1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
11 //
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/LiveStackAnalysis.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "regalloc"
42
43 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
44 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
45
46 //===----------------------------------------------------------------------===//
47 // VirtRegMap implementation
48 //===----------------------------------------------------------------------===//
49
50 char VirtRegMap::ID = 0;
51
52 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
53
runOnMachineFunction(MachineFunction & mf)54 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
55 MRI = &mf.getRegInfo();
56 TII = mf.getSubtarget().getInstrInfo();
57 TRI = mf.getSubtarget().getRegisterInfo();
58 MF = &mf;
59
60 Virt2PhysMap.clear();
61 Virt2StackSlotMap.clear();
62 Virt2SplitMap.clear();
63
64 grow();
65 return false;
66 }
67
grow()68 void VirtRegMap::grow() {
69 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
70 Virt2PhysMap.resize(NumRegs);
71 Virt2StackSlotMap.resize(NumRegs);
72 Virt2SplitMap.resize(NumRegs);
73 }
74
createSpillSlot(const TargetRegisterClass * RC)75 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
76 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
77 RC->getAlignment());
78 ++NumSpillSlots;
79 return SS;
80 }
81
hasPreferredPhys(unsigned VirtReg)82 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
83 unsigned Hint = MRI->getSimpleHint(VirtReg);
84 if (!Hint)
85 return false;
86 if (TargetRegisterInfo::isVirtualRegister(Hint))
87 Hint = getPhys(Hint);
88 return getPhys(VirtReg) == Hint;
89 }
90
hasKnownPreference(unsigned VirtReg)91 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
92 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
93 if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
94 return true;
95 if (TargetRegisterInfo::isVirtualRegister(Hint.second))
96 return hasPhys(Hint.second);
97 return false;
98 }
99
assignVirt2StackSlot(unsigned virtReg)100 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
101 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
102 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
103 "attempt to assign stack slot to already spilled register");
104 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
105 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
106 }
107
assignVirt2StackSlot(unsigned virtReg,int SS)108 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
109 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
110 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
111 "attempt to assign stack slot to already spilled register");
112 assert((SS >= 0 ||
113 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
114 "illegal fixed frame index");
115 Virt2StackSlotMap[virtReg] = SS;
116 }
117
print(raw_ostream & OS,const Module *) const118 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
119 OS << "********** REGISTER MAP **********\n";
120 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
121 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
122 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
123 OS << '[' << PrintReg(Reg, TRI) << " -> "
124 << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
125 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
126 }
127 }
128
129 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
130 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
131 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
132 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
133 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
134 }
135 }
136 OS << '\n';
137 }
138
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const140 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
141 print(dbgs());
142 }
143 #endif
144
145 //===----------------------------------------------------------------------===//
146 // VirtRegRewriter
147 //===----------------------------------------------------------------------===//
148 //
149 // The VirtRegRewriter is the last of the register allocator passes.
150 // It rewrites virtual registers to physical registers as specified in the
151 // VirtRegMap analysis. It also updates live-in information on basic blocks
152 // according to LiveIntervals.
153 //
154 namespace {
155 class VirtRegRewriter : public MachineFunctionPass {
156 MachineFunction *MF;
157 const TargetMachine *TM;
158 const TargetRegisterInfo *TRI;
159 const TargetInstrInfo *TII;
160 MachineRegisterInfo *MRI;
161 SlotIndexes *Indexes;
162 LiveIntervals *LIS;
163 VirtRegMap *VRM;
164
165 void rewrite();
166 void addMBBLiveIns();
167 bool readsUndefSubreg(const MachineOperand &MO) const;
168 void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
169 void handleIdentityCopy(MachineInstr &MI) const;
170
171 public:
172 static char ID;
VirtRegRewriter()173 VirtRegRewriter() : MachineFunctionPass(ID) {}
174
175 void getAnalysisUsage(AnalysisUsage &AU) const override;
176
177 bool runOnMachineFunction(MachineFunction&) override;
getSetProperties() const178 MachineFunctionProperties getSetProperties() const override {
179 return MachineFunctionProperties().set(
180 MachineFunctionProperties::Property::AllVRegsAllocated);
181 }
182 };
183 } // end anonymous namespace
184
185 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
186
187 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
188 "Virtual Register Rewriter", false, false)
189 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
192 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
193 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
194 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
195 "Virtual Register Rewriter", false, false)
196
197 char VirtRegRewriter::ID = 0;
198
getAnalysisUsage(AnalysisUsage & AU) const199 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
200 AU.setPreservesCFG();
201 AU.addRequired<LiveIntervals>();
202 AU.addRequired<SlotIndexes>();
203 AU.addPreserved<SlotIndexes>();
204 AU.addRequired<LiveDebugVariables>();
205 AU.addRequired<LiveStacks>();
206 AU.addPreserved<LiveStacks>();
207 AU.addRequired<VirtRegMap>();
208 MachineFunctionPass::getAnalysisUsage(AU);
209 }
210
runOnMachineFunction(MachineFunction & fn)211 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
212 MF = &fn;
213 TM = &MF->getTarget();
214 TRI = MF->getSubtarget().getRegisterInfo();
215 TII = MF->getSubtarget().getInstrInfo();
216 MRI = &MF->getRegInfo();
217 Indexes = &getAnalysis<SlotIndexes>();
218 LIS = &getAnalysis<LiveIntervals>();
219 VRM = &getAnalysis<VirtRegMap>();
220 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
221 << "********** Function: "
222 << MF->getName() << '\n');
223 DEBUG(VRM->dump());
224
225 // Add kill flags while we still have virtual registers.
226 LIS->addKillFlags(VRM);
227
228 // Live-in lists on basic blocks are required for physregs.
229 addMBBLiveIns();
230
231 // Rewrite virtual registers.
232 rewrite();
233
234 // Write out new DBG_VALUE instructions.
235 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
236
237 // All machine operands and other references to virtual registers have been
238 // replaced. Remove the virtual registers and release all the transient data.
239 VRM->clearAllVirt();
240 MRI->clearVirtRegs();
241 return true;
242 }
243
addLiveInsForSubRanges(const LiveInterval & LI,unsigned PhysReg) const244 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
245 unsigned PhysReg) const {
246 assert(!LI.empty());
247 assert(LI.hasSubRanges());
248
249 typedef std::pair<const LiveInterval::SubRange *,
250 LiveInterval::const_iterator> SubRangeIteratorPair;
251 SmallVector<SubRangeIteratorPair, 4> SubRanges;
252 SlotIndex First;
253 SlotIndex Last;
254 for (const LiveInterval::SubRange &SR : LI.subranges()) {
255 SubRanges.push_back(std::make_pair(&SR, SR.begin()));
256 if (!First.isValid() || SR.segments.front().start < First)
257 First = SR.segments.front().start;
258 if (!Last.isValid() || SR.segments.back().end > Last)
259 Last = SR.segments.back().end;
260 }
261
262 // Check all mbb start positions between First and Last while
263 // simulatenously advancing an iterator for each subrange.
264 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
265 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
266 SlotIndex MBBBegin = MBBI->first;
267 // Advance all subrange iterators so that their end position is just
268 // behind MBBBegin (or the iterator is at the end).
269 LaneBitmask LaneMask = 0;
270 for (auto &RangeIterPair : SubRanges) {
271 const LiveInterval::SubRange *SR = RangeIterPair.first;
272 LiveInterval::const_iterator &SRI = RangeIterPair.second;
273 while (SRI != SR->end() && SRI->end <= MBBBegin)
274 ++SRI;
275 if (SRI == SR->end())
276 continue;
277 if (SRI->start <= MBBBegin)
278 LaneMask |= SR->LaneMask;
279 }
280 if (LaneMask == 0)
281 continue;
282 MachineBasicBlock *MBB = MBBI->second;
283 MBB->addLiveIn(PhysReg, LaneMask);
284 }
285 }
286
287 // Compute MBB live-in lists from virtual register live ranges and their
288 // assignments.
addMBBLiveIns()289 void VirtRegRewriter::addMBBLiveIns() {
290 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
291 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
292 if (MRI->reg_nodbg_empty(VirtReg))
293 continue;
294 LiveInterval &LI = LIS->getInterval(VirtReg);
295 if (LI.empty() || LIS->intervalIsInOneMBB(LI))
296 continue;
297 // This is a virtual register that is live across basic blocks. Its
298 // assigned PhysReg must be marked as live-in to those blocks.
299 unsigned PhysReg = VRM->getPhys(VirtReg);
300 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
301
302 if (LI.hasSubRanges()) {
303 addLiveInsForSubRanges(LI, PhysReg);
304 } else {
305 // Go over MBB begin positions and see if we have segments covering them.
306 // The following works because segments and the MBBIndex list are both
307 // sorted by slot indexes.
308 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
309 for (const auto &Seg : LI) {
310 I = Indexes->advanceMBBIndex(I, Seg.start);
311 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
312 MachineBasicBlock *MBB = I->second;
313 MBB->addLiveIn(PhysReg);
314 }
315 }
316 }
317 }
318
319 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
320 // each MBB's LiveIns set before calling addLiveIn on them.
321 for (MachineBasicBlock &MBB : *MF)
322 MBB.sortUniqueLiveIns();
323 }
324
325 /// Returns true if the given machine operand \p MO only reads undefined lanes.
326 /// The function only works for use operands with a subregister set.
readsUndefSubreg(const MachineOperand & MO) const327 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
328 // Shortcut if the operand is already marked undef.
329 if (MO.isUndef())
330 return true;
331
332 unsigned Reg = MO.getReg();
333 const LiveInterval &LI = LIS->getInterval(Reg);
334 const MachineInstr &MI = *MO.getParent();
335 SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
336 // This code is only meant to handle reading undefined subregisters which
337 // we couldn't properly detect before.
338 assert(LI.liveAt(BaseIndex) &&
339 "Reads of completely dead register should be marked undef already");
340 unsigned SubRegIdx = MO.getSubReg();
341 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
342 // See if any of the relevant subregister liveranges is defined at this point.
343 for (const LiveInterval::SubRange &SR : LI.subranges()) {
344 if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex))
345 return false;
346 }
347 return true;
348 }
349
handleIdentityCopy(MachineInstr & MI) const350 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
351 if (!MI.isIdentityCopy())
352 return;
353 DEBUG(dbgs() << "Identity copy: " << MI);
354 ++NumIdCopies;
355
356 // Copies like:
357 // %R0 = COPY %R0<undef>
358 // %AL = COPY %AL, %EAX<imp-def>
359 // give us additional liveness information: The target (super-)register
360 // must not be valid before this point. Replace the COPY with a KILL
361 // instruction to maintain this information.
362 if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) {
363 MI.setDesc(TII->get(TargetOpcode::KILL));
364 DEBUG(dbgs() << " replace by: " << MI);
365 return;
366 }
367
368 if (Indexes)
369 Indexes->removeMachineInstrFromMaps(MI);
370 MI.eraseFromParent();
371 DEBUG(dbgs() << " deleted.\n");
372 }
373
rewrite()374 void VirtRegRewriter::rewrite() {
375 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
376 SmallVector<unsigned, 8> SuperDeads;
377 SmallVector<unsigned, 8> SuperDefs;
378 SmallVector<unsigned, 8> SuperKills;
379
380 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
381 MBBI != MBBE; ++MBBI) {
382 DEBUG(MBBI->print(dbgs(), Indexes));
383 for (MachineBasicBlock::instr_iterator
384 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
385 MachineInstr *MI = &*MII;
386 ++MII;
387
388 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
389 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
390 MachineOperand &MO = *MOI;
391
392 // Make sure MRI knows about registers clobbered by regmasks.
393 if (MO.isRegMask())
394 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
395
396 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
397 continue;
398 unsigned VirtReg = MO.getReg();
399 unsigned PhysReg = VRM->getPhys(VirtReg);
400 assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
401 "Instruction uses unmapped VirtReg");
402 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
403
404 // Preserve semantics of sub-register operands.
405 unsigned SubReg = MO.getSubReg();
406 if (SubReg != 0) {
407 if (NoSubRegLiveness) {
408 // A virtual register kill refers to the whole register, so we may
409 // have to add <imp-use,kill> operands for the super-register. A
410 // partial redef always kills and redefines the super-register.
411 if (MO.readsReg() && (MO.isDef() || MO.isKill()))
412 SuperKills.push_back(PhysReg);
413
414 if (MO.isDef()) {
415 // Also add implicit defs for the super-register.
416 if (MO.isDead())
417 SuperDeads.push_back(PhysReg);
418 else
419 SuperDefs.push_back(PhysReg);
420 }
421 } else {
422 if (MO.isUse()) {
423 if (readsUndefSubreg(MO))
424 // We need to add an <undef> flag if the subregister is
425 // completely undefined (and we are not adding super-register
426 // defs).
427 MO.setIsUndef(true);
428 } else if (!MO.isDead()) {
429 assert(MO.isDef());
430 }
431 }
432
433 // The <def,undef> flag only makes sense for sub-register defs, and
434 // we are substituting a full physreg. An <imp-use,kill> operand
435 // from the SuperKills list will represent the partial read of the
436 // super-register.
437 if (MO.isDef())
438 MO.setIsUndef(false);
439
440 // PhysReg operands cannot have subregister indexes.
441 PhysReg = TRI->getSubReg(PhysReg, SubReg);
442 assert(PhysReg && "Invalid SubReg for physical register");
443 MO.setSubReg(0);
444 }
445 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
446 // we need the inlining here.
447 MO.setReg(PhysReg);
448 }
449
450 // Add any missing super-register kills after rewriting the whole
451 // instruction.
452 while (!SuperKills.empty())
453 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
454
455 while (!SuperDeads.empty())
456 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
457
458 while (!SuperDefs.empty())
459 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
460
461 DEBUG(dbgs() << "> " << *MI);
462
463 // We can remove identity copies right now.
464 handleIdentityCopy(*MI);
465 }
466 }
467 }
468