• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AggressiveAntiDepBreaker class, which
11 // implements register anti-dependence breaking during post-RA
12 // scheduling. It attempts to break all anti-dependencies within a
13 // block.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AggressiveAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/RegisterClassInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "post-RA-sched"
31 
32 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
33 static cl::opt<int>
34 DebugDiv("agg-antidep-debugdiv",
35          cl::desc("Debug control for aggressive anti-dep breaker"),
36          cl::init(0), cl::Hidden);
37 static cl::opt<int>
38 DebugMod("agg-antidep-debugmod",
39          cl::desc("Debug control for aggressive anti-dep breaker"),
40          cl::init(0), cl::Hidden);
41 
AggressiveAntiDepState(const unsigned TargetRegs,MachineBasicBlock * BB)42 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
43                                                MachineBasicBlock *BB) :
44   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
45   GroupNodeIndices(TargetRegs, 0),
46   KillIndices(TargetRegs, 0),
47   DefIndices(TargetRegs, 0)
48 {
49   const unsigned BBSize = BB->size();
50   for (unsigned i = 0; i < NumTargetRegs; ++i) {
51     // Initialize all registers to be in their own group. Initially we
52     // assign the register to the same-indexed GroupNode.
53     GroupNodeIndices[i] = i;
54     // Initialize the indices to indicate that no registers are live.
55     KillIndices[i] = ~0u;
56     DefIndices[i] = BBSize;
57   }
58 }
59 
GetGroup(unsigned Reg)60 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
61   unsigned Node = GroupNodeIndices[Reg];
62   while (GroupNodes[Node] != Node)
63     Node = GroupNodes[Node];
64 
65   return Node;
66 }
67 
GetGroupRegs(unsigned Group,std::vector<unsigned> & Regs,std::multimap<unsigned,AggressiveAntiDepState::RegisterReference> * RegRefs)68 void AggressiveAntiDepState::GetGroupRegs(
69   unsigned Group,
70   std::vector<unsigned> &Regs,
71   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
72 {
73   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
74     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
75       Regs.push_back(Reg);
76   }
77 }
78 
UnionGroups(unsigned Reg1,unsigned Reg2)79 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
80 {
81   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
82   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
83 
84   // find group for each register
85   unsigned Group1 = GetGroup(Reg1);
86   unsigned Group2 = GetGroup(Reg2);
87 
88   // if either group is 0, then that must become the parent
89   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
90   unsigned Other = (Parent == Group1) ? Group2 : Group1;
91   GroupNodes.at(Other) = Parent;
92   return Parent;
93 }
94 
LeaveGroup(unsigned Reg)95 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
96 {
97   // Create a new GroupNode for Reg. Reg's existing GroupNode must
98   // stay as is because there could be other GroupNodes referring to
99   // it.
100   unsigned idx = GroupNodes.size();
101   GroupNodes.push_back(idx);
102   GroupNodeIndices[Reg] = idx;
103   return idx;
104 }
105 
IsLive(unsigned Reg)106 bool AggressiveAntiDepState::IsLive(unsigned Reg)
107 {
108   // KillIndex must be defined and DefIndex not defined for a register
109   // to be live.
110   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
111 }
112 
AggressiveAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI,TargetSubtargetInfo::RegClassVector & CriticalPathRCs)113 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
114     MachineFunction &MFi, const RegisterClassInfo &RCI,
115     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
116     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
117       TII(MF.getSubtarget().getInstrInfo()),
118       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
119       State(nullptr) {
120   /* Collect a bitset of all registers that are only broken if they
121      are on the critical path. */
122   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
123     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
124     if (CriticalPathSet.none())
125       CriticalPathSet = CPSet;
126     else
127       CriticalPathSet |= CPSet;
128    }
129 
130   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
131   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
132              r = CriticalPathSet.find_next(r))
133           dbgs() << " " << TRI->getName(r));
134   DEBUG(dbgs() << '\n');
135 }
136 
~AggressiveAntiDepBreaker()137 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
138   delete State;
139 }
140 
StartBlock(MachineBasicBlock * BB)141 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
142   assert(!State);
143   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
144 
145   bool IsReturnBlock = BB->isReturnBlock();
146   std::vector<unsigned> &KillIndices = State->GetKillIndices();
147   std::vector<unsigned> &DefIndices = State->GetDefIndices();
148 
149   // Examine the live-in regs of all successors.
150   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
151          SE = BB->succ_end(); SI != SE; ++SI)
152     for (const auto &LI : (*SI)->liveins()) {
153       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
154         unsigned Reg = *AI;
155         State->UnionGroups(Reg, 0);
156         KillIndices[Reg] = BB->size();
157         DefIndices[Reg] = ~0u;
158       }
159     }
160 
161   // Mark live-out callee-saved registers. In a return block this is
162   // all callee-saved registers. In non-return this is any
163   // callee-saved register that is not saved in the prolog.
164   const MachineFrameInfo *MFI = MF.getFrameInfo();
165   BitVector Pristine = MFI->getPristineRegs(MF);
166   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
167     unsigned Reg = *I;
168     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
169     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
170       unsigned AliasReg = *AI;
171       State->UnionGroups(AliasReg, 0);
172       KillIndices[AliasReg] = BB->size();
173       DefIndices[AliasReg] = ~0u;
174     }
175   }
176 }
177 
FinishBlock()178 void AggressiveAntiDepBreaker::FinishBlock() {
179   delete State;
180   State = nullptr;
181 }
182 
Observe(MachineInstr & MI,unsigned Count,unsigned InsertPosIndex)183 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
184                                        unsigned InsertPosIndex) {
185   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
186 
187   std::set<unsigned> PassthruRegs;
188   GetPassthruRegs(MI, PassthruRegs);
189   PrescanInstruction(MI, Count, PassthruRegs);
190   ScanInstruction(MI, Count);
191 
192   DEBUG(dbgs() << "Observe: ");
193   DEBUG(MI.dump());
194   DEBUG(dbgs() << "\tRegs:");
195 
196   std::vector<unsigned> &DefIndices = State->GetDefIndices();
197   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
198     // If Reg is current live, then mark that it can't be renamed as
199     // we don't know the extent of its live-range anymore (now that it
200     // has been scheduled). If it is not live but was defined in the
201     // previous schedule region, then set its def index to the most
202     // conservative location (i.e. the beginning of the previous
203     // schedule region).
204     if (State->IsLive(Reg)) {
205       DEBUG(if (State->GetGroup(Reg) != 0)
206               dbgs() << " " << TRI->getName(Reg) << "=g" <<
207                 State->GetGroup(Reg) << "->g0(region live-out)");
208       State->UnionGroups(Reg, 0);
209     } else if ((DefIndices[Reg] < InsertPosIndex)
210                && (DefIndices[Reg] >= Count)) {
211       DefIndices[Reg] = Count;
212     }
213   }
214   DEBUG(dbgs() << '\n');
215 }
216 
IsImplicitDefUse(MachineInstr & MI,MachineOperand & MO)217 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
218                                                 MachineOperand &MO) {
219   if (!MO.isReg() || !MO.isImplicit())
220     return false;
221 
222   unsigned Reg = MO.getReg();
223   if (Reg == 0)
224     return false;
225 
226   MachineOperand *Op = nullptr;
227   if (MO.isDef())
228     Op = MI.findRegisterUseOperand(Reg, true);
229   else
230     Op = MI.findRegisterDefOperand(Reg);
231 
232   return(Op && Op->isImplicit());
233 }
234 
GetPassthruRegs(MachineInstr & MI,std::set<unsigned> & PassthruRegs)235 void AggressiveAntiDepBreaker::GetPassthruRegs(
236     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
237   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
238     MachineOperand &MO = MI.getOperand(i);
239     if (!MO.isReg()) continue;
240     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
241         IsImplicitDefUse(MI, MO)) {
242       const unsigned Reg = MO.getReg();
243       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
244            SubRegs.isValid(); ++SubRegs)
245         PassthruRegs.insert(*SubRegs);
246     }
247   }
248 }
249 
250 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
251 /// in SU that we want to consider for breaking.
AntiDepEdges(const SUnit * SU,std::vector<const SDep * > & Edges)252 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
253   SmallSet<unsigned, 4> RegSet;
254   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
255        P != PE; ++P) {
256     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
257       if (RegSet.insert(P->getReg()).second)
258         Edges.push_back(&*P);
259     }
260   }
261 }
262 
263 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
264 /// critical path.
CriticalPathStep(const SUnit * SU)265 static const SUnit *CriticalPathStep(const SUnit *SU) {
266   const SDep *Next = nullptr;
267   unsigned NextDepth = 0;
268   // Find the predecessor edge with the greatest depth.
269   if (SU) {
270     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
271          P != PE; ++P) {
272       const SUnit *PredSU = P->getSUnit();
273       unsigned PredLatency = P->getLatency();
274       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
275       // In the case of a latency tie, prefer an anti-dependency edge over
276       // other types of edges.
277       if (NextDepth < PredTotalLatency ||
278           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
279         NextDepth = PredTotalLatency;
280         Next = &*P;
281       }
282     }
283   }
284 
285   return (Next) ? Next->getSUnit() : nullptr;
286 }
287 
HandleLastUse(unsigned Reg,unsigned KillIdx,const char * tag,const char * header,const char * footer)288 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
289                                              const char *tag,
290                                              const char *header,
291                                              const char *footer) {
292   std::vector<unsigned> &KillIndices = State->GetKillIndices();
293   std::vector<unsigned> &DefIndices = State->GetDefIndices();
294   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
295     RegRefs = State->GetRegRefs();
296 
297   // FIXME: We must leave subregisters of live super registers as live, so that
298   // we don't clear out the register tracking information for subregisters of
299   // super registers we're still tracking (and with which we're unioning
300   // subregister definitions).
301   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
302     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
303       DEBUG(if (!header && footer) dbgs() << footer);
304       return;
305     }
306 
307   if (!State->IsLive(Reg)) {
308     KillIndices[Reg] = KillIdx;
309     DefIndices[Reg] = ~0u;
310     RegRefs.erase(Reg);
311     State->LeaveGroup(Reg);
312     DEBUG(if (header) {
313         dbgs() << header << TRI->getName(Reg); header = nullptr; });
314     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
315     // Repeat for subregisters. Note that we only do this if the superregister
316     // was not live because otherwise, regardless whether we have an explicit
317     // use of the subregister, the subregister's contents are needed for the
318     // uses of the superregister.
319     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
320       unsigned SubregReg = *SubRegs;
321       if (!State->IsLive(SubregReg)) {
322         KillIndices[SubregReg] = KillIdx;
323         DefIndices[SubregReg] = ~0u;
324         RegRefs.erase(SubregReg);
325         State->LeaveGroup(SubregReg);
326         DEBUG(if (header) {
327             dbgs() << header << TRI->getName(Reg); header = nullptr; });
328         DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
329               State->GetGroup(SubregReg) << tag);
330       }
331     }
332   }
333 
334   DEBUG(if (!header && footer) dbgs() << footer);
335 }
336 
PrescanInstruction(MachineInstr & MI,unsigned Count,std::set<unsigned> & PassthruRegs)337 void AggressiveAntiDepBreaker::PrescanInstruction(
338     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
339   std::vector<unsigned> &DefIndices = State->GetDefIndices();
340   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
341     RegRefs = State->GetRegRefs();
342 
343   // Handle dead defs by simulating a last-use of the register just
344   // after the def. A dead def can occur because the def is truly
345   // dead, or because only a subregister is live at the def. If we
346   // don't do this the dead def will be incorrectly merged into the
347   // previous def.
348   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
349     MachineOperand &MO = MI.getOperand(i);
350     if (!MO.isReg() || !MO.isDef()) continue;
351     unsigned Reg = MO.getReg();
352     if (Reg == 0) continue;
353 
354     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
355   }
356 
357   DEBUG(dbgs() << "\tDef Groups:");
358   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
359     MachineOperand &MO = MI.getOperand(i);
360     if (!MO.isReg() || !MO.isDef()) continue;
361     unsigned Reg = MO.getReg();
362     if (Reg == 0) continue;
363 
364     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
365 
366     // If MI's defs have a special allocation requirement, don't allow
367     // any def registers to be changed. Also assume all registers
368     // defined in a call must not be changed (ABI). Inline assembly may
369     // reference either system calls or the register directly. Skip it until we
370     // can tell user specified registers from compiler-specified.
371     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
372         MI.isInlineAsm()) {
373       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
374       State->UnionGroups(Reg, 0);
375     }
376 
377     // Any aliased that are live at this point are completely or
378     // partially defined here, so group those aliases with Reg.
379     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
380       unsigned AliasReg = *AI;
381       if (State->IsLive(AliasReg)) {
382         State->UnionGroups(Reg, AliasReg);
383         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
384               TRI->getName(AliasReg) << ")");
385       }
386     }
387 
388     // Note register reference...
389     const TargetRegisterClass *RC = nullptr;
390     if (i < MI.getDesc().getNumOperands())
391       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
392     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
393     RegRefs.insert(std::make_pair(Reg, RR));
394   }
395 
396   DEBUG(dbgs() << '\n');
397 
398   // Scan the register defs for this instruction and update
399   // live-ranges.
400   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
401     MachineOperand &MO = MI.getOperand(i);
402     if (!MO.isReg() || !MO.isDef()) continue;
403     unsigned Reg = MO.getReg();
404     if (Reg == 0) continue;
405     // Ignore KILLs and passthru registers for liveness...
406     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
407       continue;
408 
409     // Update def for Reg and aliases.
410     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
411       // We need to be careful here not to define already-live super registers.
412       // If the super register is already live, then this definition is not
413       // a definition of the whole super register (just a partial insertion
414       // into it). Earlier subregister definitions (which we've not yet visited
415       // because we're iterating bottom-up) need to be linked to the same group
416       // as this definition.
417       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
418         continue;
419 
420       DefIndices[*AI] = Count;
421     }
422   }
423 }
424 
ScanInstruction(MachineInstr & MI,unsigned Count)425 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
426                                                unsigned Count) {
427   DEBUG(dbgs() << "\tUse Groups:");
428   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
429     RegRefs = State->GetRegRefs();
430 
431   // If MI's uses have special allocation requirement, don't allow
432   // any use registers to be changed. Also assume all registers
433   // used in a call must not be changed (ABI).
434   // Inline Assembly register uses also cannot be safely changed.
435   // FIXME: The issue with predicated instruction is more complex. We are being
436   // conservatively here because the kill markers cannot be trusted after
437   // if-conversion:
438   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
439   // ...
440   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
441   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
442   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
443   //
444   // The first R6 kill is not really a kill since it's killed by a predicated
445   // instruction which may not be executed. The second R6 def may or may not
446   // re-define R6 so it's not safe to change it since the last R6 use cannot be
447   // changed.
448   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
449                  TII->isPredicated(MI) || MI.isInlineAsm();
450 
451   // Scan the register uses for this instruction and update
452   // live-ranges, groups and RegRefs.
453   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
454     MachineOperand &MO = MI.getOperand(i);
455     if (!MO.isReg() || !MO.isUse()) continue;
456     unsigned Reg = MO.getReg();
457     if (Reg == 0) continue;
458 
459     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
460           State->GetGroup(Reg));
461 
462     // It wasn't previously live but now it is, this is a kill. Forget
463     // the previous live-range information and start a new live-range
464     // for the register.
465     HandleLastUse(Reg, Count, "(last-use)");
466 
467     if (Special) {
468       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
469       State->UnionGroups(Reg, 0);
470     }
471 
472     // Note register reference...
473     const TargetRegisterClass *RC = nullptr;
474     if (i < MI.getDesc().getNumOperands())
475       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
476     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
477     RegRefs.insert(std::make_pair(Reg, RR));
478   }
479 
480   DEBUG(dbgs() << '\n');
481 
482   // Form a group of all defs and uses of a KILL instruction to ensure
483   // that all registers are renamed as a group.
484   if (MI.isKill()) {
485     DEBUG(dbgs() << "\tKill Group:");
486 
487     unsigned FirstReg = 0;
488     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
489       MachineOperand &MO = MI.getOperand(i);
490       if (!MO.isReg()) continue;
491       unsigned Reg = MO.getReg();
492       if (Reg == 0) continue;
493 
494       if (FirstReg != 0) {
495         DEBUG(dbgs() << "=" << TRI->getName(Reg));
496         State->UnionGroups(FirstReg, Reg);
497       } else {
498         DEBUG(dbgs() << " " << TRI->getName(Reg));
499         FirstReg = Reg;
500       }
501     }
502 
503     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
504   }
505 }
506 
GetRenameRegisters(unsigned Reg)507 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
508   BitVector BV(TRI->getNumRegs(), false);
509   bool first = true;
510 
511   // Check all references that need rewriting for Reg. For each, use
512   // the corresponding register class to narrow the set of registers
513   // that are appropriate for renaming.
514   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
515     const TargetRegisterClass *RC = Q.second.RC;
516     if (!RC) continue;
517 
518     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
519     if (first) {
520       BV |= RCBV;
521       first = false;
522     } else {
523       BV &= RCBV;
524     }
525 
526     DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
527   }
528 
529   return BV;
530 }
531 
FindSuitableFreeRegisters(unsigned AntiDepGroupIndex,RenameOrderType & RenameOrder,std::map<unsigned,unsigned> & RenameMap)532 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
533                                 unsigned AntiDepGroupIndex,
534                                 RenameOrderType& RenameOrder,
535                                 std::map<unsigned, unsigned> &RenameMap) {
536   std::vector<unsigned> &KillIndices = State->GetKillIndices();
537   std::vector<unsigned> &DefIndices = State->GetDefIndices();
538   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
539     RegRefs = State->GetRegRefs();
540 
541   // Collect all referenced registers in the same group as
542   // AntiDepReg. These all need to be renamed together if we are to
543   // break the anti-dependence.
544   std::vector<unsigned> Regs;
545   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
546   assert(Regs.size() > 0 && "Empty register group!");
547   if (Regs.size() == 0)
548     return false;
549 
550   // Find the "superest" register in the group. At the same time,
551   // collect the BitVector of registers that can be used to rename
552   // each register.
553   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
554         << ":\n");
555   std::map<unsigned, BitVector> RenameRegisterMap;
556   unsigned SuperReg = 0;
557   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
558     unsigned Reg = Regs[i];
559     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
560       SuperReg = Reg;
561 
562     // If Reg has any references, then collect possible rename regs
563     if (RegRefs.count(Reg) > 0) {
564       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
565 
566       BitVector &BV = RenameRegisterMap[Reg];
567       assert(BV.empty());
568       BV = GetRenameRegisters(Reg);
569 
570       DEBUG({
571         dbgs() << " ::";
572         for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
573           dbgs() << " " << TRI->getName(r);
574         dbgs() << "\n";
575       });
576     }
577   }
578 
579   // All group registers should be a subreg of SuperReg.
580   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
581     unsigned Reg = Regs[i];
582     if (Reg == SuperReg) continue;
583     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
584     // FIXME: remove this once PR18663 has been properly fixed. For now,
585     // return a conservative answer:
586     // assert(IsSub && "Expecting group subregister");
587     if (!IsSub)
588       return false;
589   }
590 
591 #ifndef NDEBUG
592   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
593   if (DebugDiv > 0) {
594     static int renamecnt = 0;
595     if (renamecnt++ % DebugDiv != DebugMod)
596       return false;
597 
598     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
599       " for debug ***\n";
600   }
601 #endif
602 
603   // Check each possible rename register for SuperReg in round-robin
604   // order. If that register is available, and the corresponding
605   // registers are available for the other group subregisters, then we
606   // can use those registers to rename.
607 
608   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
609   // check every use of the register and find the largest register class
610   // that can be used in all of them.
611   const TargetRegisterClass *SuperRC =
612     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
613 
614   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
615   if (Order.empty()) {
616     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
617     return false;
618   }
619 
620   DEBUG(dbgs() << "\tFind Registers:");
621 
622   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
623 
624   unsigned OrigR = RenameOrder[SuperRC];
625   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
626   unsigned R = OrigR;
627   do {
628     if (R == 0) R = Order.size();
629     --R;
630     const unsigned NewSuperReg = Order[R];
631     // Don't consider non-allocatable registers
632     if (!MRI.isAllocatable(NewSuperReg)) continue;
633     // Don't replace a register with itself.
634     if (NewSuperReg == SuperReg) continue;
635 
636     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
637     RenameMap.clear();
638 
639     // For each referenced group register (which must be a SuperReg or
640     // a subregister of SuperReg), find the corresponding subregister
641     // of NewSuperReg and make sure it is free to be renamed.
642     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
643       unsigned Reg = Regs[i];
644       unsigned NewReg = 0;
645       if (Reg == SuperReg) {
646         NewReg = NewSuperReg;
647       } else {
648         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
649         if (NewSubRegIdx != 0)
650           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
651       }
652 
653       DEBUG(dbgs() << " " << TRI->getName(NewReg));
654 
655       // Check if Reg can be renamed to NewReg.
656       if (!RenameRegisterMap[Reg].test(NewReg)) {
657         DEBUG(dbgs() << "(no rename)");
658         goto next_super_reg;
659       }
660 
661       // If NewReg is dead and NewReg's most recent def is not before
662       // Regs's kill, it's safe to replace Reg with NewReg. We
663       // must also check all aliases of NewReg, because we can't define a
664       // register when any sub or super is already live.
665       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
666         DEBUG(dbgs() << "(live)");
667         goto next_super_reg;
668       } else {
669         bool found = false;
670         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
671           unsigned AliasReg = *AI;
672           if (State->IsLive(AliasReg) ||
673               (KillIndices[Reg] > DefIndices[AliasReg])) {
674             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
675             found = true;
676             break;
677           }
678         }
679         if (found)
680           goto next_super_reg;
681       }
682 
683       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
684       // defines 'NewReg' via an early-clobber operand.
685       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
686         MachineInstr *UseMI = Q.second.Operand->getParent();
687         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
688         if (Idx == -1)
689           continue;
690 
691         if (UseMI->getOperand(Idx).isEarlyClobber()) {
692           DEBUG(dbgs() << "(ec)");
693           goto next_super_reg;
694         }
695       }
696 
697       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
698       // 'Reg' is an early-clobber define and that instruction also uses
699       // 'NewReg'.
700       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
701         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
702           continue;
703 
704         MachineInstr *DefMI = Q.second.Operand->getParent();
705         if (DefMI->readsRegister(NewReg, TRI)) {
706           DEBUG(dbgs() << "(ec)");
707           goto next_super_reg;
708         }
709       }
710 
711       // Record that 'Reg' can be renamed to 'NewReg'.
712       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
713     }
714 
715     // If we fall-out here, then every register in the group can be
716     // renamed, as recorded in RenameMap.
717     RenameOrder.erase(SuperRC);
718     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
719     DEBUG(dbgs() << "]\n");
720     return true;
721 
722   next_super_reg:
723     DEBUG(dbgs() << ']');
724   } while (R != EndR);
725 
726   DEBUG(dbgs() << '\n');
727 
728   // No registers are free and available!
729   return false;
730 }
731 
732 /// BreakAntiDependencies - Identifiy anti-dependencies within the
733 /// ScheduleDAG and break them by renaming registers.
734 ///
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)735 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
736                               const std::vector<SUnit>& SUnits,
737                               MachineBasicBlock::iterator Begin,
738                               MachineBasicBlock::iterator End,
739                               unsigned InsertPosIndex,
740                               DbgValueVector &DbgValues) {
741 
742   std::vector<unsigned> &KillIndices = State->GetKillIndices();
743   std::vector<unsigned> &DefIndices = State->GetDefIndices();
744   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
745     RegRefs = State->GetRegRefs();
746 
747   // The code below assumes that there is at least one instruction,
748   // so just duck out immediately if the block is empty.
749   if (SUnits.empty()) return 0;
750 
751   // For each regclass the next register to use for renaming.
752   RenameOrderType RenameOrder;
753 
754   // ...need a map from MI to SUnit.
755   std::map<MachineInstr *, const SUnit *> MISUnitMap;
756   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
757     const SUnit *SU = &SUnits[i];
758     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
759                                                                SU));
760   }
761 
762   // Track progress along the critical path through the SUnit graph as
763   // we walk the instructions. This is needed for regclasses that only
764   // break critical-path anti-dependencies.
765   const SUnit *CriticalPathSU = nullptr;
766   MachineInstr *CriticalPathMI = nullptr;
767   if (CriticalPathSet.any()) {
768     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
769       const SUnit *SU = &SUnits[i];
770       if (!CriticalPathSU ||
771           ((SU->getDepth() + SU->Latency) >
772            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
773         CriticalPathSU = SU;
774       }
775     }
776 
777     CriticalPathMI = CriticalPathSU->getInstr();
778   }
779 
780 #ifndef NDEBUG
781   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
782   DEBUG(dbgs() << "Available regs:");
783   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
784     if (!State->IsLive(Reg))
785       DEBUG(dbgs() << " " << TRI->getName(Reg));
786   }
787   DEBUG(dbgs() << '\n');
788 #endif
789 
790   BitVector RegAliases(TRI->getNumRegs());
791 
792   // Attempt to break anti-dependence edges. Walk the instructions
793   // from the bottom up, tracking information about liveness as we go
794   // to help determine which registers are available.
795   unsigned Broken = 0;
796   unsigned Count = InsertPosIndex - 1;
797   for (MachineBasicBlock::iterator I = End, E = Begin;
798        I != E; --Count) {
799     MachineInstr &MI = *--I;
800 
801     if (MI.isDebugValue())
802       continue;
803 
804     DEBUG(dbgs() << "Anti: ");
805     DEBUG(MI.dump());
806 
807     std::set<unsigned> PassthruRegs;
808     GetPassthruRegs(MI, PassthruRegs);
809 
810     // Process the defs in MI...
811     PrescanInstruction(MI, Count, PassthruRegs);
812 
813     // The dependence edges that represent anti- and output-
814     // dependencies that are candidates for breaking.
815     std::vector<const SDep *> Edges;
816     const SUnit *PathSU = MISUnitMap[&MI];
817     AntiDepEdges(PathSU, Edges);
818 
819     // If MI is not on the critical path, then we don't rename
820     // registers in the CriticalPathSet.
821     BitVector *ExcludeRegs = nullptr;
822     if (&MI == CriticalPathMI) {
823       CriticalPathSU = CriticalPathStep(CriticalPathSU);
824       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
825     } else if (CriticalPathSet.any()) {
826       ExcludeRegs = &CriticalPathSet;
827     }
828 
829     // Ignore KILL instructions (they form a group in ScanInstruction
830     // but don't cause any anti-dependence breaking themselves)
831     if (!MI.isKill()) {
832       // Attempt to break each anti-dependency...
833       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
834         const SDep *Edge = Edges[i];
835         SUnit *NextSU = Edge->getSUnit();
836 
837         if ((Edge->getKind() != SDep::Anti) &&
838             (Edge->getKind() != SDep::Output)) continue;
839 
840         unsigned AntiDepReg = Edge->getReg();
841         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
842         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
843 
844         if (!MRI.isAllocatable(AntiDepReg)) {
845           // Don't break anti-dependencies on non-allocatable registers.
846           DEBUG(dbgs() << " (non-allocatable)\n");
847           continue;
848         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
849           // Don't break anti-dependencies for critical path registers
850           // if not on the critical path
851           DEBUG(dbgs() << " (not critical-path)\n");
852           continue;
853         } else if (PassthruRegs.count(AntiDepReg) != 0) {
854           // If the anti-dep register liveness "passes-thru", then
855           // don't try to change it. It will be changed along with
856           // the use if required to break an earlier antidep.
857           DEBUG(dbgs() << " (passthru)\n");
858           continue;
859         } else {
860           // No anti-dep breaking for implicit deps
861           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
862           assert(AntiDepOp && "Can't find index for defined register operand");
863           if (!AntiDepOp || AntiDepOp->isImplicit()) {
864             DEBUG(dbgs() << " (implicit)\n");
865             continue;
866           }
867 
868           // If the SUnit has other dependencies on the SUnit that
869           // it anti-depends on, don't bother breaking the
870           // anti-dependency since those edges would prevent such
871           // units from being scheduled past each other
872           // regardless.
873           //
874           // Also, if there are dependencies on other SUnits with the
875           // same register as the anti-dependency, don't attempt to
876           // break it.
877           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
878                  PE = PathSU->Preds.end(); P != PE; ++P) {
879             if (P->getSUnit() == NextSU ?
880                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
881                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
882               AntiDepReg = 0;
883               break;
884             }
885           }
886           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
887                  PE = PathSU->Preds.end(); P != PE; ++P) {
888             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
889                 (P->getKind() != SDep::Output)) {
890               DEBUG(dbgs() << " (real dependency)\n");
891               AntiDepReg = 0;
892               break;
893             } else if ((P->getSUnit() != NextSU) &&
894                        (P->getKind() == SDep::Data) &&
895                        (P->getReg() == AntiDepReg)) {
896               DEBUG(dbgs() << " (other dependency)\n");
897               AntiDepReg = 0;
898               break;
899             }
900           }
901 
902           if (AntiDepReg == 0) continue;
903 
904           // If the definition of the anti-dependency register does not start
905           // a new live range, bail out. This can happen if the anti-dep
906           // register is a sub-register of another register whose live range
907           // spans over PathSU. In such case, PathSU defines only a part of
908           // the larger register.
909           RegAliases.reset();
910           for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
911             RegAliases.set(*AI);
912           for (SDep S : PathSU->Succs) {
913             SDep::Kind K = S.getKind();
914             if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
915               continue;
916             unsigned R = S.getReg();
917             if (!RegAliases[R])
918               continue;
919             if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
920               continue;
921             AntiDepReg = 0;
922             break;
923           }
924 
925           if (AntiDepReg == 0) continue;
926         }
927 
928         assert(AntiDepReg != 0);
929         if (AntiDepReg == 0) continue;
930 
931         // Determine AntiDepReg's register group.
932         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
933         if (GroupIndex == 0) {
934           DEBUG(dbgs() << " (zero group)\n");
935           continue;
936         }
937 
938         DEBUG(dbgs() << '\n');
939 
940         // Look for a suitable register to use to break the anti-dependence.
941         std::map<unsigned, unsigned> RenameMap;
942         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
943           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
944                 << TRI->getName(AntiDepReg) << ":");
945 
946           // Handle each group register...
947           for (std::map<unsigned, unsigned>::iterator
948                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
949             unsigned CurrReg = S->first;
950             unsigned NewReg = S->second;
951 
952             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
953                   TRI->getName(NewReg) << "(" <<
954                   RegRefs.count(CurrReg) << " refs)");
955 
956             // Update the references to the old register CurrReg to
957             // refer to the new register NewReg.
958             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
959               Q.second.Operand->setReg(NewReg);
960               // If the SU for the instruction being updated has debug
961               // information related to the anti-dependency register, make
962               // sure to update that as well.
963               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
964               if (!SU) continue;
965               for (DbgValueVector::iterator DVI = DbgValues.begin(),
966                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
967                 if (DVI->second == Q.second.Operand->getParent())
968                   UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
969             }
970 
971             // We just went back in time and modified history; the
972             // liveness information for CurrReg is now inconsistent. Set
973             // the state as if it were dead.
974             State->UnionGroups(NewReg, 0);
975             RegRefs.erase(NewReg);
976             DefIndices[NewReg] = DefIndices[CurrReg];
977             KillIndices[NewReg] = KillIndices[CurrReg];
978 
979             State->UnionGroups(CurrReg, 0);
980             RegRefs.erase(CurrReg);
981             DefIndices[CurrReg] = KillIndices[CurrReg];
982             KillIndices[CurrReg] = ~0u;
983             assert(((KillIndices[CurrReg] == ~0u) !=
984                     (DefIndices[CurrReg] == ~0u)) &&
985                    "Kill and Def maps aren't consistent for AntiDepReg!");
986           }
987 
988           ++Broken;
989           DEBUG(dbgs() << '\n');
990         }
991       }
992     }
993 
994     ScanInstruction(MI, Count);
995   }
996 
997   return Broken;
998 }
999