• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30 
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable.  This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
pointsToConstantGlobal(Value * V)34 static bool pointsToConstantGlobal(Value *V) {
35   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36     return GV->isConstant();
37 
38   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39     if (CE->getOpcode() == Instruction::BitCast ||
40         CE->getOpcode() == Instruction::AddrSpaceCast ||
41         CE->getOpcode() == Instruction::GetElementPtr)
42       return pointsToConstantGlobal(CE->getOperand(0));
43   }
44   return false;
45 }
46 
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
isOnlyCopiedFromConstantGlobal(Value * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the global, this lets the caller quickly
59   // eliminate the markers.
60 
61   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62   ValuesToInspect.push_back(std::make_pair(V, false));
63   while (!ValuesToInspect.empty()) {
64     auto ValuePair = ValuesToInspect.pop_back_val();
65     const bool IsOffset = ValuePair.second;
66     for (auto &U : ValuePair.first->uses()) {
67       Instruction *I = cast<Instruction>(U.getUser());
68 
69       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70         // Ignore non-volatile loads, they are always ok.
71         if (!LI->isSimple()) return false;
72         continue;
73       }
74 
75       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76         // If uses of the bitcast are ok, we are ok.
77         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78         continue;
79       }
80       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81         // If the GEP has all zero indices, it doesn't offset the pointer. If it
82         // doesn't, it does.
83         ValuesToInspect.push_back(
84             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85         continue;
86       }
87 
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93 
94         unsigned DataOpNo = CS.getDataOperandNo(&U);
95         bool IsArgOperand = CS.isArgOperand(&U);
96 
97         // Inalloca arguments are clobbered by the call.
98         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
99           return false;
100 
101         // If this is a readonly/readnone call site, then we know it is just a
102         // load (but one that potentially returns the value itself), so we can
103         // ignore it if we know that the value isn't captured.
104         if (CS.onlyReadsMemory() &&
105             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
106           continue;
107 
108         // If this is being passed as a byval argument, the caller is making a
109         // copy, so it is only a read of the alloca.
110         if (IsArgOperand && CS.isByValArgument(DataOpNo))
111           continue;
112       }
113 
114       // Lifetime intrinsics can be handled by the caller.
115       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
116         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
117             II->getIntrinsicID() == Intrinsic::lifetime_end) {
118           assert(II->use_empty() && "Lifetime markers have no result to use!");
119           ToDelete.push_back(II);
120           continue;
121         }
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
simplifyAllocaArraySize(InstCombiner & IC,AllocaInst & AI)170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
171   // Check for array size of 1 (scalar allocation).
172   if (!AI.isArrayAllocation()) {
173     // i32 1 is the canonical array size for scalar allocations.
174     if (AI.getArraySize()->getType()->isIntegerTy(32))
175       return nullptr;
176 
177     // Canonicalize it.
178     Value *V = IC.Builder->getInt32(1);
179     AI.setOperand(0, V);
180     return &AI;
181   }
182 
183   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
184   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
185     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
187     New->setAlignment(AI.getAlignment());
188 
189     // Scan to the end of the allocation instructions, to skip over a block of
190     // allocas if possible...also skip interleaved debug info
191     //
192     BasicBlock::iterator It(New);
193     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194       ++It;
195 
196     // Now that I is pointing to the first non-allocation-inst in the block,
197     // insert our getelementptr instruction...
198     //
199     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200     Value *NullIdx = Constant::getNullValue(IdxTy);
201     Value *Idx[2] = {NullIdx, NullIdx};
202     Instruction *GEP =
203         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
204     IC.InsertNewInstBefore(GEP, *It);
205 
206     // Now make everything use the getelementptr instead of the original
207     // allocation.
208     return IC.replaceInstUsesWith(AI, GEP);
209   }
210 
211   if (isa<UndefValue>(AI.getArraySize()))
212     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
213 
214   // Ensure that the alloca array size argument has type intptr_t, so that
215   // any casting is exposed early.
216   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
217   if (AI.getArraySize()->getType() != IntPtrTy) {
218     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
219     AI.setOperand(0, V);
220     return &AI;
221   }
222 
223   return nullptr;
224 }
225 
visitAllocaInst(AllocaInst & AI)226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
227   if (auto *I = simplifyAllocaArraySize(*this, AI))
228     return I;
229 
230   if (AI.getAllocatedType()->isSized()) {
231     // If the alignment is 0 (unspecified), assign it the preferred alignment.
232     if (AI.getAlignment() == 0)
233       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
234 
235     // Move all alloca's of zero byte objects to the entry block and merge them
236     // together.  Note that we only do this for alloca's, because malloc should
237     // allocate and return a unique pointer, even for a zero byte allocation.
238     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
239       // For a zero sized alloca there is no point in doing an array allocation.
240       // This is helpful if the array size is a complicated expression not used
241       // elsewhere.
242       if (AI.isArrayAllocation()) {
243         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
244         return &AI;
245       }
246 
247       // Get the first instruction in the entry block.
248       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
249       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
250       if (FirstInst != &AI) {
251         // If the entry block doesn't start with a zero-size alloca then move
252         // this one to the start of the entry block.  There is no problem with
253         // dominance as the array size was forced to a constant earlier already.
254         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
255         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
256             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
257           AI.moveBefore(FirstInst);
258           return &AI;
259         }
260 
261         // If the alignment of the entry block alloca is 0 (unspecified),
262         // assign it the preferred alignment.
263         if (EntryAI->getAlignment() == 0)
264           EntryAI->setAlignment(
265               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
266         // Replace this zero-sized alloca with the one at the start of the entry
267         // block after ensuring that the address will be aligned enough for both
268         // types.
269         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
270                                      AI.getAlignment());
271         EntryAI->setAlignment(MaxAlign);
272         if (AI.getType() != EntryAI->getType())
273           return new BitCastInst(EntryAI, AI.getType());
274         return replaceInstUsesWith(AI, EntryAI);
275       }
276     }
277   }
278 
279   if (AI.getAlignment()) {
280     // Check to see if this allocation is only modified by a memcpy/memmove from
281     // a constant global whose alignment is equal to or exceeds that of the
282     // allocation.  If this is the case, we can change all users to use
283     // the constant global instead.  This is commonly produced by the CFE by
284     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
285     // is only subsequently read.
286     SmallVector<Instruction *, 4> ToDelete;
287     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
288       unsigned SourceAlign = getOrEnforceKnownAlignment(
289           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
290       if (AI.getAlignment() <= SourceAlign) {
291         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
292         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
293         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
294           eraseInstFromFunction(*ToDelete[i]);
295         Constant *TheSrc = cast<Constant>(Copy->getSource());
296         Constant *Cast
297           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
298         Instruction *NewI = replaceInstUsesWith(AI, Cast);
299         eraseInstFromFunction(*Copy);
300         ++NumGlobalCopies;
301         return NewI;
302       }
303     }
304   }
305 
306   // At last, use the generic allocation site handler to aggressively remove
307   // unused allocas.
308   return visitAllocSite(AI);
309 }
310 
311 /// \brief Helper to combine a load to a new type.
312 ///
313 /// This just does the work of combining a load to a new type. It handles
314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
315 /// loaded *value* type. This will convert it to a pointer, cast the operand to
316 /// that pointer type, load it, etc.
317 ///
318 /// Note that this will create all of the instructions with whatever insert
319 /// point the \c InstCombiner currently is using.
combineLoadToNewType(InstCombiner & IC,LoadInst & LI,Type * NewTy,const Twine & Suffix="")320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
321                                       const Twine &Suffix = "") {
322   Value *Ptr = LI.getPointerOperand();
323   unsigned AS = LI.getPointerAddressSpace();
324   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
325   LI.getAllMetadata(MD);
326 
327   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
328       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
329       LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
330   NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
331   MDBuilder MDB(NewLoad->getContext());
332   for (const auto &MDPair : MD) {
333     unsigned ID = MDPair.first;
334     MDNode *N = MDPair.second;
335     // Note, essentially every kind of metadata should be preserved here! This
336     // routine is supposed to clone a load instruction changing *only its type*.
337     // The only metadata it makes sense to drop is metadata which is invalidated
338     // when the pointer type changes. This should essentially never be the case
339     // in LLVM, but we explicitly switch over only known metadata to be
340     // conservatively correct. If you are adding metadata to LLVM which pertains
341     // to loads, you almost certainly want to add it here.
342     switch (ID) {
343     case LLVMContext::MD_dbg:
344     case LLVMContext::MD_tbaa:
345     case LLVMContext::MD_prof:
346     case LLVMContext::MD_fpmath:
347     case LLVMContext::MD_tbaa_struct:
348     case LLVMContext::MD_invariant_load:
349     case LLVMContext::MD_alias_scope:
350     case LLVMContext::MD_noalias:
351     case LLVMContext::MD_nontemporal:
352     case LLVMContext::MD_mem_parallel_loop_access:
353       // All of these directly apply.
354       NewLoad->setMetadata(ID, N);
355       break;
356 
357     case LLVMContext::MD_nonnull:
358       // This only directly applies if the new type is also a pointer.
359       if (NewTy->isPointerTy()) {
360         NewLoad->setMetadata(ID, N);
361         break;
362       }
363       // If it's integral now, translate it to !range metadata.
364       if (NewTy->isIntegerTy()) {
365         auto *ITy = cast<IntegerType>(NewTy);
366         auto *NullInt = ConstantExpr::getPtrToInt(
367             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
368         auto *NonNullInt =
369             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
370         NewLoad->setMetadata(LLVMContext::MD_range,
371                              MDB.createRange(NonNullInt, NullInt));
372       }
373       break;
374     case LLVMContext::MD_align:
375     case LLVMContext::MD_dereferenceable:
376     case LLVMContext::MD_dereferenceable_or_null:
377       // These only directly apply if the new type is also a pointer.
378       if (NewTy->isPointerTy())
379         NewLoad->setMetadata(ID, N);
380       break;
381     case LLVMContext::MD_range:
382       // FIXME: It would be nice to propagate this in some way, but the type
383       // conversions make it hard. If the new type is a pointer, we could
384       // translate it to !nonnull metadata.
385       break;
386     }
387   }
388   return NewLoad;
389 }
390 
391 /// \brief Combine a store to a new type.
392 ///
393 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombiner & IC,StoreInst & SI,Value * V)394 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
395   Value *Ptr = SI.getPointerOperand();
396   unsigned AS = SI.getPointerAddressSpace();
397   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
398   SI.getAllMetadata(MD);
399 
400   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
401       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
402       SI.getAlignment(), SI.isVolatile());
403   NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope());
404   for (const auto &MDPair : MD) {
405     unsigned ID = MDPair.first;
406     MDNode *N = MDPair.second;
407     // Note, essentially every kind of metadata should be preserved here! This
408     // routine is supposed to clone a store instruction changing *only its
409     // type*. The only metadata it makes sense to drop is metadata which is
410     // invalidated when the pointer type changes. This should essentially
411     // never be the case in LLVM, but we explicitly switch over only known
412     // metadata to be conservatively correct. If you are adding metadata to
413     // LLVM which pertains to stores, you almost certainly want to add it
414     // here.
415     switch (ID) {
416     case LLVMContext::MD_dbg:
417     case LLVMContext::MD_tbaa:
418     case LLVMContext::MD_prof:
419     case LLVMContext::MD_fpmath:
420     case LLVMContext::MD_tbaa_struct:
421     case LLVMContext::MD_alias_scope:
422     case LLVMContext::MD_noalias:
423     case LLVMContext::MD_nontemporal:
424     case LLVMContext::MD_mem_parallel_loop_access:
425       // All of these directly apply.
426       NewStore->setMetadata(ID, N);
427       break;
428 
429     case LLVMContext::MD_invariant_load:
430     case LLVMContext::MD_nonnull:
431     case LLVMContext::MD_range:
432     case LLVMContext::MD_align:
433     case LLVMContext::MD_dereferenceable:
434     case LLVMContext::MD_dereferenceable_or_null:
435       // These don't apply for stores.
436       break;
437     }
438   }
439 
440   return NewStore;
441 }
442 
443 /// \brief Combine loads to match the type of their uses' value after looking
444 /// through intervening bitcasts.
445 ///
446 /// The core idea here is that if the result of a load is used in an operation,
447 /// we should load the type most conducive to that operation. For example, when
448 /// loading an integer and converting that immediately to a pointer, we should
449 /// instead directly load a pointer.
450 ///
451 /// However, this routine must never change the width of a load or the number of
452 /// loads as that would introduce a semantic change. This combine is expected to
453 /// be a semantic no-op which just allows loads to more closely model the types
454 /// of their consuming operations.
455 ///
456 /// Currently, we also refuse to change the precise type used for an atomic load
457 /// or a volatile load. This is debatable, and might be reasonable to change
458 /// later. However, it is risky in case some backend or other part of LLVM is
459 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombiner & IC,LoadInst & LI)460 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
461   // FIXME: We could probably with some care handle both volatile and ordered
462   // atomic loads here but it isn't clear that this is important.
463   if (!LI.isUnordered())
464     return nullptr;
465 
466   if (LI.use_empty())
467     return nullptr;
468 
469   Type *Ty = LI.getType();
470   const DataLayout &DL = IC.getDataLayout();
471 
472   // Try to canonicalize loads which are only ever stored to operate over
473   // integers instead of any other type. We only do this when the loaded type
474   // is sized and has a size exactly the same as its store size and the store
475   // size is a legal integer type.
476   if (!Ty->isIntegerTy() && Ty->isSized() &&
477       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
478       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
479     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
480           auto *SI = dyn_cast<StoreInst>(U);
481           return SI && SI->getPointerOperand() != &LI;
482         })) {
483       LoadInst *NewLoad = combineLoadToNewType(
484           IC, LI,
485           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
486       // Replace all the stores with stores of the newly loaded value.
487       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
488         auto *SI = cast<StoreInst>(*UI++);
489         IC.Builder->SetInsertPoint(SI);
490         combineStoreToNewValue(IC, *SI, NewLoad);
491         IC.eraseInstFromFunction(*SI);
492       }
493       assert(LI.use_empty() && "Failed to remove all users of the load!");
494       // Return the old load so the combiner can delete it safely.
495       return &LI;
496     }
497   }
498 
499   // Fold away bit casts of the loaded value by loading the desired type.
500   // We can do this for BitCastInsts as well as casts from and to pointer types,
501   // as long as those are noops (i.e., the source or dest type have the same
502   // bitwidth as the target's pointers).
503   if (LI.hasOneUse())
504     if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
505       if (CI->isNoopCast(DL)) {
506         LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
507         CI->replaceAllUsesWith(NewLoad);
508         IC.eraseInstFromFunction(*CI);
509         return &LI;
510       }
511     }
512 
513   // FIXME: We should also canonicalize loads of vectors when their elements are
514   // cast to other types.
515   return nullptr;
516 }
517 
unpackLoadToAggregate(InstCombiner & IC,LoadInst & LI)518 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
519   // FIXME: We could probably with some care handle both volatile and atomic
520   // stores here but it isn't clear that this is important.
521   if (!LI.isSimple())
522     return nullptr;
523 
524   Type *T = LI.getType();
525   if (!T->isAggregateType())
526     return nullptr;
527 
528   StringRef Name = LI.getName();
529   assert(LI.getAlignment() && "Alignment must be set at this point");
530 
531   if (auto *ST = dyn_cast<StructType>(T)) {
532     // If the struct only have one element, we unpack.
533     auto NumElements = ST->getNumElements();
534     if (NumElements == 1) {
535       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
536                                                ".unpack");
537       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
538         UndefValue::get(T), NewLoad, 0, Name));
539     }
540 
541     // We don't want to break loads with padding here as we'd loose
542     // the knowledge that padding exists for the rest of the pipeline.
543     const DataLayout &DL = IC.getDataLayout();
544     auto *SL = DL.getStructLayout(ST);
545     if (SL->hasPadding())
546       return nullptr;
547 
548     auto Align = LI.getAlignment();
549     if (!Align)
550       Align = DL.getABITypeAlignment(ST);
551 
552     auto *Addr = LI.getPointerOperand();
553     auto *IdxType = Type::getInt32Ty(T->getContext());
554     auto *Zero = ConstantInt::get(IdxType, 0);
555 
556     Value *V = UndefValue::get(T);
557     for (unsigned i = 0; i < NumElements; i++) {
558       Value *Indices[2] = {
559         Zero,
560         ConstantInt::get(IdxType, i),
561       };
562       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
563                                                 Name + ".elt");
564       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
565       auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
566       V = IC.Builder->CreateInsertValue(V, L, i);
567     }
568 
569     V->setName(Name);
570     return IC.replaceInstUsesWith(LI, V);
571   }
572 
573   if (auto *AT = dyn_cast<ArrayType>(T)) {
574     auto *ET = AT->getElementType();
575     auto NumElements = AT->getNumElements();
576     if (NumElements == 1) {
577       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
578       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
579         UndefValue::get(T), NewLoad, 0, Name));
580     }
581 
582     const DataLayout &DL = IC.getDataLayout();
583     auto EltSize = DL.getTypeAllocSize(ET);
584     auto Align = LI.getAlignment();
585     if (!Align)
586       Align = DL.getABITypeAlignment(T);
587 
588     auto *Addr = LI.getPointerOperand();
589     auto *IdxType = Type::getInt64Ty(T->getContext());
590     auto *Zero = ConstantInt::get(IdxType, 0);
591 
592     Value *V = UndefValue::get(T);
593     uint64_t Offset = 0;
594     for (uint64_t i = 0; i < NumElements; i++) {
595       Value *Indices[2] = {
596         Zero,
597         ConstantInt::get(IdxType, i),
598       };
599       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
600                                                 Name + ".elt");
601       auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
602                                               Name + ".unpack");
603       V = IC.Builder->CreateInsertValue(V, L, i);
604       Offset += EltSize;
605     }
606 
607     V->setName(Name);
608     return IC.replaceInstUsesWith(LI, V);
609   }
610 
611   return nullptr;
612 }
613 
614 // If we can determine that all possible objects pointed to by the provided
615 // pointer value are, not only dereferenceable, but also definitively less than
616 // or equal to the provided maximum size, then return true. Otherwise, return
617 // false (constant global values and allocas fall into this category).
618 //
619 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)620 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
621                                      const DataLayout &DL) {
622   SmallPtrSet<Value *, 4> Visited;
623   SmallVector<Value *, 4> Worklist(1, V);
624 
625   do {
626     Value *P = Worklist.pop_back_val();
627     P = P->stripPointerCasts();
628 
629     if (!Visited.insert(P).second)
630       continue;
631 
632     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
633       Worklist.push_back(SI->getTrueValue());
634       Worklist.push_back(SI->getFalseValue());
635       continue;
636     }
637 
638     if (PHINode *PN = dyn_cast<PHINode>(P)) {
639       for (Value *IncValue : PN->incoming_values())
640         Worklist.push_back(IncValue);
641       continue;
642     }
643 
644     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
645       if (GA->isInterposable())
646         return false;
647       Worklist.push_back(GA->getAliasee());
648       continue;
649     }
650 
651     // If we know how big this object is, and it is less than MaxSize, continue
652     // searching. Otherwise, return false.
653     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
654       if (!AI->getAllocatedType()->isSized())
655         return false;
656 
657       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
658       if (!CS)
659         return false;
660 
661       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
662       // Make sure that, even if the multiplication below would wrap as an
663       // uint64_t, we still do the right thing.
664       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
665         return false;
666       continue;
667     }
668 
669     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
670       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
671         return false;
672 
673       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
674       if (InitSize > MaxSize)
675         return false;
676       continue;
677     }
678 
679     return false;
680   } while (!Worklist.empty());
681 
682   return true;
683 }
684 
685 // If we're indexing into an object of a known size, and the outer index is
686 // not a constant, but having any value but zero would lead to undefined
687 // behavior, replace it with zero.
688 //
689 // For example, if we have:
690 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
691 // ...
692 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
693 // ... = load i32* %arrayidx, align 4
694 // Then we know that we can replace %x in the GEP with i64 0.
695 //
696 // FIXME: We could fold any GEP index to zero that would cause UB if it were
697 // not zero. Currently, we only handle the first such index. Also, we could
698 // also search through non-zero constant indices if we kept track of the
699 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombiner & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)700 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
701                                      Instruction *MemI, unsigned &Idx) {
702   if (GEPI->getNumOperands() < 2)
703     return false;
704 
705   // Find the first non-zero index of a GEP. If all indices are zero, return
706   // one past the last index.
707   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
708     unsigned I = 1;
709     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
710       Value *V = GEPI->getOperand(I);
711       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
712         if (CI->isZero())
713           continue;
714 
715       break;
716     }
717 
718     return I;
719   };
720 
721   // Skip through initial 'zero' indices, and find the corresponding pointer
722   // type. See if the next index is not a constant.
723   Idx = FirstNZIdx(GEPI);
724   if (Idx == GEPI->getNumOperands())
725     return false;
726   if (isa<Constant>(GEPI->getOperand(Idx)))
727     return false;
728 
729   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
730   Type *AllocTy =
731     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
732   if (!AllocTy || !AllocTy->isSized())
733     return false;
734   const DataLayout &DL = IC.getDataLayout();
735   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
736 
737   // If there are more indices after the one we might replace with a zero, make
738   // sure they're all non-negative. If any of them are negative, the overall
739   // address being computed might be before the base address determined by the
740   // first non-zero index.
741   auto IsAllNonNegative = [&]() {
742     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
743       bool KnownNonNegative, KnownNegative;
744       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
745                         KnownNegative, 0, MemI);
746       if (KnownNonNegative)
747         continue;
748       return false;
749     }
750 
751     return true;
752   };
753 
754   // FIXME: If the GEP is not inbounds, and there are extra indices after the
755   // one we'll replace, those could cause the address computation to wrap
756   // (rendering the IsAllNonNegative() check below insufficient). We can do
757   // better, ignoring zero indices (and other indices we can prove small
758   // enough not to wrap).
759   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
760     return false;
761 
762   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
763   // also known to be dereferenceable.
764   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
765          IsAllNonNegative();
766 }
767 
768 // If we're indexing into an object with a variable index for the memory
769 // access, but the object has only one element, we can assume that the index
770 // will always be zero. If we replace the GEP, return it.
771 template <typename T>
replaceGEPIdxWithZero(InstCombiner & IC,Value * Ptr,T & MemI)772 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
773                                           T &MemI) {
774   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
775     unsigned Idx;
776     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
777       Instruction *NewGEPI = GEPI->clone();
778       NewGEPI->setOperand(Idx,
779         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
780       NewGEPI->insertBefore(GEPI);
781       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
782       return NewGEPI;
783     }
784   }
785 
786   return nullptr;
787 }
788 
visitLoadInst(LoadInst & LI)789 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
790   Value *Op = LI.getOperand(0);
791 
792   // Try to canonicalize the loaded type.
793   if (Instruction *Res = combineLoadToOperationType(*this, LI))
794     return Res;
795 
796   // Attempt to improve the alignment.
797   unsigned KnownAlign = getOrEnforceKnownAlignment(
798       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
799   unsigned LoadAlign = LI.getAlignment();
800   unsigned EffectiveLoadAlign =
801       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
802 
803   if (KnownAlign > EffectiveLoadAlign)
804     LI.setAlignment(KnownAlign);
805   else if (LoadAlign == 0)
806     LI.setAlignment(EffectiveLoadAlign);
807 
808   // Replace GEP indices if possible.
809   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
810       Worklist.Add(NewGEPI);
811       return &LI;
812   }
813 
814   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
815     return Res;
816 
817   // Do really simple store-to-load forwarding and load CSE, to catch cases
818   // where there are several consecutive memory accesses to the same location,
819   // separated by a few arithmetic operations.
820   BasicBlock::iterator BBI(LI);
821   AAMDNodes AATags;
822   bool IsLoadCSE = false;
823   if (Value *AvailableVal =
824       FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
825                                DefMaxInstsToScan, AA, &AATags, &IsLoadCSE)) {
826     if (IsLoadCSE) {
827       LoadInst *NLI = cast<LoadInst>(AvailableVal);
828       unsigned KnownIDs[] = {
829           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
830           LLVMContext::MD_noalias,         LLVMContext::MD_range,
831           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
832           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
833           LLVMContext::MD_dereferenceable,
834           LLVMContext::MD_dereferenceable_or_null};
835       combineMetadata(NLI, &LI, KnownIDs);
836     };
837 
838     return replaceInstUsesWith(
839         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
840                                             LI.getName() + ".cast"));
841   }
842 
843   // None of the following transforms are legal for volatile/ordered atomic
844   // loads.  Most of them do apply for unordered atomics.
845   if (!LI.isUnordered()) return nullptr;
846 
847   // load(gep null, ...) -> unreachable
848   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
849     const Value *GEPI0 = GEPI->getOperand(0);
850     // TODO: Consider a target hook for valid address spaces for this xform.
851     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
852       // Insert a new store to null instruction before the load to indicate
853       // that this code is not reachable.  We do this instead of inserting
854       // an unreachable instruction directly because we cannot modify the
855       // CFG.
856       new StoreInst(UndefValue::get(LI.getType()),
857                     Constant::getNullValue(Op->getType()), &LI);
858       return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
859     }
860   }
861 
862   // load null/undef -> unreachable
863   // TODO: Consider a target hook for valid address spaces for this xform.
864   if (isa<UndefValue>(Op) ||
865       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
866     // Insert a new store to null instruction before the load to indicate that
867     // this code is not reachable.  We do this instead of inserting an
868     // unreachable instruction directly because we cannot modify the CFG.
869     new StoreInst(UndefValue::get(LI.getType()),
870                   Constant::getNullValue(Op->getType()), &LI);
871     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
872   }
873 
874   if (Op->hasOneUse()) {
875     // Change select and PHI nodes to select values instead of addresses: this
876     // helps alias analysis out a lot, allows many others simplifications, and
877     // exposes redundancy in the code.
878     //
879     // Note that we cannot do the transformation unless we know that the
880     // introduced loads cannot trap!  Something like this is valid as long as
881     // the condition is always false: load (select bool %C, int* null, int* %G),
882     // but it would not be valid if we transformed it to load from null
883     // unconditionally.
884     //
885     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
886       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
887       unsigned Align = LI.getAlignment();
888       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
889           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
890         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
891                                            SI->getOperand(1)->getName()+".val");
892         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
893                                            SI->getOperand(2)->getName()+".val");
894         assert(LI.isUnordered() && "implied by above");
895         V1->setAlignment(Align);
896         V1->setAtomic(LI.getOrdering(), LI.getSynchScope());
897         V2->setAlignment(Align);
898         V2->setAtomic(LI.getOrdering(), LI.getSynchScope());
899         return SelectInst::Create(SI->getCondition(), V1, V2);
900       }
901 
902       // load (select (cond, null, P)) -> load P
903       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
904           LI.getPointerAddressSpace() == 0) {
905         LI.setOperand(0, SI->getOperand(2));
906         return &LI;
907       }
908 
909       // load (select (cond, P, null)) -> load P
910       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
911           LI.getPointerAddressSpace() == 0) {
912         LI.setOperand(0, SI->getOperand(1));
913         return &LI;
914       }
915     }
916   }
917   return nullptr;
918 }
919 
920 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast.
921 ///
922 /// \returns underlying value that was "cast", or nullptr otherwise.
923 ///
924 /// For example, if we have:
925 ///
926 ///     %E0 = extractelement <2 x double> %U, i32 0
927 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
928 ///     %E1 = extractelement <2 x double> %U, i32 1
929 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
930 ///
931 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
932 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
933 /// Note that %U may contain non-undef values where %V1 has undef.
likeBitCastFromVector(InstCombiner & IC,Value * V)934 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
935   Value *U = nullptr;
936   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
937     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
938     if (!E)
939       return nullptr;
940     auto *W = E->getVectorOperand();
941     if (!U)
942       U = W;
943     else if (U != W)
944       return nullptr;
945     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
946     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
947       return nullptr;
948     V = IV->getAggregateOperand();
949   }
950   if (!isa<UndefValue>(V) ||!U)
951     return nullptr;
952 
953   auto *UT = cast<VectorType>(U->getType());
954   auto *VT = V->getType();
955   // Check that types UT and VT are bitwise isomorphic.
956   const auto &DL = IC.getDataLayout();
957   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
958     return nullptr;
959   }
960   if (auto *AT = dyn_cast<ArrayType>(VT)) {
961     if (AT->getNumElements() != UT->getNumElements())
962       return nullptr;
963   } else {
964     auto *ST = cast<StructType>(VT);
965     if (ST->getNumElements() != UT->getNumElements())
966       return nullptr;
967     for (const auto *EltT : ST->elements()) {
968       if (EltT != UT->getElementType())
969         return nullptr;
970     }
971   }
972   return U;
973 }
974 
975 /// \brief Combine stores to match the type of value being stored.
976 ///
977 /// The core idea here is that the memory does not have any intrinsic type and
978 /// where we can we should match the type of a store to the type of value being
979 /// stored.
980 ///
981 /// However, this routine must never change the width of a store or the number of
982 /// stores as that would introduce a semantic change. This combine is expected to
983 /// be a semantic no-op which just allows stores to more closely model the types
984 /// of their incoming values.
985 ///
986 /// Currently, we also refuse to change the precise type used for an atomic or
987 /// volatile store. This is debatable, and might be reasonable to change later.
988 /// However, it is risky in case some backend or other part of LLVM is relying
989 /// on the exact type stored to select appropriate atomic operations.
990 ///
991 /// \returns true if the store was successfully combined away. This indicates
992 /// the caller must erase the store instruction. We have to let the caller erase
993 /// the store instruction as otherwise there is no way to signal whether it was
994 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombiner & IC,StoreInst & SI)995 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
996   // FIXME: We could probably with some care handle both volatile and ordered
997   // atomic stores here but it isn't clear that this is important.
998   if (!SI.isUnordered())
999     return false;
1000 
1001   Value *V = SI.getValueOperand();
1002 
1003   // Fold away bit casts of the stored value by storing the original type.
1004   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1005     V = BC->getOperand(0);
1006     combineStoreToNewValue(IC, SI, V);
1007     return true;
1008   }
1009 
1010   if (Value *U = likeBitCastFromVector(IC, V)) {
1011     combineStoreToNewValue(IC, SI, U);
1012     return true;
1013   }
1014 
1015   // FIXME: We should also canonicalize stores of vectors when their elements
1016   // are cast to other types.
1017   return false;
1018 }
1019 
unpackStoreToAggregate(InstCombiner & IC,StoreInst & SI)1020 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1021   // FIXME: We could probably with some care handle both volatile and atomic
1022   // stores here but it isn't clear that this is important.
1023   if (!SI.isSimple())
1024     return false;
1025 
1026   Value *V = SI.getValueOperand();
1027   Type *T = V->getType();
1028 
1029   if (!T->isAggregateType())
1030     return false;
1031 
1032   if (auto *ST = dyn_cast<StructType>(T)) {
1033     // If the struct only have one element, we unpack.
1034     unsigned Count = ST->getNumElements();
1035     if (Count == 1) {
1036       V = IC.Builder->CreateExtractValue(V, 0);
1037       combineStoreToNewValue(IC, SI, V);
1038       return true;
1039     }
1040 
1041     // We don't want to break loads with padding here as we'd loose
1042     // the knowledge that padding exists for the rest of the pipeline.
1043     const DataLayout &DL = IC.getDataLayout();
1044     auto *SL = DL.getStructLayout(ST);
1045     if (SL->hasPadding())
1046       return false;
1047 
1048     auto Align = SI.getAlignment();
1049     if (!Align)
1050       Align = DL.getABITypeAlignment(ST);
1051 
1052     SmallString<16> EltName = V->getName();
1053     EltName += ".elt";
1054     auto *Addr = SI.getPointerOperand();
1055     SmallString<16> AddrName = Addr->getName();
1056     AddrName += ".repack";
1057 
1058     auto *IdxType = Type::getInt32Ty(ST->getContext());
1059     auto *Zero = ConstantInt::get(IdxType, 0);
1060     for (unsigned i = 0; i < Count; i++) {
1061       Value *Indices[2] = {
1062         Zero,
1063         ConstantInt::get(IdxType, i),
1064       };
1065       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1066                                                 AddrName);
1067       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1068       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1069       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1070     }
1071 
1072     return true;
1073   }
1074 
1075   if (auto *AT = dyn_cast<ArrayType>(T)) {
1076     // If the array only have one element, we unpack.
1077     auto NumElements = AT->getNumElements();
1078     if (NumElements == 1) {
1079       V = IC.Builder->CreateExtractValue(V, 0);
1080       combineStoreToNewValue(IC, SI, V);
1081       return true;
1082     }
1083 
1084     const DataLayout &DL = IC.getDataLayout();
1085     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1086     auto Align = SI.getAlignment();
1087     if (!Align)
1088       Align = DL.getABITypeAlignment(T);
1089 
1090     SmallString<16> EltName = V->getName();
1091     EltName += ".elt";
1092     auto *Addr = SI.getPointerOperand();
1093     SmallString<16> AddrName = Addr->getName();
1094     AddrName += ".repack";
1095 
1096     auto *IdxType = Type::getInt64Ty(T->getContext());
1097     auto *Zero = ConstantInt::get(IdxType, 0);
1098 
1099     uint64_t Offset = 0;
1100     for (uint64_t i = 0; i < NumElements; i++) {
1101       Value *Indices[2] = {
1102         Zero,
1103         ConstantInt::get(IdxType, i),
1104       };
1105       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1106                                                 AddrName);
1107       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1108       auto EltAlign = MinAlign(Align, Offset);
1109       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1110       Offset += EltSize;
1111     }
1112 
1113     return true;
1114   }
1115 
1116   return false;
1117 }
1118 
1119 /// equivalentAddressValues - Test if A and B will obviously have the same
1120 /// value. This includes recognizing that %t0 and %t1 will have the same
1121 /// value in code like this:
1122 ///   %t0 = getelementptr \@a, 0, 3
1123 ///   store i32 0, i32* %t0
1124 ///   %t1 = getelementptr \@a, 0, 3
1125 ///   %t2 = load i32* %t1
1126 ///
equivalentAddressValues(Value * A,Value * B)1127 static bool equivalentAddressValues(Value *A, Value *B) {
1128   // Test if the values are trivially equivalent.
1129   if (A == B) return true;
1130 
1131   // Test if the values come form identical arithmetic instructions.
1132   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1133   // its only used to compare two uses within the same basic block, which
1134   // means that they'll always either have the same value or one of them
1135   // will have an undefined value.
1136   if (isa<BinaryOperator>(A) ||
1137       isa<CastInst>(A) ||
1138       isa<PHINode>(A) ||
1139       isa<GetElementPtrInst>(A))
1140     if (Instruction *BI = dyn_cast<Instruction>(B))
1141       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1142         return true;
1143 
1144   // Otherwise they may not be equivalent.
1145   return false;
1146 }
1147 
visitStoreInst(StoreInst & SI)1148 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1149   Value *Val = SI.getOperand(0);
1150   Value *Ptr = SI.getOperand(1);
1151 
1152   // Try to canonicalize the stored type.
1153   if (combineStoreToValueType(*this, SI))
1154     return eraseInstFromFunction(SI);
1155 
1156   // Attempt to improve the alignment.
1157   unsigned KnownAlign = getOrEnforceKnownAlignment(
1158       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1159   unsigned StoreAlign = SI.getAlignment();
1160   unsigned EffectiveStoreAlign =
1161       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1162 
1163   if (KnownAlign > EffectiveStoreAlign)
1164     SI.setAlignment(KnownAlign);
1165   else if (StoreAlign == 0)
1166     SI.setAlignment(EffectiveStoreAlign);
1167 
1168   // Try to canonicalize the stored type.
1169   if (unpackStoreToAggregate(*this, SI))
1170     return eraseInstFromFunction(SI);
1171 
1172   // Replace GEP indices if possible.
1173   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1174       Worklist.Add(NewGEPI);
1175       return &SI;
1176   }
1177 
1178   // Don't hack volatile/ordered stores.
1179   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1180   if (!SI.isUnordered()) return nullptr;
1181 
1182   // If the RHS is an alloca with a single use, zapify the store, making the
1183   // alloca dead.
1184   if (Ptr->hasOneUse()) {
1185     if (isa<AllocaInst>(Ptr))
1186       return eraseInstFromFunction(SI);
1187     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1188       if (isa<AllocaInst>(GEP->getOperand(0))) {
1189         if (GEP->getOperand(0)->hasOneUse())
1190           return eraseInstFromFunction(SI);
1191       }
1192     }
1193   }
1194 
1195   // Do really simple DSE, to catch cases where there are several consecutive
1196   // stores to the same location, separated by a few arithmetic operations. This
1197   // situation often occurs with bitfield accesses.
1198   BasicBlock::iterator BBI(SI);
1199   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1200        --ScanInsts) {
1201     --BBI;
1202     // Don't count debug info directives, lest they affect codegen,
1203     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1204     if (isa<DbgInfoIntrinsic>(BBI) ||
1205         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1206       ScanInsts++;
1207       continue;
1208     }
1209 
1210     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1211       // Prev store isn't volatile, and stores to the same location?
1212       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1213                                                         SI.getOperand(1))) {
1214         ++NumDeadStore;
1215         ++BBI;
1216         eraseInstFromFunction(*PrevSI);
1217         continue;
1218       }
1219       break;
1220     }
1221 
1222     // If this is a load, we have to stop.  However, if the loaded value is from
1223     // the pointer we're loading and is producing the pointer we're storing,
1224     // then *this* store is dead (X = load P; store X -> P).
1225     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1226       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1227         assert(SI.isUnordered() && "can't eliminate ordering operation");
1228         return eraseInstFromFunction(SI);
1229       }
1230 
1231       // Otherwise, this is a load from some other location.  Stores before it
1232       // may not be dead.
1233       break;
1234     }
1235 
1236     // Don't skip over loads or things that can modify memory.
1237     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1238       break;
1239   }
1240 
1241   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1242   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1243     if (!isa<UndefValue>(Val)) {
1244       SI.setOperand(0, UndefValue::get(Val->getType()));
1245       if (Instruction *U = dyn_cast<Instruction>(Val))
1246         Worklist.Add(U);  // Dropped a use.
1247     }
1248     return nullptr;  // Do not modify these!
1249   }
1250 
1251   // store undef, Ptr -> noop
1252   if (isa<UndefValue>(Val))
1253     return eraseInstFromFunction(SI);
1254 
1255   // If this store is the last instruction in the basic block (possibly
1256   // excepting debug info instructions), and if the block ends with an
1257   // unconditional branch, try to move it to the successor block.
1258   BBI = SI.getIterator();
1259   do {
1260     ++BBI;
1261   } while (isa<DbgInfoIntrinsic>(BBI) ||
1262            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1263   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1264     if (BI->isUnconditional())
1265       if (SimplifyStoreAtEndOfBlock(SI))
1266         return nullptr;  // xform done!
1267 
1268   return nullptr;
1269 }
1270 
1271 /// SimplifyStoreAtEndOfBlock - Turn things like:
1272 ///   if () { *P = v1; } else { *P = v2 }
1273 /// into a phi node with a store in the successor.
1274 ///
1275 /// Simplify things like:
1276 ///   *P = v1; if () { *P = v2; }
1277 /// into a phi node with a store in the successor.
1278 ///
SimplifyStoreAtEndOfBlock(StoreInst & SI)1279 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1280   assert(SI.isUnordered() &&
1281          "this code has not been auditted for volatile or ordered store case");
1282 
1283   BasicBlock *StoreBB = SI.getParent();
1284 
1285   // Check to see if the successor block has exactly two incoming edges.  If
1286   // so, see if the other predecessor contains a store to the same location.
1287   // if so, insert a PHI node (if needed) and move the stores down.
1288   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1289 
1290   // Determine whether Dest has exactly two predecessors and, if so, compute
1291   // the other predecessor.
1292   pred_iterator PI = pred_begin(DestBB);
1293   BasicBlock *P = *PI;
1294   BasicBlock *OtherBB = nullptr;
1295 
1296   if (P != StoreBB)
1297     OtherBB = P;
1298 
1299   if (++PI == pred_end(DestBB))
1300     return false;
1301 
1302   P = *PI;
1303   if (P != StoreBB) {
1304     if (OtherBB)
1305       return false;
1306     OtherBB = P;
1307   }
1308   if (++PI != pred_end(DestBB))
1309     return false;
1310 
1311   // Bail out if all the relevant blocks aren't distinct (this can happen,
1312   // for example, if SI is in an infinite loop)
1313   if (StoreBB == DestBB || OtherBB == DestBB)
1314     return false;
1315 
1316   // Verify that the other block ends in a branch and is not otherwise empty.
1317   BasicBlock::iterator BBI(OtherBB->getTerminator());
1318   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1319   if (!OtherBr || BBI == OtherBB->begin())
1320     return false;
1321 
1322   // If the other block ends in an unconditional branch, check for the 'if then
1323   // else' case.  there is an instruction before the branch.
1324   StoreInst *OtherStore = nullptr;
1325   if (OtherBr->isUnconditional()) {
1326     --BBI;
1327     // Skip over debugging info.
1328     while (isa<DbgInfoIntrinsic>(BBI) ||
1329            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1330       if (BBI==OtherBB->begin())
1331         return false;
1332       --BBI;
1333     }
1334     // If this isn't a store, isn't a store to the same location, or is not the
1335     // right kind of store, bail out.
1336     OtherStore = dyn_cast<StoreInst>(BBI);
1337     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1338         !SI.isSameOperationAs(OtherStore))
1339       return false;
1340   } else {
1341     // Otherwise, the other block ended with a conditional branch. If one of the
1342     // destinations is StoreBB, then we have the if/then case.
1343     if (OtherBr->getSuccessor(0) != StoreBB &&
1344         OtherBr->getSuccessor(1) != StoreBB)
1345       return false;
1346 
1347     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1348     // if/then triangle.  See if there is a store to the same ptr as SI that
1349     // lives in OtherBB.
1350     for (;; --BBI) {
1351       // Check to see if we find the matching store.
1352       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1353         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1354             !SI.isSameOperationAs(OtherStore))
1355           return false;
1356         break;
1357       }
1358       // If we find something that may be using or overwriting the stored
1359       // value, or if we run out of instructions, we can't do the xform.
1360       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1361           BBI == OtherBB->begin())
1362         return false;
1363     }
1364 
1365     // In order to eliminate the store in OtherBr, we have to
1366     // make sure nothing reads or overwrites the stored value in
1367     // StoreBB.
1368     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1369       // FIXME: This should really be AA driven.
1370       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1371         return false;
1372     }
1373   }
1374 
1375   // Insert a PHI node now if we need it.
1376   Value *MergedVal = OtherStore->getOperand(0);
1377   if (MergedVal != SI.getOperand(0)) {
1378     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1379     PN->addIncoming(SI.getOperand(0), SI.getParent());
1380     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1381     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1382   }
1383 
1384   // Advance to a place where it is safe to insert the new store and
1385   // insert it.
1386   BBI = DestBB->getFirstInsertionPt();
1387   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1388                                    SI.isVolatile(),
1389                                    SI.getAlignment(),
1390                                    SI.getOrdering(),
1391                                    SI.getSynchScope());
1392   InsertNewInstBefore(NewSI, *BBI);
1393   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1394 
1395   // If the two stores had AA tags, merge them.
1396   AAMDNodes AATags;
1397   SI.getAAMetadata(AATags);
1398   if (AATags) {
1399     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1400     NewSI->setAAMetadata(AATags);
1401   }
1402 
1403   // Nuke the old stores.
1404   eraseInstFromFunction(SI);
1405   eraseInstFromFunction(*OtherStore);
1406   return true;
1407 }
1408