1//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the machine model for AMD btver2 (Jaguar) to support 11// instruction scheduling and other instruction cost heuristics. Based off AMD Software 12// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. 13// 14//===----------------------------------------------------------------------===// 15 16def BtVer2Model : SchedMachineModel { 17 // All x86 instructions are modeled as a single micro-op, and btver2 can 18 // decode 2 instructions per cycle. 19 let IssueWidth = 2; 20 let MicroOpBufferSize = 64; // Retire Control Unit 21 let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) 22 let HighLatency = 25; 23 let MispredictPenalty = 14; // Minimum branch misdirection penalty 24 let PostRAScheduler = 1; 25 26 // FIXME: SSE4/AVX is unimplemented. This flag is set to allow 27 // the scheduler to assign a default model to unrecognized opcodes. 28 let CompleteModel = 0; 29} 30 31let SchedModel = BtVer2Model in { 32 33// Jaguar can issue up to 6 micro-ops in one cycle 34def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) 35def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV 36def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU 37def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) 38def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA 39def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM 40 41// Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly 42def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>; 43 44// Integer Pipe Scheduler 45def JALU01 : ProcResGroup<[JALU0, JALU1]> { 46 let BufferSize=20; 47} 48 49// AGU Pipe Scheduler 50def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { 51 let BufferSize=12; 52} 53 54// Fpu Pipe Scheduler 55def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { 56 let BufferSize=18; 57} 58 59def JDiv : ProcResource<1>; // integer division 60def JMul : ProcResource<1>; // integer multiplication 61def JVALU0 : ProcResource<1>; // vector integer 62def JVALU1 : ProcResource<1>; // vector integer 63def JVIMUL : ProcResource<1>; // vector integer multiplication 64def JSTC : ProcResource<1>; // vector store/convert 65def JFPM : ProcResource<1>; // FP multiplication 66def JFPA : ProcResource<1>; // FP addition 67 68// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 69// cycles after the memory operand. 70def : ReadAdvance<ReadAfterLd, 3>; 71 72// Many SchedWrites are defined in pairs with and without a folded load. 73// Instructions with folded loads are usually micro-fused, so they only appear 74// as two micro-ops when dispatched by the schedulers. 75// This multiclass defines the resource usage for variants with and without 76// folded loads. 77multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW, 78 ProcResourceKind ExePort, 79 int Lat> { 80 // Register variant is using a single cycle on ExePort. 81 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 82 83 // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the 84 // latency. 85 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { 86 let Latency = !add(Lat, 3); 87 } 88} 89 90multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW, 91 ProcResourceKind ExePort, 92 int Lat> { 93 // Register variant is using a single cycle on ExePort. 94 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 95 96 // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the 97 // latency. 98 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { 99 let Latency = !add(Lat, 5); 100 } 101} 102 103// A folded store needs a cycle on the SAGU for the store data. 104def : WriteRes<WriteRMW, [JSAGU]>; 105 106//////////////////////////////////////////////////////////////////////////////// 107// Arithmetic. 108//////////////////////////////////////////////////////////////////////////////// 109 110defm : JWriteResIntPair<WriteALU, JALU01, 1>; 111defm : JWriteResIntPair<WriteIMul, JALU1, 3>; 112 113def : WriteRes<WriteIMulH, [JALU1]> { 114 let Latency = 6; 115 let ResourceCycles = [4]; 116} 117 118// FIXME 8/16 bit divisions 119def : WriteRes<WriteIDiv, [JALU1, JDiv]> { 120 let Latency = 25; 121 let ResourceCycles = [1, 25]; 122} 123def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> { 124 let Latency = 41; 125 let ResourceCycles = [1, 1, 25]; 126} 127 128// This is for simple LEAs with one or two input operands. 129// FIXME: SAGU 3-operand LEA 130def : WriteRes<WriteLEA, [JALU01]>; 131 132//////////////////////////////////////////////////////////////////////////////// 133// Integer shifts and rotates. 134//////////////////////////////////////////////////////////////////////////////// 135 136defm : JWriteResIntPair<WriteShift, JALU01, 1>; 137 138//////////////////////////////////////////////////////////////////////////////// 139// Loads, stores, and moves, not folded with other operations. 140// FIXME: Split x86 and SSE load/store/moves 141//////////////////////////////////////////////////////////////////////////////// 142 143def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; } 144def : WriteRes<WriteStore, [JSAGU]>; 145def : WriteRes<WriteMove, [JAny]>; 146 147//////////////////////////////////////////////////////////////////////////////// 148// Idioms that clear a register, like xorps %xmm0, %xmm0. 149// These can often bypass execution ports completely. 150//////////////////////////////////////////////////////////////////////////////// 151 152def : WriteRes<WriteZero, []>; 153 154//////////////////////////////////////////////////////////////////////////////// 155// Branches don't produce values, so they have no latency, but they still 156// consume resources. Indirect branches can fold loads. 157//////////////////////////////////////////////////////////////////////////////// 158 159defm : JWriteResIntPair<WriteJump, JALU01, 1>; 160 161//////////////////////////////////////////////////////////////////////////////// 162// Floating point. This covers both scalar and vector operations. 163// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions? 164// FIXME: Double precision latencies 165// FIXME: SS vs PS latencies 166// FIXME: ymm latencies 167//////////////////////////////////////////////////////////////////////////////// 168 169defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>; 170defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>; 171defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>; 172defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>; 173defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>; 174defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>; 175defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>; 176 177def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> { 178 let Latency = 21; 179 let ResourceCycles = [1, 1, 21]; 180} 181def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> { 182 let Latency = 26; 183 let ResourceCycles = [1, 1, 21]; 184} 185 186def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> { 187 let Latency = 19; 188 let ResourceCycles = [1, 1, 19]; 189} 190def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> { 191 let Latency = 24; 192 let ResourceCycles = [1, 1, 19]; 193} 194 195// FIXME: integer pipes 196defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer. 197defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float. 198defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion. 199 200def : WriteRes<WriteFVarBlend, [JFPU01]> { 201 let Latency = 2; 202 let ResourceCycles = [2]; 203} 204def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> { 205 let Latency = 7; 206 let ResourceCycles = [1, 2]; 207} 208 209// Vector integer operations. 210defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>; 211defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>; 212defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>; 213defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>; 214defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>; 215defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>; 216defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>; 217 218def : WriteRes<WriteVarBlend, [JFPU01]> { 219 let Latency = 2; 220 let ResourceCycles = [2]; 221} 222def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> { 223 let Latency = 7; 224 let ResourceCycles = [1, 2]; 225} 226 227// FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2? 228def : WriteRes<WriteVarVecShift, [JFPU01]> { 229 let Latency = 1; 230 let ResourceCycles = [1]; 231} 232def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> { 233 let Latency = 6; 234 let ResourceCycles = [1, 1]; 235} 236 237def : WriteRes<WriteMPSAD, [JFPU0]> { 238 let Latency = 3; 239 let ResourceCycles = [2]; 240} 241def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> { 242 let Latency = 8; 243 let ResourceCycles = [1, 2]; 244} 245 246//////////////////////////////////////////////////////////////////////////////// 247// String instructions. 248// Packed Compare Implicit Length Strings, Return Mask 249// FIXME: approximate latencies + pipe dependencies 250//////////////////////////////////////////////////////////////////////////////// 251 252def : WriteRes<WritePCmpIStrM, [JFPU01]> { 253 let Latency = 7; 254 let ResourceCycles = [2]; 255} 256def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> { 257 let Latency = 12; 258 let ResourceCycles = [1, 2]; 259} 260 261// Packed Compare Explicit Length Strings, Return Mask 262def : WriteRes<WritePCmpEStrM, [JFPU01]> { 263 let Latency = 13; 264 let ResourceCycles = [5]; 265} 266def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> { 267 let Latency = 18; 268 let ResourceCycles = [1, 5]; 269} 270 271// Packed Compare Implicit Length Strings, Return Index 272def : WriteRes<WritePCmpIStrI, [JFPU01]> { 273 let Latency = 6; 274 let ResourceCycles = [2]; 275} 276def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> { 277 let Latency = 11; 278 let ResourceCycles = [1, 2]; 279} 280 281// Packed Compare Explicit Length Strings, Return Index 282def : WriteRes<WritePCmpEStrI, [JFPU01]> { 283 let Latency = 13; 284 let ResourceCycles = [5]; 285} 286def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> { 287 let Latency = 18; 288 let ResourceCycles = [1, 5]; 289} 290 291//////////////////////////////////////////////////////////////////////////////// 292// AES Instructions. 293//////////////////////////////////////////////////////////////////////////////// 294 295def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> { 296 let Latency = 3; 297 let ResourceCycles = [1, 1]; 298} 299def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> { 300 let Latency = 8; 301 let ResourceCycles = [1, 1, 1]; 302} 303 304def : WriteRes<WriteAESIMC, [JVIMUL]> { 305 let Latency = 2; 306 let ResourceCycles = [1]; 307} 308def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> { 309 let Latency = 7; 310 let ResourceCycles = [1, 1]; 311} 312 313def : WriteRes<WriteAESKeyGen, [JVIMUL]> { 314 let Latency = 2; 315 let ResourceCycles = [1]; 316} 317def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> { 318 let Latency = 7; 319 let ResourceCycles = [1, 1]; 320} 321 322//////////////////////////////////////////////////////////////////////////////// 323// Carry-less multiplication instructions. 324//////////////////////////////////////////////////////////////////////////////// 325 326def : WriteRes<WriteCLMul, [JVIMUL]> { 327 let Latency = 2; 328 let ResourceCycles = [1]; 329} 330def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> { 331 let Latency = 7; 332 let ResourceCycles = [1, 1]; 333} 334 335// FIXME: pipe for system/microcode? 336def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; } 337def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; } 338def : WriteRes<WriteFence, [JSAGU]>; 339def : WriteRes<WriteNop, []>; 340} // SchedModel 341 342