool isactive)540 static bool test_memslot_move_prepare(struct vm_data *data,
541 				      struct sync_area *sync,
542 				      uint64_t *maxslots, bool isactive)
543 {
544 	uint64_t movesrcgpa, movetestgpa;
545 
546 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
547 
548 	if (isactive) {
549 		uint64_t lastpages;
550 
551 		vm_gpa2hva(data, movesrcgpa, &lastpages);
552 		if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
553 			*maxslots = 0;
554 			return false;
555 		}
556 	}
557 
558 	movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
559 	sync->move_area_ptr = (void *)movetestgpa;
560 
561 	if (isactive) {
562 		data->mmio_ok = true;
563 		data->mmio_gpa_min = movesrcgpa;
564 		data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
565 	}
566 
567 	return true;
568 }
569 
test_memslot_move_prepare_active(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)570 static bool test_memslot_move_prepare_active(struct vm_data *data,
571 					     struct sync_area *sync,
572 					     uint64_t *maxslots)
573 {
574 	return test_memslot_move_prepare(data, sync, maxslots, true);
575 }
576 
test_memslot_move_prepare_inactive(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)577 static bool test_memslot_move_prepare_inactive(struct vm_data *data,
578 					       struct sync_area *sync,
579 					       uint64_t *maxslots)
580 {
581 	return test_memslot_move_prepare(data, sync, maxslots, false);
582 }
583 
test_memslot_move_loop(struct vm_data * data,struct sync_area * sync)584 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
585 {
586 	uint64_t movesrcgpa;
587 
588 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
589 	vm_mem_region_move(data->vm, data->nslots - 1 + 1,
590 			   MEM_TEST_MOVE_GPA_DEST);
591 	vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
592 }
593 
test_memslot_do_unmap(struct vm_data * data,uint64_t offsp,uint64_t count)594 static void test_memslot_do_unmap(struct vm_data *data,
595 				  uint64_t offsp, uint64_t count)
596 {
597 	uint64_t gpa, ctr;
598 
599 	for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
600 		uint64_t npages;
601 		void *hva;
602 		int ret;
603 
604 		hva = vm_gpa2hva(data, gpa, &npages);
605 		TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
606 		npages = min(npages, count - ctr);
607 		ret = madvise(hva, npages * 4096, MADV_DONTNEED);
608 		TEST_ASSERT(!ret,
609 			    "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
610 			    hva, gpa);
611 		ctr += npages;
612 		gpa += npages * 4096;
613 	}
614 	TEST_ASSERT(ctr == count,
615 		    "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
616 }
617 
test_memslot_map_unmap_check(struct vm_data * data,uint64_t offsp,uint64_t valexp)618 static void test_memslot_map_unmap_check(struct vm_data *data,
619 					 uint64_t offsp, uint64_t valexp)
620 {
621 	uint64_t gpa;
622 	uint64_t *val;
623 
624 	if (!map_unmap_verify)
625 		return;
626 
627 	gpa = MEM_TEST_GPA + offsp * 4096;
628 	val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
629 	TEST_ASSERT(*val == valexp,
630 		    "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
631 		    *val, valexp, gpa);
632 	*val = 0;
633 }
634 
test_memslot_map_loop(struct vm_data * data,struct sync_area * sync)635 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
636 {
637 	/*
638 	 * Unmap the second half of the test area while guest writes to (maps)
639 	 * the first half.
640 	 */
641 	test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
642 			      MEM_TEST_MAP_SIZE_PAGES / 2);
643 
644 	/*
645 	 * Wait for the guest to finish writing the first half of the test
646 	 * area, verify the written value on the first and the last page of
647 	 * this area and then unmap it.
648 	 * Meanwhile, the guest is writing to (mapping) the second half of
649 	 * the test area.
650 	 */
651 	host_perform_sync(sync);
652 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
653 	test_memslot_map_unmap_check(data,
654 				     MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
655 				     MEM_TEST_VAL_1);
656 	test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
657 
658 
659 	/*
660 	 * Wait for the guest to finish writing the second half of the test
661 	 * area and verify the written value on the first and the last page
662 	 * of this area.
663 	 * The area will be unmapped at the beginning of the next loop
664 	 * iteration.
665 	 * Meanwhile, the guest is writing to (mapping) the first half of
666 	 * the test area.
667 	 */
668 	host_perform_sync(sync);
669 	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
670 				     MEM_TEST_VAL_2);
671 	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
672 				     MEM_TEST_VAL_2);
673 }
674 
test_memslot_unmap_loop_common(struct vm_data * data,struct sync_area * sync,uint64_t chunk)675 static void test_memslot_unmap_loop_common(struct vm_data *data,
676 					   struct sync_area *sync,
677 					   uint64_t chunk)
678 {
679 	uint64_t ctr;
680 
681 	/*
682 	 * Wait for the guest to finish mapping page(s) in the first half
683 	 * of the test area, verify the written value and then perform unmap
684 	 * of this area.
685 	 * Meanwhile, the guest is writing to (mapping) page(s) in the second
686 	 * half of the test area.
687 	 */
688 	host_perform_sync(sync);
689 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
690 	for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
691 		test_memslot_do_unmap(data, ctr, chunk);
692 
693 	/* Likewise, but for the opposite host / guest areas */
694 	host_perform_sync(sync);
695 	test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
696 				     MEM_TEST_VAL_2);
697 	for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
698 	     ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
699 		test_memslot_do_unmap(data, ctr, chunk);
700 }
701 
test_memslot_unmap_loop(struct vm_data * data,struct sync_area * sync)702 static void test_memslot_unmap_loop(struct vm_data *data,
703 				    struct sync_area *sync)
704 {
705 	test_memslot_unmap_loop_common(data, sync, 1);
706 }
707 
test_memslot_unmap_loop_chunked(struct vm_data * data,struct sync_area * sync)708 static void test_memslot_unmap_loop_chunked(struct vm_data *data,
709 					    struct sync_area *sync)
710 {
711 	test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
712 }
713 
test_memslot_rw_loop(struct vm_data * data,struct sync_area * sync)714 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
715 {
716 	uint64_t gptr;
717 
718 	for (gptr = MEM_TEST_GPA + 4096 / 2;
719 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
720 		*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
721 
722 	host_perform_sync(sync);
723 
724 	for (gptr = MEM_TEST_GPA;
725 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
726 		uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
727 		uint64_t val = *vptr;
728 
729 		TEST_ASSERT(val == MEM_TEST_VAL_1,
730 			    "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
731 			    val, gptr);
732 		*vptr = 0;
733 	}
734 
735 	host_perform_sync(sync);
736 }
737 
738 struct test_data {
739 	const char *name;
740 	uint64_t mem_size;
741 	void (*guest_code)(void);
742 	bool (*prepare)(struct vm_data *data, struct sync_area *sync,
743 			uint64_t *maxslots);
744 	void (*loop)(struct vm_data *data, struct sync_area *sync);
745 };
746 
test_execute(int nslots,uint64_t * maxslots,unsigned int maxtime,const struct test_data * tdata,uint64_t * nloops,struct timespec * slot_runtime,struct timespec * guest_runtime)747 static bool test_execute(int nslots, uint64_t *maxslots,
748 			 unsigned int maxtime,
749 			 const struct test_data *tdata,
750 			 uint64_t *nloops,
751 			 struct timespec *slot_runtime,
752 			 struct timespec *guest_runtime)
753 {
754 	uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
755 	struct vm_data *data;
756 	struct sync_area *sync;
757 	struct timespec tstart;
758 	bool ret = true;
759 
760 	data = alloc_vm();
761 	if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
762 			mem_size, slot_runtime)) {
763 		ret = false;
764 		goto exit_free;
765 	}
766 
767 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
768 
769 	if (tdata->prepare &&
770 	    !tdata->prepare(data, sync, maxslots)) {
771 		ret = false;
772 		goto exit_free;
773 	}
774 
775 	launch_vm(data);
776 
777 	clock_gettime(CLOCK_MONOTONIC, &tstart);
778 	let_guest_run(sync);
779 
780 	while (1) {
781 		*guest_runtime = timespec_elapsed(tstart);
782 		if (guest_runtime->tv_sec >= maxtime)
783 			break;
784 
785 		tdata->loop(data, sync);
786 
787 		(*nloops)++;
788 	}
789 
790 	make_guest_exit(sync);
791 	wait_guest_exit(data);
792 
793 exit_free:
794 	free_vm(data);
795 
796 	return ret;
797 }
798 
799 static const struct test_data tests[] = {
800 	{
801 		.name = "map",
802 		.mem_size = MEM_SIZE_MAP_PAGES,
803 		.guest_code = guest_code_test_memslot_map,
804 		.loop = test_memslot_map_loop,
805 	},
806 	{
807 		.name = "unmap",
808 		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
809 		.guest_code = guest_code_test_memslot_unmap,
810 		.loop = test_memslot_unmap_loop,
811 	},
812 	{
813 		.name = "unmap chunked",
814 		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
815 		.guest_code = guest_code_test_memslot_unmap,
816 		.loop = test_memslot_unmap_loop_chunked,
817 	},
818 	{
819 		.name = "move active area",
820 		.guest_code = guest_code_test_memslot_move,
821 		.prepare = test_memslot_move_prepare_active,
822 		.loop = test_memslot_move_loop,
823 	},
824 	{
825 		.name = "move inactive area",
826 		.guest_code = guest_code_test_memslot_move,
827 		.prepare = test_memslot_move_prepare_inactive,
828 		.loop = test_memslot_move_loop,
829 	},
830 	{
831 		.name = "RW",
832 		.guest_code = guest_code_test_memslot_rw,
833 		.loop = test_memslot_rw_loop
834 	},
835 };
836 
837 #define NTESTS ARRAY_SIZE(tests)
838 
839 struct test_args {
840 	int tfirst;
841 	int tlast;
842 	int nslots;
843 	int seconds;
844 	int runs;
845 };
846 
help(char * name,struct test_args * targs)847 static void help(char *name, struct test_args *targs)
848 {
849 	int ctr;
850 
851 	pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
852 		name);
853 	pr_info(" -h: print this help screen.\n");
854 	pr_info(" -v: enable verbose mode (not for benchmarking).\n");
855 	pr_info(" -d: enable extra debug checks.\n");
856 	pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
857 		targs->nslots);
858 	pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
859 		targs->tfirst, NTESTS - 1);
860 	pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
861 		targs->tlast, NTESTS - 1);
862 	pr_info(" -l: specify the test length in seconds (currently: %i)\n",
863 		targs->seconds);
864 	pr_info(" -r: specify the number of runs per test (currently: %i)\n",
865 		targs->runs);
866 
867 	pr_info("\nAvailable tests:\n");
868 	for (ctr = 0; ctr < NTESTS; ctr++)
869 		pr_info("%d: %s\n", ctr, tests[ctr].name);
870 }
871 
parse_args(int argc,char * argv[],struct test_args * targs)872 static bool parse_args(int argc, char *argv[],
873 		       struct test_args *targs)
874 {
875 	int opt;
876 
877 	while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
878 		switch (opt) {
879 		case 'h':
880 		default:
881 			help(argv[0], targs);
882 			return false;
883 		case 'v':
884 			verbose = true;
885 			break;
886 		case 'd':
887 			map_unmap_verify = true;
888 			break;
889 		case 's':
890 			targs->nslots = atoi(optarg);
891 			if (targs->nslots <= 0 && targs->nslots != -1) {
892 				pr_info("Slot count cap has to be positive or -1 for no cap\n");
893 				return false;
894 			}
895 			break;
896 		case 'f':
897 			targs->tfirst = atoi(optarg);
898 			if (targs->tfirst < 0) {
899 				pr_info("First test to run has to be non-negative\n");
900 				return false;
901 			}
902 			break;
903 		case 'e':
904 			targs->tlast = atoi(optarg);
905 			if (targs->tlast < 0 || targs->tlast >= NTESTS) {
906 				pr_info("Last test to run has to be non-negative and less than %zu\n",
907 					NTESTS);
908 				return false;
909 			}
910 			break;
911 		case 'l':
912 			targs->seconds = atoi(optarg);
913 			if (targs->seconds < 0) {
914 				pr_info("Test length in seconds has to be non-negative\n");
915 				return false;
916 			}
917 			break;
918 		case 'r':
919 			targs->runs = atoi(optarg);
920 			if (targs->runs <= 0) {
921 				pr_info("Runs per test has to be positive\n");
922 				return false;
923 			}
924 			break;
925 		}
926 	}
927 
928 	if (optind < argc) {
929 		help(argv[0], targs);
930 		return false;
931 	}
932 
933 	if (targs->tfirst > targs->tlast) {
934 		pr_info("First test to run cannot be greater than the last test to run\n");
935 		return false;
936 	}
937 
938 	return true;
939 }
940 
941 struct test_result {
942 	struct timespec slot_runtime, guest_runtime, iter_runtime;
943 	int64_t slottimens, runtimens;
944 	uint64_t nloops;
945 };
946 
test_loop(const struct test_data * data,const struct test_args * targs,struct test_result * rbestslottime,struct test_result * rbestruntime)947 static bool test_loop(const struct test_data *data,
948 		      const struct test_args *targs,
949 		      struct test_result *rbestslottime,
950 		      struct test_result *rbestruntime)
951 {
952 	uint64_t maxslots;
953 	struct test_result result;
954 
955 	result.nloops = 0;
956 	if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
957 			  &result.nloops,
958 			  &result.slot_runtime, &result.guest_runtime)) {
959 		if (maxslots)
960 			pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
961 				maxslots);
962 		else
963 			pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
964 
965 		return false;
966 	}
967 
968 	pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
969 		result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
970 		result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
971 	if (!result.nloops) {
972 		pr_info("No full loops done - too short test time or system too loaded?\n");
973 		return true;
974 	}
975 
976 	result.iter_runtime = timespec_div(result.guest_runtime,
977 					   result.nloops);
978 	pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
979 		result.nloops,
980 		result.iter_runtime.tv_sec,
981 		result.iter_runtime.tv_nsec);
982 	result.slottimens = timespec_to_ns(result.slot_runtime);
983 	result.runtimens = timespec_to_ns(result.iter_runtime);
984 
985 	/*
986 	 * Only rank the slot setup time for tests using the whole test memory
987 	 * area so they are comparable
988 	 */
989 	if (!data->mem_size &&
990 	    (!rbestslottime->slottimens ||
991 	     result.slottimens < rbestslottime->slottimens))
992 		*rbestslottime = result;
993 	if (!rbestruntime->runtimens ||
994 	    result.runtimens < rbestruntime->runtimens)
995 		*rbestruntime = result;
996 
997 	return true;
998 }
999 
main(int argc,char * argv[])1000 int main(int argc, char *argv[])
1001 {
1002 	struct test_args targs = {
1003 		.tfirst = 0,
1004 		.tlast = NTESTS - 1,
1005 		.nslots = -1,
1006 		.seconds = 5,
1007 		.runs = 1,
1008 	};
1009 	struct test_result rbestslottime;
1010 	int tctr;
1011 
1012 	/* Tell stdout not to buffer its content */
1013 	setbuf(stdout, NULL);
1014 
1015 	if (!parse_args(argc, argv, &targs))
1016 		return -1;
1017 
1018 	rbestslottime.slottimens = 0;
1019 	for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1020 		const struct test_data *data = &tests[tctr];
1021 		unsigned int runctr;
1022 		struct test_result rbestruntime;
1023 
1024 		if (tctr > targs.tfirst)
1025 			pr_info("\n");
1026 
1027 		pr_info("Testing %s performance with %i runs, %d seconds each\n",
1028 			data->name, targs.runs, targs.seconds);
1029 
1030 		rbestruntime.runtimens = 0;
1031 		for (runctr = 0; runctr < targs.runs; runctr++)
1032 			if (!test_loop(data, &targs,
1033 				       &rbestslottime, &rbestruntime))
1034 				break;
1035 
1036 		if (rbestruntime.runtimens)
1037 			pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1038 				rbestruntime.iter_runtime.tv_sec,
1039 				rbestruntime.iter_runtime.tv_nsec,
1040 				rbestruntime.nloops);
1041 	}
1042 
1043 	if (rbestslottime.slottimens)
1044 		pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1045 			rbestslottime.slot_runtime.tv_sec,
1046 			rbestslottime.slot_runtime.tv_nsec);
1047 
1048 	return 0;
1049 }
1050