1//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes Mips16 instructions. 11// 12//===----------------------------------------------------------------------===// 13// 14// 15// Mips Address 16// 17def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>; 18def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>; 19 20// 21// Address operand 22def mem16 : Operand<i32> { 23 let PrintMethod = "printMemOperand"; 24 let MIOperandInfo = (ops CPU16Regs, simm16); 25 let EncoderMethod = "getMemEncoding"; 26} 27 28def mem16sp : Operand<i32> { 29 let PrintMethod = "printMemOperand"; 30 // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at 31 // keeping the sp-relative load and the other varieties separate at the 32 // moment. This lie fixes the problem sufficiently well to fix the errors 33 // emitted by -verify-machineinstrs and the output ends up correct as long 34 // as we use an external assembler (which is already a requirement for MIPS16 35 // for several other reasons). 36 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 37 let EncoderMethod = "getMemEncoding"; 38} 39 40def mem16_ea : Operand<i32> { 41 let PrintMethod = "printMemOperandEA"; 42 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 43 let EncoderMethod = "getMemEncoding"; 44} 45 46def pcrel16 : Operand<i32>; 47 48// 49// I-type instruction format 50// 51// this is only used by bimm. the actual assembly value is a 12 bit signed 52// number 53// 54class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>: 55 FI16<op, (outs), (ins brtarget:$imm16), 56 !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>; 57 58// 59// 60// I8 instruction format 61// 62 63class FI816_ins_base<bits<3> _func, string asmstr, 64 string asmstr2, InstrItinClass itin>: 65 FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 66 [], itin>; 67 68class FI816_ins<bits<3> _func, string asmstr, 69 InstrItinClass itin>: 70 FI816_ins_base<_func, asmstr, "\t$imm # 16 bit inst", itin>; 71 72class FI816_SP_ins<bits<3> _func, string asmstr, 73 InstrItinClass itin>: 74 FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>; 75 76// 77// RI instruction format 78// 79 80 81class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2, 82 InstrItinClass itin>: 83 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm), 84 !strconcat(asmstr, asmstr2), [], itin>; 85 86class FRI16_ins<bits<5> op, string asmstr, 87 InstrItinClass itin>: 88 FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 89 90class FRI16_TCP_ins<bits<5> _op, string asmstr, 91 InstrItinClass itin>: 92 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 93 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>; 94 95class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2, 96 InstrItinClass itin>: 97 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm), 98 !strconcat(asmstr, asmstr2), [], itin>; 99 100class FRI16R_ins<bits<5> op, string asmstr, 101 InstrItinClass itin>: 102 FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 103 104class F2RI16_ins<bits<5> _op, string asmstr, 105 InstrItinClass itin>: 106 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 107 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> { 108 let Constraints = "$rx_ = $rx"; 109} 110 111class FRI16_B_ins<bits<5> _op, string asmstr, 112 InstrItinClass itin>: 113 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 114 !strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>; 115// 116// Compare a register and immediate and place result in CC 117// Implicit use of T8 118// 119// EXT-CCRR Instruction format 120// 121class FEXT_CCRXI16_ins<string asmstr>: 122 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), 123 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> { 124 let isCodeGenOnly=1; 125 let usesCustomInserter = 1; 126} 127 128// JAL and JALX instruction format 129// 130class FJAL16_ins<bits<1> _X, string asmstr, 131 InstrItinClass itin>: 132 FJAL16<_X, (outs), (ins uimm26:$imm), 133 !strconcat(asmstr, "\t$imm\n\tnop"),[], 134 itin> { 135 let isCodeGenOnly=1; 136 let Size=6; 137} 138 139class FJALB16_ins<bits<1> _X, string asmstr, 140 InstrItinClass itin>: 141 FJAL16<_X, (outs), (ins uimm26:$imm), 142 !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[], 143 itin> { 144 let isCodeGenOnly=1; 145 let Size=6; 146} 147 148// 149// EXT-I instruction format 150// 151class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> : 152 FEXT_I16<eop, (outs), (ins brtarget:$imm16), 153 !strconcat(asmstr, "\t$imm16"),[], itin>; 154 155// 156// EXT-I8 instruction format 157// 158 159class FEXT_I816_ins_base<bits<3> _func, string asmstr, 160 string asmstr2, InstrItinClass itin>: 161 FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 162 [], itin>; 163 164class FEXT_I816_ins<bits<3> _func, string asmstr, 165 InstrItinClass itin>: 166 FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>; 167 168class FEXT_I816_SP_ins<bits<3> _func, string asmstr, 169 InstrItinClass itin>: 170 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>; 171 172// 173// Assembler formats in alphabetical order. 174// Natural and pseudos are mixed together. 175// 176// Compare two registers and place result in CC 177// Implicit use of T8 178// 179// CC-RR Instruction format 180// 181class FCCRR16_ins<string asmstr> : 182 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry), 183 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> { 184 let isCodeGenOnly=1; 185 let usesCustomInserter = 1; 186} 187 188// 189// EXT-RI instruction format 190// 191 192class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2, 193 InstrItinClass itin>: 194 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), 195 !strconcat(asmstr, asmstr2), [], itin>; 196 197class FEXT_RI16_ins<bits<5> _op, string asmstr, 198 InstrItinClass itin>: 199 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 200 201class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2, 202 InstrItinClass itin>: 203 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm), 204 !strconcat(asmstr, asmstr2), [], itin>; 205 206class FEXT_RI16R_ins<bits<5> _op, string asmstr, 207 InstrItinClass itin>: 208 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 209 210class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>: 211 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; 212 213class FEXT_RI16_B_ins<bits<5> _op, string asmstr, 214 InstrItinClass itin>: 215 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 216 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 217 218class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr, 219 InstrItinClass itin>: 220 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 221 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 222 223class FEXT_2RI16_ins<bits<5> _op, string asmstr, 224 InstrItinClass itin>: 225 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 226 !strconcat(asmstr, "\t$rx, $imm"), [], itin> { 227 let Constraints = "$rx_ = $rx"; 228} 229 230// 231// EXT-RRI instruction format 232// 233 234class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd, 235 InstrItinClass itin>: 236 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 237 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 238 239class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd, 240 InstrItinClass itin>: 241 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr), 242 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 243 244// 245// 246// EXT-RRI-A instruction format 247// 248 249class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd, 250 InstrItinClass itin>: 251 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 252 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 253 254// 255// EXT-SHIFT instruction format 256// 257class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>: 258 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa), 259 !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; 260 261// 262// EXT-T8I8 263// 264class FEXT_T8I816_ins<string asmstr, string asmstr2>: 265 MipsPseudo16<(outs), 266 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), 267 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", 268 !strconcat(asmstr, "\t$imm"))),[]> { 269 let isCodeGenOnly=1; 270 let usesCustomInserter = 1; 271} 272 273// 274// EXT-T8I8I 275// 276class FEXT_T8I8I16_ins<string asmstr, string asmstr2>: 277 MipsPseudo16<(outs), 278 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), 279 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", 280 !strconcat(asmstr, "\t$targ"))), []> { 281 let isCodeGenOnly=1; 282 let usesCustomInserter = 1; 283} 284// 285 286 287// 288// I8_MOVR32 instruction format (used only by the MOVR32 instructio 289// 290class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>: 291 FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32), 292 !strconcat(asmstr, "\t$rz, $r32"), [], itin>; 293 294// 295// I8_MOV32R instruction format (used only by MOV32R instruction) 296// 297 298class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>: 299 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz), 300 !strconcat(asmstr, "\t$r32, $rz"), [], itin>; 301 302// 303// This are pseudo formats for multiply 304// This first one can be changed to non-pseudo now. 305// 306// MULT 307// 308class FMULT16_ins<string asmstr, InstrItinClass itin> : 309 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 310 !strconcat(asmstr, "\t$rx, $ry"), []>; 311 312// 313// MULT-LO 314// 315class FMULT16_LO_ins<string asmstr, InstrItinClass itin> : 316 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 317 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { 318 let isCodeGenOnly=1; 319} 320 321// 322// RR-type instruction format 323// 324 325class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 326 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 327 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 328} 329 330class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> : 331 FRRBreak16<(outs), (ins), asmstr, [], itin> { 332 let Code=0; 333} 334 335class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> : 336 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 337 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 338} 339 340class FRRTR16_ins<string asmstr> : 341 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 342 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ; 343 344// 345// maybe refactor but need a $zero as a dummy first parameter 346// 347class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> : 348 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry), 349 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ; 350 351class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 352 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 353 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ; 354 355 356class FRR16_M_ins<bits<5> f, string asmstr, 357 InstrItinClass itin> : 358 FRR16<f, (outs CPU16Regs:$rx), (ins), 359 !strconcat(asmstr, "\t$rx"), [], itin>; 360 361class FRxRxRy16_ins<bits<5> f, string asmstr, 362 InstrItinClass itin> : 363 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 364 !strconcat(asmstr, "\t$rz, $ry"), 365 [], itin> { 366 let Constraints = "$rx = $rz"; 367} 368 369let rx=0 in 370class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_, 371 string asmstr, InstrItinClass itin>: 372 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"), 373 [], itin> ; 374 375 376class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra, 377 string asmstr, InstrItinClass itin>: 378 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx), 379 !strconcat(asmstr, "\t $rx"), [], itin> ; 380 381class FRR_SF16_ins 382 <bits<5> _funct, bits<3> _subfunc, 383 string asmstr, InstrItinClass itin>: 384 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_), 385 !strconcat(asmstr, "\t $rx"), 386 [], itin> { 387 let Constraints = "$rx_ = $rx"; 388 } 389// 390// RRR-type instruction format 391// 392 393class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> : 394 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 395 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; 396 397// 398// These Sel patterns support the generation of conditional move 399// pseudo instructions. 400// 401// The nomenclature uses the components making up the pseudo and may 402// be a bit counter intuitive when compared with the end result we seek. 403// For example using a bqez in the example directly below results in the 404// conditional move being done if the tested register is not zero. 405// I considered in easier to check by keeping the pseudo consistent with 406// it's components but it could have been done differently. 407// 408// The simplest case is when can test and operand directly and do the 409// conditional move based on a simple mips16 conditional 410// branch instruction. 411// for example: 412// if $op == beqz or bnez: 413// 414// $op1 $rt, .+4 415// move $rd, $rs 416// 417// if $op == beqz, then if $rt != 0, then the conditional assignment 418// $rd = $rs is done. 419 420// if $op == bnez, then if $rt == 0, then the conditional assignment 421// $rd = $rs is done. 422// 423// So this pseudo class only has one operand, i.e. op 424// 425class Sel<string op>: 426 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 427 CPU16Regs:$rt), 428 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> { 429 //let isCodeGenOnly=1; 430 let Constraints = "$rd = $rd_"; 431 let usesCustomInserter = 1; 432} 433 434// 435// The next two instruction classes allow for an operand which tests 436// two operands and returns a value in register T8 and 437//then does a conditional branch based on the value of T8 438// 439 440// op2 can be cmpi or slti/sltiu 441// op1 can bteqz or btnez 442// the operands for op2 are a register and a signed constant 443// 444// $op2 $t, $imm ;test register t and branch conditionally 445// $op1 .+4 ;op1 is a conditional branch 446// move $rd, $rs 447// 448// 449class SeliT<string op1, string op2>: 450 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 451 CPU16Regs:$rl, simm16:$imm), 452 !strconcat(op2, 453 !strconcat("\t$rl, $imm\n\t", 454 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 455 let isCodeGenOnly=1; 456 let Constraints = "$rd = $rd_"; 457 let usesCustomInserter = 1; 458} 459 460// 461// op2 can be cmp or slt/sltu 462// op1 can be bteqz or btnez 463// the operands for op2 are two registers 464// op1 is a conditional branch 465// 466// 467// $op2 $rl, $rr ;test registers rl,rr 468// $op1 .+4 ;op2 is a conditional branch 469// move $rd, $rs 470// 471// 472class SelT<string op1, string op2>: 473 MipsPseudo16<(outs CPU16Regs:$rd_), 474 (ins CPU16Regs:$rd, CPU16Regs:$rs, 475 CPU16Regs:$rl, CPU16Regs:$rr), 476 !strconcat(op2, 477 !strconcat("\t$rl, $rr\n\t", 478 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 479 let isCodeGenOnly=1; 480 let Constraints = "$rd = $rd_"; 481 let usesCustomInserter = 1; 482} 483 484// 485// 32 bit constant 486// 487def Constant32: 488 MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>; 489 490def LwConstant32: 491 MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid), 492 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; 493 494 495// 496// Some general instruction class info 497// 498// 499 500class ArithLogic16Defs<bit isCom=0> { 501 bits<5> shamt = 0; 502 bit isCommutable = isCom; 503 bit isReMaterializable = 1; 504 bit hasSideEffects = 0; 505} 506 507class branch16 { 508 bit isBranch = 1; 509 bit isTerminator = 1; 510 bit isBarrier = 1; 511} 512 513class cbranch16 { 514 bit isBranch = 1; 515 bit isTerminator = 1; 516} 517 518class MayLoad { 519 bit mayLoad = 1; 520} 521 522class MayStore { 523 bit mayStore = 1; 524} 525// 526 527 528// Format: ADDIU rx, immediate MIPS16e 529// Purpose: Add Immediate Unsigned Word (2-Operand, Extended) 530// To add a constant to a 32-bit integer. 531// 532def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>; 533 534def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>, 535 ArithLogic16Defs<0> { 536 let AddedComplexity = 5; 537} 538def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>, 539 ArithLogic16Defs<0> { 540 let isCodeGenOnly = 1; 541} 542 543def AddiuRxRyOffMemX16: 544 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>; 545 546// 547 548// Format: ADDIU rx, pc, immediate MIPS16e 549// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) 550// To add a constant to the program counter. 551// 552def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>; 553 554// 555// Format: ADDIU sp, immediate MIPS16e 556// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) 557// To add a constant to the stack pointer. 558// 559def AddiuSpImm16 560 : FI816_SP_ins<0b011, "addiu", IIM16Alu> { 561 let Defs = [SP]; 562 let Uses = [SP]; 563 let AddedComplexity = 5; 564} 565 566def AddiuSpImmX16 567 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> { 568 let Defs = [SP]; 569 let Uses = [SP]; 570} 571 572// 573// Format: ADDU rz, rx, ry MIPS16e 574// Purpose: Add Unsigned Word (3-Operand) 575// To add 32-bit integers. 576// 577 578def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>; 579 580// 581// Format: AND rx, ry MIPS16e 582// Purpose: AND 583// To do a bitwise logical AND. 584 585def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>; 586 587 588// 589// Format: BEQZ rx, offset MIPS16e 590// Purpose: Branch on Equal to Zero 591// To test a GPR then do a PC-relative conditional branch. 592// 593def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 594 595 596// 597// Format: BEQZ rx, offset MIPS16e 598// Purpose: Branch on Equal to Zero (Extended) 599// To test a GPR then do a PC-relative conditional branch. 600// 601def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 602 603// 604// Format: B offset MIPS16e 605// Purpose: Unconditional Branch (Extended) 606// To do an unconditional PC-relative branch. 607// 608 609def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16; 610 611// Format: B offset MIPS16e 612// Purpose: Unconditional Branch 613// To do an unconditional PC-relative branch. 614// 615def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16; 616 617// 618// Format: BNEZ rx, offset MIPS16e 619// Purpose: Branch on Not Equal to Zero 620// To test a GPR then do a PC-relative conditional branch. 621// 622def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 623 624// 625// Format: BNEZ rx, offset MIPS16e 626// Purpose: Branch on Not Equal to Zero (Extended) 627// To test a GPR then do a PC-relative conditional branch. 628// 629def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 630 631 632// 633//Format: BREAK immediate 634// Purpose: Breakpoint 635// To cause a Breakpoint exception. 636 637def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>; 638// 639// Format: BTEQZ offset MIPS16e 640// Purpose: Branch on T Equal to Zero (Extended) 641// To test special register T then do a PC-relative conditional branch. 642// 643def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 644 let Uses = [T8]; 645} 646 647def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 648 let Uses = [T8]; 649} 650 651def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16; 652 653def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">, 654 cbranch16; 655 656def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16; 657 658def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16; 659 660def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16; 661 662def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">, 663 cbranch16; 664 665// 666// Format: BTNEZ offset MIPS16e 667// Purpose: Branch on T Not Equal to Zero (Extended) 668// To test special register T then do a PC-relative conditional branch. 669// 670 671def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 { 672 let Uses = [T8]; 673} 674 675def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 { 676 let Uses = [T8]; 677} 678 679def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16; 680 681def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16; 682 683def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16; 684 685def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16; 686 687def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16; 688 689def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">, 690 cbranch16; 691 692// 693// Format: CMP rx, ry MIPS16e 694// Purpose: Compare 695// To compare the contents of two GPRs. 696// 697def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> { 698 let Defs = [T8]; 699} 700 701// 702// Format: CMPI rx, immediate MIPS16e 703// Purpose: Compare Immediate 704// To compare a constant with the contents of a GPR. 705// 706def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> { 707 let Defs = [T8]; 708} 709 710// 711// Format: CMPI rx, immediate MIPS16e 712// Purpose: Compare Immediate (Extended) 713// To compare a constant with the contents of a GPR. 714// 715def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> { 716 let Defs = [T8]; 717} 718 719 720// 721// Format: DIV rx, ry MIPS16e 722// Purpose: Divide Word 723// To divide 32-bit signed integers. 724// 725def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> { 726 let Defs = [HI0, LO0]; 727} 728 729// 730// Format: DIVU rx, ry MIPS16e 731// Purpose: Divide Unsigned Word 732// To divide 32-bit unsigned integers. 733// 734def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> { 735 let Defs = [HI0, LO0]; 736} 737// 738// Format: JAL target MIPS16e 739// Purpose: Jump and Link 740// To execute a procedure call within the current 256 MB-aligned 741// region and preserve the current ISA. 742// 743 744def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> { 745 let hasDelaySlot = 0; // not true, but we add the nop for now 746 let isCall=1; 747 let Defs = [RA]; 748} 749 750def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 { 751 let hasDelaySlot = 0; // not true, but we add the nop for now 752 let isBranch=1; 753 let Defs = [RA]; 754} 755 756// 757// Format: JR ra MIPS16e 758// Purpose: Jump Register Through Register ra 759// To execute a branch to the instruction address in the return 760// address register. 761// 762 763def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> { 764 let isBranch = 1; 765 let isIndirectBranch = 1; 766 let hasDelaySlot = 1; 767 let isTerminator=1; 768 let isBarrier=1; 769} 770 771def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> { 772 let isBranch = 1; 773 let isIndirectBranch = 1; 774 let isTerminator=1; 775 let isBarrier=1; 776} 777 778def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> { 779 let isBranch = 1; 780 let isIndirectBranch = 1; 781 let isTerminator=1; 782 let isBarrier=1; 783} 784// 785// Format: LB ry, offset(rx) MIPS16e 786// Purpose: Load Byte (Extended) 787// To load a byte from memory as a signed value. 788// 789def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{ 790 let isCodeGenOnly = 1; 791} 792 793// 794// Format: LBU ry, offset(rx) MIPS16e 795// Purpose: Load Byte Unsigned (Extended) 796// To load a byte from memory as a unsigned value. 797// 798def LbuRxRyOffMemX16: 799 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad { 800 let isCodeGenOnly = 1; 801} 802 803// 804// Format: LH ry, offset(rx) MIPS16e 805// Purpose: Load Halfword signed (Extended) 806// To load a halfword from memory as a signed value. 807// 808def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{ 809 let isCodeGenOnly = 1; 810} 811 812// 813// Format: LHU ry, offset(rx) MIPS16e 814// Purpose: Load Halfword unsigned (Extended) 815// To load a halfword from memory as an unsigned value. 816// 817def LhuRxRyOffMemX16: 818 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad { 819 let isCodeGenOnly = 1; 820} 821 822// 823// Format: LI rx, immediate MIPS16e 824// Purpose: Load Immediate 825// To load a constant into a GPR. 826// 827def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>; 828 829// 830// Format: LI rx, immediate MIPS16e 831// Purpose: Load Immediate (Extended) 832// To load a constant into a GPR. 833// 834def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>; 835 836def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> { 837 let isCodeGenOnly = 1; 838} 839 840// 841// Format: LW ry, offset(rx) MIPS16e 842// Purpose: Load Word (Extended) 843// To load a word from memory as a signed value. 844// 845def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{ 846 let isCodeGenOnly = 1; 847} 848 849// Format: LW rx, offset(sp) MIPS16e 850// Purpose: Load Word (SP-Relative, Extended) 851// To load an SP-relative word from memory as a signed value. 852// 853def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad; 854 855def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 856 857def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 858// 859// Format: MOVE r32, rz MIPS16e 860// Purpose: Move 861// To move the contents of a GPR to a GPR. 862// 863def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>; 864 865// 866// Format: MOVE ry, r32 MIPS16e 867//Purpose: Move 868// To move the contents of a GPR to a GPR. 869// 870def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu>; 871 872// 873// Format: MFHI rx MIPS16e 874// Purpose: Move From HI Register 875// To copy the special purpose HI register to a GPR. 876// 877def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> { 878 let Uses = [HI0]; 879 let hasSideEffects = 0; 880} 881 882// 883// Format: MFLO rx MIPS16e 884// Purpose: Move From LO Register 885// To copy the special purpose LO register to a GPR. 886// 887def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> { 888 let Uses = [LO0]; 889 let hasSideEffects = 0; 890} 891 892// 893// Pseudo Instruction for mult 894// 895def MultRxRy16: FMULT16_ins<"mult", IIM16Alu> { 896 let isCommutable = 1; 897 let hasSideEffects = 0; 898 let Defs = [HI0, LO0]; 899} 900 901def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> { 902 let isCommutable = 1; 903 let hasSideEffects = 0; 904 let Defs = [HI0, LO0]; 905} 906 907// 908// Format: MULT rx, ry MIPS16e 909// Purpose: Multiply Word 910// To multiply 32-bit signed integers. 911// 912def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> { 913 let isCommutable = 1; 914 let hasSideEffects = 0; 915 let Defs = [HI0, LO0]; 916} 917 918// 919// Format: MULTU rx, ry MIPS16e 920// Purpose: Multiply Unsigned Word 921// To multiply 32-bit unsigned integers. 922// 923def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> { 924 let isCommutable = 1; 925 let hasSideEffects = 0; 926 let Defs = [HI0, LO0]; 927} 928 929// 930// Format: NEG rx, ry MIPS16e 931// Purpose: Negate 932// To negate an integer value. 933// 934def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>; 935 936// 937// Format: NOT rx, ry MIPS16e 938// Purpose: Not 939// To complement an integer value 940// 941def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>; 942 943// 944// Format: OR rx, ry MIPS16e 945// Purpose: Or 946// To do a bitwise logical OR. 947// 948def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>; 949 950// 951// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} 952// (All args are optional) MIPS16e 953// Purpose: Restore Registers and Deallocate Stack Frame 954// To deallocate a stack frame before exit from a subroutine, 955// restoring return address and static registers, and adjusting 956// stack 957// 958 959def Restore16: 960 FI8_SVRS16<0b1, (outs), (ins variable_ops), 961 "", [], II_RESTORE >, MayLoad { 962 let isCodeGenOnly = 1; 963 let Defs = [SP]; 964 let Uses = [SP]; 965} 966 967 968def RestoreX16: 969 FI8_SVRS16<0b1, (outs), (ins variable_ops), 970 "", [], II_RESTORE >, MayLoad { 971 let isCodeGenOnly = 1; 972 let Defs = [SP]; 973 let Uses = [SP]; 974} 975 976// 977// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) 978// MIPS16e 979// Purpose: Save Registers and Set Up Stack Frame 980// To set up a stack frame on entry to a subroutine, 981// saving return address and static registers, and adjusting stack 982// 983def Save16: 984 FI8_SVRS16<0b1, (outs), (ins variable_ops), 985 "", [], II_SAVE >, MayStore { 986 let isCodeGenOnly = 1; 987 let Uses = [SP]; 988 let Defs = [SP]; 989} 990 991def SaveX16: 992 FI8_SVRS16<0b1, (outs), (ins variable_ops), 993 "", [], II_SAVE >, MayStore { 994 let isCodeGenOnly = 1; 995 let Uses = [SP]; 996 let Defs = [SP]; 997} 998// 999// Format: SB ry, offset(rx) MIPS16e 1000// Purpose: Store Byte (Extended) 1001// To store a byte to memory. 1002// 1003def SbRxRyOffMemX16: 1004 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore; 1005 1006// 1007// Format: SEB rx MIPS16e 1008// Purpose: Sign-Extend Byte 1009// Sign-extend least significant byte in register rx. 1010// 1011def SebRx16 1012 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>; 1013 1014// 1015// Format: SEH rx MIPS16e 1016// Purpose: Sign-Extend Halfword 1017// Sign-extend least significant word in register rx. 1018// 1019def SehRx16 1020 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>; 1021 1022// 1023// The Sel(T) instructions are pseudos 1024// T means that they use T8 implicitly. 1025// 1026// 1027// Format: SelBeqZ rd, rs, rt 1028// Purpose: if rt==0, do nothing 1029// else rs = rt 1030// 1031def SelBeqZ: Sel<"beqz">; 1032 1033// 1034// Format: SelTBteqZCmp rd, rs, rl, rr 1035// Purpose: b = Cmp rl, rr. 1036// If b==0 then do nothing. 1037// if b!=0 then rd = rs 1038// 1039def SelTBteqZCmp: SelT<"bteqz", "cmp">; 1040 1041// 1042// Format: SelTBteqZCmpi rd, rs, rl, rr 1043// Purpose: b = Cmpi rl, imm. 1044// If b==0 then do nothing. 1045// if b!=0 then rd = rs 1046// 1047def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">; 1048 1049// 1050// Format: SelTBteqZSlt rd, rs, rl, rr 1051// Purpose: b = Slt rl, rr. 1052// If b==0 then do nothing. 1053// if b!=0 then rd = rs 1054// 1055def SelTBteqZSlt: SelT<"bteqz", "slt">; 1056 1057// 1058// Format: SelTBteqZSlti rd, rs, rl, rr 1059// Purpose: b = Slti rl, imm. 1060// If b==0 then do nothing. 1061// if b!=0 then rd = rs 1062// 1063def SelTBteqZSlti: SeliT<"bteqz", "slti">; 1064 1065// 1066// Format: SelTBteqZSltu rd, rs, rl, rr 1067// Purpose: b = Sltu rl, rr. 1068// If b==0 then do nothing. 1069// if b!=0 then rd = rs 1070// 1071def SelTBteqZSltu: SelT<"bteqz", "sltu">; 1072 1073// 1074// Format: SelTBteqZSltiu rd, rs, rl, rr 1075// Purpose: b = Sltiu rl, imm. 1076// If b==0 then do nothing. 1077// if b!=0 then rd = rs 1078// 1079def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">; 1080 1081// 1082// Format: SelBnez rd, rs, rt 1083// Purpose: if rt!=0, do nothing 1084// else rs = rt 1085// 1086def SelBneZ: Sel<"bnez">; 1087 1088// 1089// Format: SelTBtneZCmp rd, rs, rl, rr 1090// Purpose: b = Cmp rl, rr. 1091// If b!=0 then do nothing. 1092// if b0=0 then rd = rs 1093// 1094def SelTBtneZCmp: SelT<"btnez", "cmp">; 1095 1096// 1097// Format: SelTBtnezCmpi rd, rs, rl, rr 1098// Purpose: b = Cmpi rl, imm. 1099// If b!=0 then do nothing. 1100// if b==0 then rd = rs 1101// 1102def SelTBtneZCmpi: SeliT<"btnez", "cmpi">; 1103 1104// 1105// Format: SelTBtneZSlt rd, rs, rl, rr 1106// Purpose: b = Slt rl, rr. 1107// If b!=0 then do nothing. 1108// if b==0 then rd = rs 1109// 1110def SelTBtneZSlt: SelT<"btnez", "slt">; 1111 1112// 1113// Format: SelTBtneZSlti rd, rs, rl, rr 1114// Purpose: b = Slti rl, imm. 1115// If b!=0 then do nothing. 1116// if b==0 then rd = rs 1117// 1118def SelTBtneZSlti: SeliT<"btnez", "slti">; 1119 1120// 1121// Format: SelTBtneZSltu rd, rs, rl, rr 1122// Purpose: b = Sltu rl, rr. 1123// If b!=0 then do nothing. 1124// if b==0 then rd = rs 1125// 1126def SelTBtneZSltu: SelT<"btnez", "sltu">; 1127 1128// 1129// Format: SelTBtneZSltiu rd, rs, rl, rr 1130// Purpose: b = Slti rl, imm. 1131// If b!=0 then do nothing. 1132// if b==0 then rd = rs 1133// 1134def SelTBtneZSltiu: SeliT<"btnez", "sltiu">; 1135// 1136// 1137// Format: SH ry, offset(rx) MIPS16e 1138// Purpose: Store Halfword (Extended) 1139// To store a halfword to memory. 1140// 1141def ShRxRyOffMemX16: 1142 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore; 1143 1144// 1145// Format: SLL rx, ry, sa MIPS16e 1146// Purpose: Shift Word Left Logical (Extended) 1147// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits. 1148// 1149def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>; 1150 1151// 1152// Format: SLLV ry, rx MIPS16e 1153// Purpose: Shift Word Left Logical Variable 1154// To execute a left-shift of a word by a variable number of bits. 1155// 1156def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>; 1157 1158// Format: SLTI rx, immediate MIPS16e 1159// Purpose: Set on Less Than Immediate 1160// To record the result of a less-than comparison with a constant. 1161// 1162// 1163def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> { 1164 let Defs = [T8]; 1165} 1166 1167// 1168// Format: SLTI rx, immediate MIPS16e 1169// Purpose: Set on Less Than Immediate (Extended) 1170// To record the result of a less-than comparison with a constant. 1171// 1172// 1173def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> { 1174 let Defs = [T8]; 1175} 1176 1177def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">; 1178 1179// Format: SLTIU rx, immediate MIPS16e 1180// Purpose: Set on Less Than Immediate Unsigned 1181// To record the result of a less-than comparison with a constant. 1182// 1183// 1184def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> { 1185 let Defs = [T8]; 1186} 1187 1188// 1189// Format: SLTI rx, immediate MIPS16e 1190// Purpose: Set on Less Than Immediate Unsigned (Extended) 1191// To record the result of a less-than comparison with a constant. 1192// 1193// 1194def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> { 1195 let Defs = [T8]; 1196} 1197// 1198// Format: SLTIU rx, immediate MIPS16e 1199// Purpose: Set on Less Than Immediate Unsigned (Extended) 1200// To record the result of a less-than comparison with a constant. 1201// 1202def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">; 1203 1204// 1205// Format: SLT rx, ry MIPS16e 1206// Purpose: Set on Less Than 1207// To record the result of a less-than comparison. 1208// 1209def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{ 1210 let Defs = [T8]; 1211} 1212 1213def SltCCRxRy16: FCCRR16_ins<"slt">; 1214 1215// Format: SLTU rx, ry MIPS16e 1216// Purpose: Set on Less Than Unsigned 1217// To record the result of an unsigned less-than comparison. 1218// 1219def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{ 1220 let Defs = [T8]; 1221} 1222 1223def SltuRxRyRz16: FRRTR16_ins<"sltu"> { 1224 let isCodeGenOnly=1; 1225 let Defs = [T8]; 1226} 1227 1228 1229def SltuCCRxRy16: FCCRR16_ins<"sltu">; 1230// 1231// Format: SRAV ry, rx MIPS16e 1232// Purpose: Shift Word Right Arithmetic Variable 1233// To execute an arithmetic right-shift of a word by a variable 1234// number of bits. 1235// 1236def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>; 1237 1238 1239// 1240// Format: SRA rx, ry, sa MIPS16e 1241// Purpose: Shift Word Right Arithmetic (Extended) 1242// To execute an arithmetic right-shift of a word by a fixed 1243// number of bits-1 to 8 bits. 1244// 1245def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>; 1246 1247 1248// 1249// Format: SRLV ry, rx MIPS16e 1250// Purpose: Shift Word Right Logical Variable 1251// To execute a logical right-shift of a word by a variable 1252// number of bits. 1253// 1254def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>; 1255 1256 1257// 1258// Format: SRL rx, ry, sa MIPS16e 1259// Purpose: Shift Word Right Logical (Extended) 1260// To execute a logical right-shift of a word by a fixed 1261// number of bits-1 to 31 bits. 1262// 1263def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>; 1264 1265// 1266// Format: SUBU rz, rx, ry MIPS16e 1267// Purpose: Subtract Unsigned Word 1268// To subtract 32-bit integers 1269// 1270def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>; 1271 1272// 1273// Format: SW ry, offset(rx) MIPS16e 1274// Purpose: Store Word (Extended) 1275// To store a word to memory. 1276// 1277def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore; 1278 1279// 1280// Format: SW rx, offset(sp) MIPS16e 1281// Purpose: Store Word rx (SP-Relative) 1282// To store an SP-relative word to memory. 1283// 1284def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore; 1285 1286// 1287// 1288// Format: XOR rx, ry MIPS16e 1289// Purpose: Xor 1290// To do a bitwise logical XOR. 1291// 1292def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>; 1293 1294class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> { 1295 let Predicates = [InMips16Mode]; 1296} 1297 1298// Unary Arith/Logic 1299// 1300class ArithLogicU_pat<PatFrag OpNode, Instruction I> : 1301 Mips16Pat<(OpNode CPU16Regs:$r), 1302 (I CPU16Regs:$r)>; 1303 1304def: ArithLogicU_pat<not, NotRxRy16>; 1305def: ArithLogicU_pat<ineg, NegRxRy16>; 1306 1307class ArithLogic16_pat<SDNode OpNode, Instruction I> : 1308 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), 1309 (I CPU16Regs:$l, CPU16Regs:$r)>; 1310 1311def: ArithLogic16_pat<add, AdduRxRyRz16>; 1312def: ArithLogic16_pat<and, AndRxRxRy16>; 1313def: ArithLogic16_pat<mul, MultRxRyRz16>; 1314def: ArithLogic16_pat<or, OrRxRxRy16>; 1315def: ArithLogic16_pat<sub, SubuRxRyRz16>; 1316def: ArithLogic16_pat<xor, XorRxRxRy16>; 1317 1318// Arithmetic and logical instructions with 2 register operands. 1319 1320class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> : 1321 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), 1322 (I CPU16Regs:$in, imm_type:$imm)>; 1323 1324def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>; 1325def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>; 1326def: ArithLogicI16_pat<shl, immZExt5, SllX16>; 1327def: ArithLogicI16_pat<srl, immZExt5, SrlX16>; 1328def: ArithLogicI16_pat<sra, immZExt5, SraX16>; 1329 1330class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> : 1331 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), 1332 (I CPU16Regs:$r, CPU16Regs:$ra)>; 1333 1334def: shift_rotate_reg16_pat<shl, SllvRxRy16>; 1335def: shift_rotate_reg16_pat<sra, SravRxRy16>; 1336def: shift_rotate_reg16_pat<srl, SrlvRxRy16>; 1337 1338class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1339 Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>; 1340 1341def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>; 1342def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>; 1343def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>; 1344def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>; 1345def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>; 1346 1347class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1348 Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>; 1349 1350def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>; 1351def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>; 1352def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>; 1353 1354// Unconditional branch 1355class UncondBranch16_pat<SDNode OpNode, Instruction I>: 1356 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { 1357 let Predicates = [InMips16Mode]; 1358 } 1359 1360def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1361 (Jal16 tglobaladdr:$dst)>; 1362 1363def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)), 1364 (Jal16 texternalsym:$dst)>; 1365 1366// Indirect branch 1367def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> { 1368 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change 1369 // MIPS16's behaviour. 1370 let AddedComplexity = 1; 1371} 1372 1373// Jump and Link (Call) 1374let isCall=1, hasDelaySlot=0 in 1375def JumpLinkReg16: 1376 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), 1377 "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> { 1378 let Defs = [RA]; 1379} 1380 1381// Mips16 pseudos 1382let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, 1383 hasExtraSrcRegAllocReq = 1 in 1384def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; 1385 1386 1387// setcc patterns 1388 1389class SetCC_R16<PatFrag cond_op, Instruction I>: 1390 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), 1391 (I CPU16Regs:$rx, CPU16Regs:$ry)>; 1392 1393class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>: 1394 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), 1395 (I CPU16Regs:$rx, imm_type:$imm16)>; 1396 1397 1398def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>; 1399 1400 1401// Large (>16 bit) immediate loads 1402def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>; 1403 1404// Carry MipsPatterns 1405def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs), 1406 (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; 1407def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs), 1408 (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; 1409def : Mips16Pat<(addc CPU16Regs:$src, immSExt16:$imm), 1410 (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>; 1411 1412// 1413// Some branch conditional patterns are not generated by llvm at this time. 1414// Some are for seemingly arbitrary reasons not used: i.e. with signed number 1415// comparison they are used and for unsigned a different pattern is used. 1416// I am pushing upstream from the full mips16 port and it seemed that I needed 1417// these earlier and the mips32 port has these but now I cannot create test 1418// cases that use these patterns. While I sort this all out I will leave these 1419// extra patterns commented out and if I can be sure they are really not used, 1420// I will delete the code. I don't want to check the code in uncommented without 1421// a valid test case. In some cases, the compiler is generating patterns with 1422// setcc instead and earlier I had implemented setcc first so may have masked 1423// the problem. The setcc variants are suboptimal for mips16 so I may wantto 1424// figure out how to enable the brcond patterns or else possibly new 1425// combinations of of brcond and setcc. 1426// 1427// 1428// bcond-seteq 1429// 1430def: Mips16Pat 1431 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1432 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1433 >; 1434 1435 1436def: Mips16Pat 1437 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1438 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1439 >; 1440 1441def: Mips16Pat 1442 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), 1443 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16) 1444 >; 1445 1446// 1447// bcond-setgt (do we need to have this pair of setlt, setgt??) 1448// 1449def: Mips16Pat 1450 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1451 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1452 >; 1453 1454// 1455// bcond-setge 1456// 1457def: Mips16Pat 1458 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1459 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1460 >; 1461 1462// 1463// never called because compiler transforms a >= k to a > (k-1) 1464def: Mips16Pat 1465 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1466 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1467 >; 1468 1469// 1470// bcond-setlt 1471// 1472def: Mips16Pat 1473 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1474 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1475 >; 1476 1477def: Mips16Pat 1478 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1479 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1480 >; 1481 1482// 1483// bcond-setle 1484// 1485def: Mips16Pat 1486 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1487 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1488 >; 1489 1490// 1491// bcond-setne 1492// 1493def: Mips16Pat 1494 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1495 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1496 >; 1497 1498def: Mips16Pat 1499 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1500 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1501 >; 1502 1503def: Mips16Pat 1504 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), 1505 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1506 >; 1507 1508// 1509// This needs to be there but I forget which code will generate it 1510// 1511def: Mips16Pat 1512 <(brcond CPU16Regs:$rx, bb:$targ16), 1513 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1514 >; 1515 1516// 1517 1518// 1519// bcond-setugt 1520// 1521//def: Mips16Pat 1522// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1523// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1524// >; 1525 1526// 1527// bcond-setuge 1528// 1529//def: Mips16Pat 1530// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1531// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1532// >; 1533 1534 1535// 1536// bcond-setult 1537// 1538//def: Mips16Pat 1539// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1540// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1541// >; 1542 1543def: UncondBranch16_pat<br, Bimm16>; 1544 1545// Small immediates 1546def: Mips16Pat<(i32 immSExt16:$in), 1547 (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>; 1548 1549def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; 1550 1551// 1552// MipsDivRem 1553// 1554def: Mips16Pat 1555 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry), 1556 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1557 1558// 1559// MipsDivRemU 1560// 1561def: Mips16Pat 1562 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry), 1563 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1564 1565// signed a,b 1566// x = (a>=b)?x:y 1567// 1568// if !(a < b) x = y 1569// 1570def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), 1571 CPU16Regs:$x, CPU16Regs:$y), 1572 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1573 CPU16Regs:$a, CPU16Regs:$b)>; 1574 1575// signed a,b 1576// x = (a>b)?x:y 1577// 1578// if (b < a) x = y 1579// 1580def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), 1581 CPU16Regs:$x, CPU16Regs:$y), 1582 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, 1583 CPU16Regs:$b, CPU16Regs:$a)>; 1584 1585// unsigned a,b 1586// x = (a>=b)?x:y 1587// 1588// if !(a < b) x = y; 1589// 1590def : Mips16Pat< 1591 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), 1592 CPU16Regs:$x, CPU16Regs:$y), 1593 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1594 CPU16Regs:$a, CPU16Regs:$b)>; 1595 1596// unsigned a,b 1597// x = (a>b)?x:y 1598// 1599// if (b < a) x = y 1600// 1601def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), 1602 CPU16Regs:$x, CPU16Regs:$y), 1603 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, 1604 CPU16Regs:$b, CPU16Regs:$a)>; 1605 1606// signed 1607// x = (a >= k)?x:y 1608// due to an llvm optimization, i don't think that this will ever 1609// be used. This is transformed into x = (a > k-1)?x:y 1610// 1611// 1612 1613//def : Mips16Pat< 1614// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), 1615// CPU16Regs:$T, CPU16Regs:$F), 1616// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, 1617// CPU16Regs:$lhs, immSExt16:$rhs)>; 1618 1619//def : Mips16Pat< 1620// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), 1621// CPU16Regs:$T, CPU16Regs:$F), 1622// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, 1623// CPU16Regs:$lhs, immSExt16:$rhs)>; 1624 1625// signed 1626// x = (a < k)?x:y 1627// 1628// if !(a < k) x = y; 1629// 1630def : Mips16Pat< 1631 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), 1632 CPU16Regs:$x, CPU16Regs:$y), 1633 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, 1634 CPU16Regs:$a, immSExt16:$b)>; 1635 1636 1637// 1638// 1639// signed 1640// x = (a <= b)? x : y 1641// 1642// if (b < a) x = y 1643// 1644def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), 1645 CPU16Regs:$x, CPU16Regs:$y), 1646 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1647 CPU16Regs:$b, CPU16Regs:$a)>; 1648 1649// 1650// unnsigned 1651// x = (a <= b)? x : y 1652// 1653// if (b < a) x = y 1654// 1655def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), 1656 CPU16Regs:$x, CPU16Regs:$y), 1657 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1658 CPU16Regs:$b, CPU16Regs:$a)>; 1659 1660// 1661// signed/unsigned 1662// x = (a == b)? x : y 1663// 1664// if (a != b) x = y 1665// 1666def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), 1667 CPU16Regs:$x, CPU16Regs:$y), 1668 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, 1669 CPU16Regs:$b, CPU16Regs:$a)>; 1670 1671// 1672// signed/unsigned 1673// x = (a == 0)? x : y 1674// 1675// if (a != 0) x = y 1676// 1677def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), 1678 CPU16Regs:$x, CPU16Regs:$y), 1679 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, 1680 CPU16Regs:$a)>; 1681 1682 1683// 1684// signed/unsigned 1685// x = (a == k)? x : y 1686// 1687// if (a != k) x = y 1688// 1689def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), 1690 CPU16Regs:$x, CPU16Regs:$y), 1691 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, 1692 CPU16Regs:$a, immZExt16:$k)>; 1693 1694 1695// 1696// signed/unsigned 1697// x = (a != b)? x : y 1698// 1699// if (a == b) x = y 1700// 1701// 1702def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), 1703 CPU16Regs:$x, CPU16Regs:$y), 1704 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, 1705 CPU16Regs:$b, CPU16Regs:$a)>; 1706 1707// 1708// signed/unsigned 1709// x = (a != 0)? x : y 1710// 1711// if (a == 0) x = y 1712// 1713def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), 1714 CPU16Regs:$x, CPU16Regs:$y), 1715 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1716 CPU16Regs:$a)>; 1717 1718// signed/unsigned 1719// x = (a)? x : y 1720// 1721// if (!a) x = y 1722// 1723def : Mips16Pat<(select CPU16Regs:$a, 1724 CPU16Regs:$x, CPU16Regs:$y), 1725 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1726 CPU16Regs:$a)>; 1727 1728 1729// 1730// signed/unsigned 1731// x = (a != k)? x : y 1732// 1733// if (a == k) x = y 1734// 1735def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), 1736 CPU16Regs:$x, CPU16Regs:$y), 1737 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, 1738 CPU16Regs:$a, immZExt16:$k)>; 1739 1740// 1741// When writing C code to test setxx these patterns, 1742// some will be transformed into 1743// other things. So we test using C code but using -O3 and -O0 1744// 1745// seteq 1746// 1747def : Mips16Pat 1748 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), 1749 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; 1750 1751def : Mips16Pat 1752 <(seteq CPU16Regs:$lhs, 0), 1753 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; 1754 1755 1756// 1757// setge 1758// 1759 1760def: Mips16Pat 1761 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), 1762 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1763 (LiRxImmX16 1))>; 1764 1765// 1766// For constants, llvm transforms this to: 1767// x > (k - 1) and then reverses the operands to use setlt. So this pattern 1768// is not used now by the compiler. (Presumably checking that k-1 does not 1769// overflow). The compiler never uses this at the current time, due to 1770// other optimizations. 1771// 1772//def: Mips16Pat 1773// <(setge CPU16Regs:$lhs, immSExt16:$rhs), 1774// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), 1775// (LiRxImmX16 1))>; 1776 1777// This catches the x >= -32768 case by transforming it to x > -32769 1778// 1779def: Mips16Pat 1780 <(setgt CPU16Regs:$lhs, -32769), 1781 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), 1782 (LiRxImmX16 1))>; 1783 1784// 1785// setgt 1786// 1787// 1788 1789def: Mips16Pat 1790 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), 1791 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1792 1793// 1794// setle 1795// 1796def: Mips16Pat 1797 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), 1798 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>; 1799 1800// 1801// setlt 1802// 1803def: SetCC_R16<setlt, SltCCRxRy16>; 1804 1805def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>; 1806 1807// 1808// setne 1809// 1810def : Mips16Pat 1811 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), 1812 (SltuCCRxRy16 (LiRxImmX16 0), 1813 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; 1814 1815 1816// 1817// setuge 1818// 1819def: Mips16Pat 1820 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), 1821 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1822 (LiRxImmX16 1))>; 1823 1824// this pattern will never be used because the compiler will transform 1825// x >= k to x > (k - 1) and then use SLT 1826// 1827//def: Mips16Pat 1828// <(setuge CPU16Regs:$lhs, immZExt16:$rhs), 1829// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), 1830// (LiRxImmX16 1))>; 1831 1832// 1833// setugt 1834// 1835def: Mips16Pat 1836 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), 1837 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1838 1839// 1840// setule 1841// 1842def: Mips16Pat 1843 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), 1844 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; 1845 1846// 1847// setult 1848// 1849def: SetCC_R16<setult, SltuCCRxRy16>; 1850 1851def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>; 1852 1853def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), 1854 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; 1855 1856// hi/lo relocs 1857def : Mips16Pat<(MipsHi tblockaddress:$in), 1858 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>; 1859def : Mips16Pat<(MipsHi tglobaladdr:$in), 1860 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; 1861def : Mips16Pat<(MipsHi tjumptable:$in), 1862 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>; 1863def : Mips16Pat<(MipsHi tglobaltlsaddr:$in), 1864 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; 1865 1866def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>; 1867 1868// wrapper_pic 1869class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1870 Mips16Pat<(MipsWrapper RC:$gp, node:$in), 1871 (ADDiuOp RC:$gp, node:$in)>; 1872 1873 1874def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>; 1875def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>; 1876 1877def : Mips16Pat<(i32 (extloadi8 addr16:$src)), 1878 (LbuRxRyOffMemX16 addr16:$src)>; 1879def : Mips16Pat<(i32 (extloadi16 addr16:$src)), 1880 (LhuRxRyOffMemX16 addr16:$src)>; 1881 1882def: Mips16Pat<(trap), (Break16)>; 1883 1884def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8), 1885 (SebRx16 CPU16Regs:$val)>; 1886 1887def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16), 1888 (SehRx16 CPU16Regs:$val)>; 1889 1890def GotPrologue16: 1891 MipsPseudo16< 1892 (outs CPU16Regs:$rh, CPU16Regs:$rl), 1893 (ins simm16:$immHi, simm16:$immLo), 1894 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ; 1895 1896// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 1897def cpinst_operand : Operand<i32> { 1898 // let PrintMethod = "printCPInstOperand"; 1899} 1900 1901// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1902// the function. The first operand is the ID# for this instruction, the second 1903// is the index into the MachineConstantPool that this is, the third is the 1904// size in bytes of this constant pool entry. 1905// 1906let hasSideEffects = 0, isNotDuplicable = 1 in 1907def CONSTPOOL_ENTRY : 1908MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1909 i32imm:$size), "foo", []>; 1910 1911