• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
18def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16sp : Operand<i32> {
29  let PrintMethod = "printMemOperand";
30  // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
31  // keeping the sp-relative load and the other varieties separate at the
32  // moment. This lie fixes the problem sufficiently well to fix the errors
33  // emitted by -verify-machineinstrs and the output ends up correct as long
34  // as we use an external assembler (which is already a requirement for MIPS16
35  // for several other reasons).
36  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
37  let EncoderMethod = "getMemEncoding";
38}
39
40def mem16_ea : Operand<i32> {
41  let PrintMethod = "printMemOperandEA";
42  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
43  let EncoderMethod = "getMemEncoding";
44}
45
46def pcrel16 : Operand<i32>;
47
48//
49// I-type instruction format
50//
51// this is only used by bimm. the actual assembly value is a 12 bit signed
52// number
53//
54class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
55  FI16<op, (outs), (ins brtarget:$imm16),
56            !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
57
58//
59//
60// I8 instruction format
61//
62
63class FI816_ins_base<bits<3> _func, string asmstr,
64                     string asmstr2, InstrItinClass itin>:
65  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
66        [], itin>;
67
68class FI816_ins<bits<3> _func, string asmstr,
69                InstrItinClass itin>:
70  FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
71
72class FI816_SP_ins<bits<3> _func, string asmstr,
73                   InstrItinClass itin>:
74  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
75
76//
77// RI instruction format
78//
79
80
81class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
82                     InstrItinClass itin>:
83  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
84        !strconcat(asmstr, asmstr2), [], itin>;
85
86class FRI16_ins<bits<5> op, string asmstr,
87                InstrItinClass itin>:
88  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
89
90class FRI16_TCP_ins<bits<5> _op, string asmstr,
91                    InstrItinClass itin>:
92  FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
93            !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
94
95class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
96                     InstrItinClass itin>:
97  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
98        !strconcat(asmstr, asmstr2), [], itin>;
99
100class FRI16R_ins<bits<5> op, string asmstr,
101                InstrItinClass itin>:
102  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
103
104class F2RI16_ins<bits<5> _op, string asmstr,
105                     InstrItinClass itin>:
106  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
107        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
108  let Constraints = "$rx_ = $rx";
109}
110
111class FRI16_B_ins<bits<5> _op, string asmstr,
112                  InstrItinClass itin>:
113  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
114        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
115//
116// Compare a register and immediate and place result in CC
117// Implicit use of T8
118//
119// EXT-CCRR Instruction format
120//
121class FEXT_CCRXI16_ins<string asmstr>:
122  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
123               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
124  let isCodeGenOnly=1;
125  let usesCustomInserter = 1;
126}
127
128// JAL and JALX instruction format
129//
130class FJAL16_ins<bits<1> _X, string asmstr,
131                 InstrItinClass itin>:
132  FJAL16<_X, (outs), (ins uimm26:$imm),
133         !strconcat(asmstr, "\t$imm\n\tnop"),[],
134         itin>  {
135  let isCodeGenOnly=1;
136  let Size=6;
137}
138
139class FJALB16_ins<bits<1> _X, string asmstr,
140                 InstrItinClass itin>:
141  FJAL16<_X, (outs), (ins uimm26:$imm),
142         !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
143         itin>  {
144  let isCodeGenOnly=1;
145  let Size=6;
146}
147
148//
149// EXT-I instruction format
150//
151class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
152  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
153           !strconcat(asmstr, "\t$imm16"),[], itin>;
154
155//
156// EXT-I8 instruction format
157//
158
159class FEXT_I816_ins_base<bits<3> _func, string asmstr,
160                         string asmstr2, InstrItinClass itin>:
161  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
162            [], itin>;
163
164class FEXT_I816_ins<bits<3> _func, string asmstr,
165                    InstrItinClass itin>:
166  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
167
168class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
169                       InstrItinClass itin>:
170      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
171
172//
173// Assembler formats in alphabetical order.
174// Natural and pseudos are mixed together.
175//
176// Compare two registers and place result in CC
177// Implicit use of T8
178//
179// CC-RR Instruction format
180//
181class FCCRR16_ins<string asmstr> :
182  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
183               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
184  let isCodeGenOnly=1;
185  let usesCustomInserter = 1;
186}
187
188//
189// EXT-RI instruction format
190//
191
192class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
193                         InstrItinClass itin>:
194  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
195                  !strconcat(asmstr, asmstr2), [], itin>;
196
197class FEXT_RI16_ins<bits<5> _op, string asmstr,
198                    InstrItinClass itin>:
199  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
200
201class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
202                         InstrItinClass itin>:
203  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
204                  !strconcat(asmstr, asmstr2), [], itin>;
205
206class FEXT_RI16R_ins<bits<5> _op, string asmstr,
207                    InstrItinClass itin>:
208  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
209
210class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
211  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
212
213class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
214                      InstrItinClass itin>:
215  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
216            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
217
218class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
219                        InstrItinClass itin>:
220  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
221            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
222
223class FEXT_2RI16_ins<bits<5> _op, string asmstr,
224                     InstrItinClass itin>:
225  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
226            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
227  let Constraints = "$rx_ = $rx";
228}
229
230//
231// EXT-RRI instruction format
232//
233
234class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
235                         InstrItinClass itin>:
236  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
237             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
238
239class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
240                          InstrItinClass itin>:
241  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
242             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
243
244//
245//
246// EXT-RRI-A instruction format
247//
248
249class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
250                           InstrItinClass itin>:
251  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
252               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
253
254//
255// EXT-SHIFT instruction format
256//
257class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
258  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
259               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
260
261//
262// EXT-T8I8
263//
264class FEXT_T8I816_ins<string asmstr, string asmstr2>:
265  MipsPseudo16<(outs),
266               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
267               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
268               !strconcat(asmstr, "\t$imm"))),[]> {
269  let isCodeGenOnly=1;
270  let usesCustomInserter = 1;
271}
272
273//
274// EXT-T8I8I
275//
276class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
277  MipsPseudo16<(outs),
278               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
279               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
280               !strconcat(asmstr, "\t$targ"))), []> {
281  let isCodeGenOnly=1;
282  let usesCustomInserter = 1;
283}
284//
285
286
287//
288// I8_MOVR32 instruction format (used only by the MOVR32 instructio
289//
290class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
291       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
292       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
293
294//
295// I8_MOV32R instruction format (used only by MOV32R instruction)
296//
297
298class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
299  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
300               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
301
302//
303// This are pseudo formats for multiply
304// This first one can be changed to non-pseudo now.
305//
306// MULT
307//
308class FMULT16_ins<string asmstr, InstrItinClass itin> :
309  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
310               !strconcat(asmstr, "\t$rx, $ry"), []>;
311
312//
313// MULT-LO
314//
315class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
316  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
317               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
318  let isCodeGenOnly=1;
319}
320
321//
322// RR-type instruction format
323//
324
325class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
326  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
327        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
328}
329
330class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
331  FRRBreak16<(outs), (ins), asmstr, [], itin> {
332  let Code=0;
333}
334
335class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
336  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
337        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
338}
339
340class FRRTR16_ins<string asmstr> :
341  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
342               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
343
344//
345// maybe refactor but need a $zero as a dummy first parameter
346//
347class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
348  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
349        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
350
351class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
352  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
353        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
354
355
356class FRR16_M_ins<bits<5> f, string asmstr,
357                  InstrItinClass itin> :
358  FRR16<f, (outs CPU16Regs:$rx), (ins),
359        !strconcat(asmstr, "\t$rx"), [], itin>;
360
361class FRxRxRy16_ins<bits<5> f, string asmstr,
362                    InstrItinClass itin> :
363  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
364            !strconcat(asmstr, "\t$rz, $ry"),
365            [], itin> {
366  let Constraints = "$rx = $rz";
367}
368
369let rx=0 in
370class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
371                              string asmstr, InstrItinClass itin>:
372  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
373              [], itin> ;
374
375
376class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
377                      string asmstr, InstrItinClass itin>:
378  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
379              !strconcat(asmstr, "\t $rx"), [], itin> ;
380
381class FRR_SF16_ins
382  <bits<5> _funct, bits<3> _subfunc,
383    string asmstr, InstrItinClass itin>:
384  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
385           !strconcat(asmstr, "\t $rx"),
386           [], itin> {
387  let Constraints = "$rx_ = $rx";
388  }
389//
390// RRR-type instruction format
391//
392
393class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
394  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
395         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
396
397//
398// These Sel patterns support the generation of conditional move
399// pseudo instructions.
400//
401// The nomenclature uses the components making up the pseudo and may
402// be a bit counter intuitive when compared with the end result we seek.
403// For example using a bqez in the example directly below results in the
404// conditional move being done if the tested register is not zero.
405// I considered in easier to check by keeping the pseudo consistent with
406// it's components but it could have been done differently.
407//
408// The simplest case is when can test and operand directly and do the
409// conditional move based on a simple mips16 conditional
410//  branch instruction.
411// for example:
412// if $op == beqz or bnez:
413//
414// $op1 $rt, .+4
415// move $rd, $rs
416//
417// if $op == beqz, then if $rt != 0, then the conditional assignment
418// $rd = $rs is done.
419
420// if $op == bnez, then if $rt == 0, then the conditional assignment
421// $rd = $rs is done.
422//
423// So this pseudo class only has one operand, i.e. op
424//
425class Sel<string op>:
426  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
427               CPU16Regs:$rt),
428               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
429  //let isCodeGenOnly=1;
430  let Constraints = "$rd = $rd_";
431  let usesCustomInserter = 1;
432}
433
434//
435// The next two instruction classes allow for an operand which tests
436// two operands and returns a value in register T8 and
437//then does a conditional branch based on the value of T8
438//
439
440// op2 can be cmpi or slti/sltiu
441// op1 can bteqz or btnez
442// the operands for op2 are a register and a signed constant
443//
444// $op2 $t, $imm  ;test register t and branch conditionally
445// $op1 .+4       ;op1 is a conditional branch
446// move $rd, $rs
447//
448//
449class SeliT<string op1, string op2>:
450  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
451                                       CPU16Regs:$rl, simm16:$imm),
452               !strconcat(op2,
453               !strconcat("\t$rl, $imm\n\t",
454               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
455  let isCodeGenOnly=1;
456  let Constraints = "$rd = $rd_";
457  let usesCustomInserter = 1;
458}
459
460//
461// op2 can be cmp or slt/sltu
462// op1 can be bteqz or btnez
463// the operands for op2 are two registers
464// op1 is a conditional branch
465//
466//
467// $op2 $rl, $rr  ;test registers rl,rr
468// $op1 .+4       ;op2 is a conditional branch
469// move $rd, $rs
470//
471//
472class SelT<string op1, string op2>:
473  MipsPseudo16<(outs CPU16Regs:$rd_),
474               (ins CPU16Regs:$rd, CPU16Regs:$rs,
475                CPU16Regs:$rl, CPU16Regs:$rr),
476               !strconcat(op2,
477               !strconcat("\t$rl, $rr\n\t",
478               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
479  let isCodeGenOnly=1;
480  let Constraints = "$rd = $rd_";
481  let usesCustomInserter = 1;
482}
483
484//
485// 32 bit constant
486//
487def Constant32:
488  MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
489
490def LwConstant32:
491  MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
492    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
493
494
495//
496// Some general instruction class info
497//
498//
499
500class ArithLogic16Defs<bit isCom=0> {
501  bits<5> shamt = 0;
502  bit isCommutable = isCom;
503  bit isReMaterializable = 1;
504  bit hasSideEffects = 0;
505}
506
507class branch16 {
508  bit isBranch = 1;
509  bit isTerminator = 1;
510  bit isBarrier = 1;
511}
512
513class cbranch16 {
514  bit isBranch = 1;
515  bit isTerminator = 1;
516}
517
518class MayLoad {
519  bit mayLoad = 1;
520}
521
522class MayStore {
523  bit mayStore = 1;
524}
525//
526
527
528// Format: ADDIU rx, immediate MIPS16e
529// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
530// To add a constant to a 32-bit integer.
531//
532def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
533
534def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
535  ArithLogic16Defs<0> {
536  let AddedComplexity = 5;
537}
538def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
539  ArithLogic16Defs<0> {
540  let isCodeGenOnly = 1;
541}
542
543def AddiuRxRyOffMemX16:
544  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
545
546//
547
548// Format: ADDIU rx, pc, immediate MIPS16e
549// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
550// To add a constant to the program counter.
551//
552def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
553
554//
555// Format: ADDIU sp, immediate MIPS16e
556// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
557// To add a constant to the stack pointer.
558//
559def AddiuSpImm16
560  : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
561  let Defs = [SP];
562  let Uses = [SP];
563  let AddedComplexity = 5;
564}
565
566def AddiuSpImmX16
567  : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
568  let Defs = [SP];
569  let Uses = [SP];
570}
571
572//
573// Format: ADDU rz, rx, ry MIPS16e
574// Purpose: Add Unsigned Word (3-Operand)
575// To add 32-bit integers.
576//
577
578def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
579
580//
581// Format: AND rx, ry MIPS16e
582// Purpose: AND
583// To do a bitwise logical AND.
584
585def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
586
587
588//
589// Format: BEQZ rx, offset MIPS16e
590// Purpose: Branch on Equal to Zero
591// To test a GPR then do a PC-relative conditional branch.
592//
593def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
594
595
596//
597// Format: BEQZ rx, offset MIPS16e
598// Purpose: Branch on Equal to Zero (Extended)
599// To test a GPR then do a PC-relative conditional branch.
600//
601def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
602
603//
604// Format: B offset MIPS16e
605// Purpose: Unconditional Branch (Extended)
606// To do an unconditional PC-relative branch.
607//
608
609def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
610
611// Format: B offset MIPS16e
612// Purpose: Unconditional Branch
613// To do an unconditional PC-relative branch.
614//
615def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
616
617//
618// Format: BNEZ rx, offset MIPS16e
619// Purpose: Branch on Not Equal to Zero
620// To test a GPR then do a PC-relative conditional branch.
621//
622def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
623
624//
625// Format: BNEZ rx, offset MIPS16e
626// Purpose: Branch on Not Equal to Zero (Extended)
627// To test a GPR then do a PC-relative conditional branch.
628//
629def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
630
631
632//
633//Format: BREAK immediate
634// Purpose: Breakpoint
635// To cause a Breakpoint exception.
636
637def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
638//
639// Format: BTEQZ offset MIPS16e
640// Purpose: Branch on T Equal to Zero (Extended)
641// To test special register T then do a PC-relative conditional branch.
642//
643def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
644  let Uses = [T8];
645}
646
647def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
648  let Uses = [T8];
649}
650
651def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
652
653def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
654  cbranch16;
655
656def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
657
658def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
659
660def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
661
662def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
663  cbranch16;
664
665//
666// Format: BTNEZ offset MIPS16e
667// Purpose: Branch on T Not Equal to Zero (Extended)
668// To test special register T then do a PC-relative conditional branch.
669//
670
671def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
672  let Uses = [T8];
673}
674
675def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
676  let Uses = [T8];
677}
678
679def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
680
681def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
682
683def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
684
685def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
686
687def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
688
689def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
690  cbranch16;
691
692//
693// Format: CMP rx, ry MIPS16e
694// Purpose: Compare
695// To compare the contents of two GPRs.
696//
697def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
698  let Defs = [T8];
699}
700
701//
702// Format: CMPI rx, immediate MIPS16e
703// Purpose: Compare Immediate
704// To compare a constant with the contents of a GPR.
705//
706def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
707  let Defs = [T8];
708}
709
710//
711// Format: CMPI rx, immediate MIPS16e
712// Purpose: Compare Immediate (Extended)
713// To compare a constant with the contents of a GPR.
714//
715def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
716  let Defs = [T8];
717}
718
719
720//
721// Format: DIV rx, ry MIPS16e
722// Purpose: Divide Word
723// To divide 32-bit signed integers.
724//
725def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
726  let Defs = [HI0, LO0];
727}
728
729//
730// Format: DIVU rx, ry MIPS16e
731// Purpose: Divide Unsigned Word
732// To divide 32-bit unsigned integers.
733//
734def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
735  let Defs = [HI0, LO0];
736}
737//
738// Format: JAL target MIPS16e
739// Purpose: Jump and Link
740// To execute a procedure call within the current 256 MB-aligned
741// region and preserve the current ISA.
742//
743
744def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
745  let hasDelaySlot = 0;  // not true, but we add the nop for now
746  let isCall=1;
747  let Defs = [RA];
748}
749
750def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
751  let hasDelaySlot = 0;  // not true, but we add the nop for now
752  let isBranch=1;
753  let Defs = [RA];
754}
755
756//
757// Format: JR ra MIPS16e
758// Purpose: Jump Register Through Register ra
759// To execute a branch to the instruction address in the return
760// address register.
761//
762
763def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
764  let isBranch = 1;
765  let isIndirectBranch = 1;
766  let hasDelaySlot = 1;
767  let isTerminator=1;
768  let isBarrier=1;
769}
770
771def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
772  let isBranch = 1;
773  let isIndirectBranch = 1;
774  let isTerminator=1;
775  let isBarrier=1;
776}
777
778def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
779  let isBranch = 1;
780  let isIndirectBranch = 1;
781  let isTerminator=1;
782  let isBarrier=1;
783}
784//
785// Format: LB ry, offset(rx) MIPS16e
786// Purpose: Load Byte (Extended)
787// To load a byte from memory as a signed value.
788//
789def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
790  let isCodeGenOnly = 1;
791}
792
793//
794// Format: LBU ry, offset(rx) MIPS16e
795// Purpose: Load Byte Unsigned (Extended)
796// To load a byte from memory as a unsigned value.
797//
798def LbuRxRyOffMemX16:
799  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
800  let isCodeGenOnly = 1;
801}
802
803//
804// Format: LH ry, offset(rx) MIPS16e
805// Purpose: Load Halfword signed (Extended)
806// To load a halfword from memory as a signed value.
807//
808def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
809  let isCodeGenOnly = 1;
810}
811
812//
813// Format: LHU ry, offset(rx) MIPS16e
814// Purpose: Load Halfword unsigned (Extended)
815// To load a halfword from memory as an unsigned value.
816//
817def LhuRxRyOffMemX16:
818  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
819  let isCodeGenOnly = 1;
820}
821
822//
823// Format: LI rx, immediate MIPS16e
824// Purpose: Load Immediate
825// To load a constant into a GPR.
826//
827def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
828
829//
830// Format: LI rx, immediate MIPS16e
831// Purpose: Load Immediate (Extended)
832// To load a constant into a GPR.
833//
834def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
835
836def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
837  let isCodeGenOnly = 1;
838}
839
840//
841// Format: LW ry, offset(rx) MIPS16e
842// Purpose: Load Word (Extended)
843// To load a word from memory as a signed value.
844//
845def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
846  let isCodeGenOnly = 1;
847}
848
849// Format: LW rx, offset(sp) MIPS16e
850// Purpose: Load Word (SP-Relative, Extended)
851// To load an SP-relative word from memory as a signed value.
852//
853def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
854
855def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
856
857def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
858//
859// Format: MOVE r32, rz MIPS16e
860// Purpose: Move
861// To move the contents of a GPR to a GPR.
862//
863def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
864
865//
866// Format: MOVE ry, r32 MIPS16e
867//Purpose: Move
868// To move the contents of a GPR to a GPR.
869//
870def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu>;
871
872//
873// Format: MFHI rx MIPS16e
874// Purpose: Move From HI Register
875// To copy the special purpose HI register to a GPR.
876//
877def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
878  let Uses = [HI0];
879  let hasSideEffects = 0;
880}
881
882//
883// Format: MFLO rx MIPS16e
884// Purpose: Move From LO Register
885// To copy the special purpose LO register to a GPR.
886//
887def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
888  let Uses = [LO0];
889  let hasSideEffects = 0;
890}
891
892//
893// Pseudo Instruction for mult
894//
895def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
896  let isCommutable = 1;
897  let hasSideEffects = 0;
898  let Defs = [HI0, LO0];
899}
900
901def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
902  let isCommutable = 1;
903  let hasSideEffects = 0;
904  let Defs = [HI0, LO0];
905}
906
907//
908// Format: MULT rx, ry MIPS16e
909// Purpose: Multiply Word
910// To multiply 32-bit signed integers.
911//
912def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
913  let isCommutable = 1;
914  let hasSideEffects = 0;
915  let Defs = [HI0, LO0];
916}
917
918//
919// Format: MULTU rx, ry MIPS16e
920// Purpose: Multiply Unsigned Word
921// To multiply 32-bit unsigned integers.
922//
923def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
924  let isCommutable = 1;
925  let hasSideEffects = 0;
926  let Defs = [HI0, LO0];
927}
928
929//
930// Format: NEG rx, ry MIPS16e
931// Purpose: Negate
932// To negate an integer value.
933//
934def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
935
936//
937// Format: NOT rx, ry MIPS16e
938// Purpose: Not
939// To complement an integer value
940//
941def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
942
943//
944// Format: OR rx, ry MIPS16e
945// Purpose: Or
946// To do a bitwise logical OR.
947//
948def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
949
950//
951// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
952// (All args are optional) MIPS16e
953// Purpose: Restore Registers and Deallocate Stack Frame
954// To deallocate a stack frame before exit from a subroutine,
955// restoring return address and static registers, and adjusting
956// stack
957//
958
959def Restore16:
960  FI8_SVRS16<0b1, (outs), (ins variable_ops),
961             "", [], II_RESTORE >, MayLoad {
962  let isCodeGenOnly = 1;
963  let Defs = [SP];
964  let Uses = [SP];
965}
966
967
968def RestoreX16:
969  FI8_SVRS16<0b1, (outs), (ins variable_ops),
970             "", [], II_RESTORE >, MayLoad {
971  let isCodeGenOnly = 1;
972  let Defs = [SP];
973  let Uses = [SP];
974}
975
976//
977// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
978// MIPS16e
979// Purpose: Save Registers and Set Up Stack Frame
980// To set up a stack frame on entry to a subroutine,
981// saving return address and static registers, and adjusting stack
982//
983def Save16:
984  FI8_SVRS16<0b1, (outs), (ins variable_ops),
985             "", [], II_SAVE >, MayStore {
986  let isCodeGenOnly = 1;
987  let Uses = [SP];
988  let Defs = [SP];
989}
990
991def SaveX16:
992  FI8_SVRS16<0b1, (outs), (ins variable_ops),
993             "", [], II_SAVE >, MayStore {
994  let isCodeGenOnly = 1;
995  let Uses = [SP];
996  let Defs = [SP];
997}
998//
999// Format: SB ry, offset(rx) MIPS16e
1000// Purpose: Store Byte (Extended)
1001// To store a byte to memory.
1002//
1003def SbRxRyOffMemX16:
1004  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
1005
1006//
1007// Format: SEB rx MIPS16e
1008// Purpose: Sign-Extend Byte
1009// Sign-extend least significant byte in register rx.
1010//
1011def SebRx16
1012  : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
1013
1014//
1015// Format: SEH rx MIPS16e
1016// Purpose: Sign-Extend Halfword
1017// Sign-extend least significant word in register rx.
1018//
1019def SehRx16
1020  : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
1021
1022//
1023// The Sel(T) instructions are pseudos
1024// T means that they use T8 implicitly.
1025//
1026//
1027// Format: SelBeqZ rd, rs, rt
1028// Purpose: if rt==0, do nothing
1029//          else rs = rt
1030//
1031def SelBeqZ: Sel<"beqz">;
1032
1033//
1034// Format:  SelTBteqZCmp rd, rs, rl, rr
1035// Purpose: b = Cmp rl, rr.
1036//          If b==0 then do nothing.
1037//          if b!=0 then rd = rs
1038//
1039def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1040
1041//
1042// Format:  SelTBteqZCmpi rd, rs, rl, rr
1043// Purpose: b = Cmpi rl, imm.
1044//          If b==0 then do nothing.
1045//          if b!=0 then rd = rs
1046//
1047def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1048
1049//
1050// Format:  SelTBteqZSlt rd, rs, rl, rr
1051// Purpose: b = Slt rl, rr.
1052//          If b==0 then do nothing.
1053//          if b!=0 then rd = rs
1054//
1055def SelTBteqZSlt: SelT<"bteqz", "slt">;
1056
1057//
1058// Format:  SelTBteqZSlti rd, rs, rl, rr
1059// Purpose: b = Slti rl, imm.
1060//          If b==0 then do nothing.
1061//          if b!=0 then rd = rs
1062//
1063def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1064
1065//
1066// Format:  SelTBteqZSltu rd, rs, rl, rr
1067// Purpose: b = Sltu rl, rr.
1068//          If b==0 then do nothing.
1069//          if b!=0 then rd = rs
1070//
1071def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1072
1073//
1074// Format:  SelTBteqZSltiu rd, rs, rl, rr
1075// Purpose: b = Sltiu rl, imm.
1076//          If b==0 then do nothing.
1077//          if b!=0 then rd = rs
1078//
1079def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1080
1081//
1082// Format: SelBnez rd, rs, rt
1083// Purpose: if rt!=0, do nothing
1084//          else rs = rt
1085//
1086def SelBneZ: Sel<"bnez">;
1087
1088//
1089// Format:  SelTBtneZCmp rd, rs, rl, rr
1090// Purpose: b = Cmp rl, rr.
1091//          If b!=0 then do nothing.
1092//          if b0=0 then rd = rs
1093//
1094def SelTBtneZCmp: SelT<"btnez", "cmp">;
1095
1096//
1097// Format:  SelTBtnezCmpi rd, rs, rl, rr
1098// Purpose: b = Cmpi rl, imm.
1099//          If b!=0 then do nothing.
1100//          if b==0 then rd = rs
1101//
1102def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1103
1104//
1105// Format:  SelTBtneZSlt rd, rs, rl, rr
1106// Purpose: b = Slt rl, rr.
1107//          If b!=0 then do nothing.
1108//          if b==0 then rd = rs
1109//
1110def SelTBtneZSlt: SelT<"btnez", "slt">;
1111
1112//
1113// Format:  SelTBtneZSlti rd, rs, rl, rr
1114// Purpose: b = Slti rl, imm.
1115//          If b!=0 then do nothing.
1116//          if b==0 then rd = rs
1117//
1118def SelTBtneZSlti: SeliT<"btnez", "slti">;
1119
1120//
1121// Format:  SelTBtneZSltu rd, rs, rl, rr
1122// Purpose: b = Sltu rl, rr.
1123//          If b!=0 then do nothing.
1124//          if b==0 then rd = rs
1125//
1126def SelTBtneZSltu: SelT<"btnez", "sltu">;
1127
1128//
1129// Format:  SelTBtneZSltiu rd, rs, rl, rr
1130// Purpose: b = Slti rl, imm.
1131//          If b!=0 then do nothing.
1132//          if b==0 then rd = rs
1133//
1134def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1135//
1136//
1137// Format: SH ry, offset(rx) MIPS16e
1138// Purpose: Store Halfword (Extended)
1139// To store a halfword to memory.
1140//
1141def ShRxRyOffMemX16:
1142  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
1143
1144//
1145// Format: SLL rx, ry, sa MIPS16e
1146// Purpose: Shift Word Left Logical (Extended)
1147// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1148//
1149def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
1150
1151//
1152// Format: SLLV ry, rx MIPS16e
1153// Purpose: Shift Word Left Logical Variable
1154// To execute a left-shift of a word by a variable number of bits.
1155//
1156def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
1157
1158// Format: SLTI rx, immediate MIPS16e
1159// Purpose: Set on Less Than Immediate
1160// To record the result of a less-than comparison with a constant.
1161//
1162//
1163def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
1164  let Defs = [T8];
1165}
1166
1167//
1168// Format: SLTI rx, immediate MIPS16e
1169// Purpose: Set on Less Than Immediate (Extended)
1170// To record the result of a less-than comparison with a constant.
1171//
1172//
1173def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
1174  let Defs = [T8];
1175}
1176
1177def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1178
1179// Format: SLTIU rx, immediate MIPS16e
1180// Purpose: Set on Less Than Immediate Unsigned
1181// To record the result of a less-than comparison with a constant.
1182//
1183//
1184def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
1185  let Defs = [T8];
1186}
1187
1188//
1189// Format: SLTI rx, immediate MIPS16e
1190// Purpose: Set on Less Than Immediate Unsigned (Extended)
1191// To record the result of a less-than comparison with a constant.
1192//
1193//
1194def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
1195  let Defs = [T8];
1196}
1197//
1198// Format: SLTIU rx, immediate MIPS16e
1199// Purpose: Set on Less Than Immediate Unsigned (Extended)
1200// To record the result of a less-than comparison with a constant.
1201//
1202def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1203
1204//
1205// Format: SLT rx, ry MIPS16e
1206// Purpose: Set on Less Than
1207// To record the result of a less-than comparison.
1208//
1209def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
1210  let Defs = [T8];
1211}
1212
1213def SltCCRxRy16: FCCRR16_ins<"slt">;
1214
1215// Format: SLTU rx, ry MIPS16e
1216// Purpose: Set on Less Than Unsigned
1217// To record the result of an unsigned less-than comparison.
1218//
1219def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
1220  let Defs = [T8];
1221}
1222
1223def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1224  let isCodeGenOnly=1;
1225  let Defs = [T8];
1226}
1227
1228
1229def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1230//
1231// Format: SRAV ry, rx MIPS16e
1232// Purpose: Shift Word Right Arithmetic Variable
1233// To execute an arithmetic right-shift of a word by a variable
1234// number of bits.
1235//
1236def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
1237
1238
1239//
1240// Format: SRA rx, ry, sa MIPS16e
1241// Purpose: Shift Word Right Arithmetic (Extended)
1242// To execute an arithmetic right-shift of a word by a fixed
1243// number of bits-1 to 8 bits.
1244//
1245def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
1246
1247
1248//
1249// Format: SRLV ry, rx MIPS16e
1250// Purpose: Shift Word Right Logical Variable
1251// To execute a logical right-shift of a word by a variable
1252// number of bits.
1253//
1254def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
1255
1256
1257//
1258// Format: SRL rx, ry, sa MIPS16e
1259// Purpose: Shift Word Right Logical (Extended)
1260// To execute a logical right-shift of a word by a fixed
1261// number of bits-1 to 31 bits.
1262//
1263def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
1264
1265//
1266// Format: SUBU rz, rx, ry MIPS16e
1267// Purpose: Subtract Unsigned Word
1268// To subtract 32-bit integers
1269//
1270def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
1271
1272//
1273// Format: SW ry, offset(rx) MIPS16e
1274// Purpose: Store Word (Extended)
1275// To store a word to memory.
1276//
1277def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
1278
1279//
1280// Format: SW rx, offset(sp) MIPS16e
1281// Purpose: Store Word rx (SP-Relative)
1282// To store an SP-relative word to memory.
1283//
1284def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
1285
1286//
1287//
1288// Format: XOR rx, ry MIPS16e
1289// Purpose: Xor
1290// To do a bitwise logical XOR.
1291//
1292def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
1293
1294class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1295  let Predicates = [InMips16Mode];
1296}
1297
1298// Unary Arith/Logic
1299//
1300class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1301  Mips16Pat<(OpNode CPU16Regs:$r),
1302            (I CPU16Regs:$r)>;
1303
1304def: ArithLogicU_pat<not, NotRxRy16>;
1305def: ArithLogicU_pat<ineg, NegRxRy16>;
1306
1307class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1308  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1309            (I CPU16Regs:$l, CPU16Regs:$r)>;
1310
1311def: ArithLogic16_pat<add, AdduRxRyRz16>;
1312def: ArithLogic16_pat<and, AndRxRxRy16>;
1313def: ArithLogic16_pat<mul, MultRxRyRz16>;
1314def: ArithLogic16_pat<or, OrRxRxRy16>;
1315def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1316def: ArithLogic16_pat<xor, XorRxRxRy16>;
1317
1318// Arithmetic and logical instructions with 2 register operands.
1319
1320class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1321  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1322            (I CPU16Regs:$in, imm_type:$imm)>;
1323
1324def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1325def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1326def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1327def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1328def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1329
1330class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1331  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1332            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1333
1334def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1335def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1336def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1337
1338class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1339  Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
1340
1341def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
1342def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
1343def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
1344def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
1345def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
1346
1347class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1348  Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
1349
1350def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
1351def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
1352def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
1353
1354// Unconditional branch
1355class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1356  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1357    let Predicates = [InMips16Mode];
1358  }
1359
1360def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1361                (Jal16 tglobaladdr:$dst)>;
1362
1363def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1364                (Jal16 texternalsym:$dst)>;
1365
1366// Indirect branch
1367def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
1368  // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
1369  // MIPS16's behaviour.
1370  let AddedComplexity = 1;
1371}
1372
1373// Jump and Link (Call)
1374let isCall=1, hasDelaySlot=0 in
1375def JumpLinkReg16:
1376  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1377              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
1378  let Defs = [RA];
1379}
1380
1381// Mips16 pseudos
1382let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1383  hasExtraSrcRegAllocReq = 1 in
1384def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1385
1386
1387// setcc patterns
1388
1389class SetCC_R16<PatFrag cond_op, Instruction I>:
1390  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1391            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1392
1393class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1394  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1395            (I CPU16Regs:$rx, imm_type:$imm16)>;
1396
1397
1398def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
1399
1400
1401// Large (>16 bit) immediate loads
1402def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1403
1404// Carry MipsPatterns
1405def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1406                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1407def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1408                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1409def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1410                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1411
1412//
1413// Some branch conditional patterns are not generated by llvm at this time.
1414// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1415// comparison they are used and for unsigned a different pattern is used.
1416// I am pushing upstream from the full mips16 port and it seemed that I needed
1417// these earlier and the mips32 port has these but now I cannot create test
1418// cases that use these patterns. While I sort this all out I will leave these
1419// extra patterns commented out and if I can be sure they are really not used,
1420// I will delete the code. I don't want to check the code in uncommented without
1421// a valid test case. In some cases, the compiler is generating patterns with
1422// setcc instead and earlier I had implemented setcc first so may have masked
1423// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1424// figure out how to enable the brcond patterns or else possibly new
1425// combinations of of brcond and setcc.
1426//
1427//
1428// bcond-seteq
1429//
1430def: Mips16Pat
1431  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1432   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1433  >;
1434
1435
1436def: Mips16Pat
1437  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1438   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1439  >;
1440
1441def: Mips16Pat
1442  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1443   (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
1444  >;
1445
1446//
1447// bcond-setgt (do we need to have this pair of setlt, setgt??)
1448//
1449def: Mips16Pat
1450  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1451   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1452  >;
1453
1454//
1455// bcond-setge
1456//
1457def: Mips16Pat
1458  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1459   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1460  >;
1461
1462//
1463// never called because compiler transforms a >= k to a > (k-1)
1464def: Mips16Pat
1465  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1466   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1467  >;
1468
1469//
1470// bcond-setlt
1471//
1472def: Mips16Pat
1473  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1474   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1475  >;
1476
1477def: Mips16Pat
1478  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1479   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1480  >;
1481
1482//
1483// bcond-setle
1484//
1485def: Mips16Pat
1486  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1487   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1488  >;
1489
1490//
1491// bcond-setne
1492//
1493def: Mips16Pat
1494  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1495   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1496  >;
1497
1498def: Mips16Pat
1499  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1500   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1501  >;
1502
1503def: Mips16Pat
1504  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1505   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1506  >;
1507
1508//
1509// This needs to be there but I forget which code will generate it
1510//
1511def: Mips16Pat
1512  <(brcond CPU16Regs:$rx, bb:$targ16),
1513   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1514  >;
1515
1516//
1517
1518//
1519// bcond-setugt
1520//
1521//def: Mips16Pat
1522//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1523//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1524//  >;
1525
1526//
1527// bcond-setuge
1528//
1529//def: Mips16Pat
1530//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1531//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1532//  >;
1533
1534
1535//
1536// bcond-setult
1537//
1538//def: Mips16Pat
1539//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1540//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1541//  >;
1542
1543def: UncondBranch16_pat<br, Bimm16>;
1544
1545// Small immediates
1546def: Mips16Pat<(i32 immSExt16:$in),
1547               (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
1548
1549def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1550
1551//
1552// MipsDivRem
1553//
1554def: Mips16Pat
1555  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1556   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1557
1558//
1559// MipsDivRemU
1560//
1561def: Mips16Pat
1562  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1563   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1564
1565//  signed a,b
1566//  x = (a>=b)?x:y
1567//
1568//  if !(a < b) x = y
1569//
1570def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1571                 CPU16Regs:$x, CPU16Regs:$y),
1572                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1573                 CPU16Regs:$a, CPU16Regs:$b)>;
1574
1575//  signed a,b
1576//  x = (a>b)?x:y
1577//
1578//  if  (b < a) x = y
1579//
1580def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1581                 CPU16Regs:$x, CPU16Regs:$y),
1582                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1583                 CPU16Regs:$b, CPU16Regs:$a)>;
1584
1585// unsigned a,b
1586// x = (a>=b)?x:y
1587//
1588// if !(a < b) x = y;
1589//
1590def : Mips16Pat<
1591  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1592   CPU16Regs:$x, CPU16Regs:$y),
1593  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1594   CPU16Regs:$a, CPU16Regs:$b)>;
1595
1596//  unsigned a,b
1597//  x = (a>b)?x:y
1598//
1599//  if (b < a) x = y
1600//
1601def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1602                 CPU16Regs:$x, CPU16Regs:$y),
1603                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1604                 CPU16Regs:$b, CPU16Regs:$a)>;
1605
1606// signed
1607// x = (a >= k)?x:y
1608// due to an llvm optimization, i don't think that this will ever
1609// be used. This is transformed into x = (a > k-1)?x:y
1610//
1611//
1612
1613//def : Mips16Pat<
1614//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1615//   CPU16Regs:$T, CPU16Regs:$F),
1616//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1617//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1618
1619//def : Mips16Pat<
1620//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1621//   CPU16Regs:$T, CPU16Regs:$F),
1622//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1623//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1624
1625// signed
1626// x = (a < k)?x:y
1627//
1628// if !(a < k) x = y;
1629//
1630def : Mips16Pat<
1631  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1632   CPU16Regs:$x, CPU16Regs:$y),
1633  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1634   CPU16Regs:$a, immSExt16:$b)>;
1635
1636
1637//
1638//
1639// signed
1640// x = (a <= b)? x : y
1641//
1642// if  (b < a) x = y
1643//
1644def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1645                 CPU16Regs:$x, CPU16Regs:$y),
1646                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1647                 CPU16Regs:$b, CPU16Regs:$a)>;
1648
1649//
1650// unnsigned
1651// x = (a <= b)? x : y
1652//
1653// if  (b < a) x = y
1654//
1655def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1656                 CPU16Regs:$x, CPU16Regs:$y),
1657                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1658                 CPU16Regs:$b, CPU16Regs:$a)>;
1659
1660//
1661// signed/unsigned
1662// x = (a == b)? x : y
1663//
1664// if (a != b) x = y
1665//
1666def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1667                 CPU16Regs:$x, CPU16Regs:$y),
1668                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1669                 CPU16Regs:$b, CPU16Regs:$a)>;
1670
1671//
1672// signed/unsigned
1673// x = (a == 0)? x : y
1674//
1675// if (a != 0) x = y
1676//
1677def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1678                 CPU16Regs:$x, CPU16Regs:$y),
1679                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1680                 CPU16Regs:$a)>;
1681
1682
1683//
1684// signed/unsigned
1685// x = (a == k)? x : y
1686//
1687// if (a != k) x = y
1688//
1689def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1690                 CPU16Regs:$x, CPU16Regs:$y),
1691                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1692                 CPU16Regs:$a, immZExt16:$k)>;
1693
1694
1695//
1696// signed/unsigned
1697// x = (a != b)? x : y
1698//
1699// if (a == b) x = y
1700//
1701//
1702def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1703                 CPU16Regs:$x, CPU16Regs:$y),
1704                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1705                 CPU16Regs:$b, CPU16Regs:$a)>;
1706
1707//
1708// signed/unsigned
1709// x = (a != 0)? x : y
1710//
1711// if (a == 0) x = y
1712//
1713def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1714                 CPU16Regs:$x, CPU16Regs:$y),
1715                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1716                 CPU16Regs:$a)>;
1717
1718// signed/unsigned
1719// x = (a)? x : y
1720//
1721// if (!a) x = y
1722//
1723def : Mips16Pat<(select  CPU16Regs:$a,
1724                 CPU16Regs:$x, CPU16Regs:$y),
1725      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1726       CPU16Regs:$a)>;
1727
1728
1729//
1730// signed/unsigned
1731// x = (a != k)? x : y
1732//
1733// if (a == k) x = y
1734//
1735def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1736                 CPU16Regs:$x, CPU16Regs:$y),
1737                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1738                 CPU16Regs:$a, immZExt16:$k)>;
1739
1740//
1741// When writing C code to test setxx these patterns,
1742// some will be transformed into
1743// other things. So we test using C code but using -O3 and -O0
1744//
1745// seteq
1746//
1747def : Mips16Pat
1748  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1749   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1750
1751def : Mips16Pat
1752  <(seteq CPU16Regs:$lhs, 0),
1753   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1754
1755
1756//
1757// setge
1758//
1759
1760def: Mips16Pat
1761  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1762   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1763   (LiRxImmX16 1))>;
1764
1765//
1766// For constants, llvm transforms this to:
1767// x > (k - 1) and then reverses the operands to use setlt. So this pattern
1768// is not used now by the compiler. (Presumably checking that k-1 does not
1769// overflow). The compiler never uses this at the current time, due to
1770// other optimizations.
1771//
1772//def: Mips16Pat
1773//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1774//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1775//   (LiRxImmX16 1))>;
1776
1777// This catches the x >= -32768 case by transforming it to  x > -32769
1778//
1779def: Mips16Pat
1780  <(setgt CPU16Regs:$lhs, -32769),
1781   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1782   (LiRxImmX16 1))>;
1783
1784//
1785// setgt
1786//
1787//
1788
1789def: Mips16Pat
1790  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1791   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1792
1793//
1794// setle
1795//
1796def: Mips16Pat
1797  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1798   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1799
1800//
1801// setlt
1802//
1803def: SetCC_R16<setlt, SltCCRxRy16>;
1804
1805def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1806
1807//
1808// setne
1809//
1810def : Mips16Pat
1811  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1812   (SltuCCRxRy16 (LiRxImmX16 0),
1813   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1814
1815
1816//
1817// setuge
1818//
1819def: Mips16Pat
1820  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1821   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1822   (LiRxImmX16 1))>;
1823
1824// this pattern will never be used because the compiler will transform
1825// x >= k to x > (k - 1) and then use SLT
1826//
1827//def: Mips16Pat
1828//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1829//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1830//   (LiRxImmX16 1))>;
1831
1832//
1833// setugt
1834//
1835def: Mips16Pat
1836  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1837   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1838
1839//
1840// setule
1841//
1842def: Mips16Pat
1843  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1844   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1845
1846//
1847// setult
1848//
1849def: SetCC_R16<setult, SltuCCRxRy16>;
1850
1851def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1852
1853def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1854               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1855
1856// hi/lo relocs
1857def : Mips16Pat<(MipsHi tblockaddress:$in),
1858                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1859def : Mips16Pat<(MipsHi tglobaladdr:$in),
1860                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1861def : Mips16Pat<(MipsHi tjumptable:$in),
1862                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1863def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1864                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1865
1866def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1867
1868// wrapper_pic
1869class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1870  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1871            (ADDiuOp RC:$gp, node:$in)>;
1872
1873
1874def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1875def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1876
1877def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1878                (LbuRxRyOffMemX16  addr16:$src)>;
1879def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1880                (LhuRxRyOffMemX16  addr16:$src)>;
1881
1882def: Mips16Pat<(trap), (Break16)>;
1883
1884def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1885                (SebRx16 CPU16Regs:$val)>;
1886
1887def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1888                (SehRx16 CPU16Regs:$val)>;
1889
1890def GotPrologue16:
1891  MipsPseudo16<
1892    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1893    (ins simm16:$immHi, simm16:$immLo),
1894    "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1895
1896// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1897def cpinst_operand : Operand<i32> {
1898  // let PrintMethod = "printCPInstOperand";
1899}
1900
1901// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1902// the function.  The first operand is the ID# for this instruction, the second
1903// is the index into the MachineConstantPool that this is, the third is the
1904// size in bytes of this constant pool entry.
1905//
1906let hasSideEffects = 0, isNotDuplicable = 1 in
1907def CONSTPOOL_ENTRY :
1908MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1909                      i32imm:$size), "foo", []>;
1910
1911