1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54
55 #define DEBUG_TYPE "simplifycfg"
56
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63 cl::desc(
64 "Control the amount of phi node folding to perform (default = 2)"));
65
66 static cl::opt<bool> DupRet(
67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68 cl::desc("Duplicate return instructions into unconditional branches"));
69
70 static cl::opt<bool>
71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72 cl::desc("Sink common instructions down to the end block"));
73
74 static cl::opt<bool> HoistCondStores(
75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76 cl::desc("Hoist conditional stores if an unconditional store precedes"));
77
78 static cl::opt<bool> MergeCondStores(
79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80 cl::desc("Hoist conditional stores even if an unconditional store does not "
81 "precede - hoist multiple conditional stores into a single "
82 "predicated store"));
83
84 static cl::opt<bool> MergeCondStoresAggressively(
85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86 cl::desc("When merging conditional stores, do so even if the resultant "
87 "basic blocks are unlikely to be if-converted as a result"));
88
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91 cl::desc("Allow exactly one expensive instruction to be speculatively "
92 "executed"));
93
94 static cl::opt<unsigned> MaxSpeculationDepth(
95 "max-speculation-depth", cl::Hidden, cl::init(10),
96 cl::desc("Limit maximum recursion depth when calculating costs of "
97 "speculatively executed instructions"));
98
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101 "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103 "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105 NumLookupTablesHoles,
106 "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109 "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117 SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125 ConstantInt *Value;
126 BasicBlock *Dest;
127
ValueEqualityComparisonCase__anon7e275db20111::ValueEqualityComparisonCase128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129 : Value(Value), Dest(Dest) {}
130
operator <__anon7e275db20111::ValueEqualityComparisonCase131 bool operator<(ValueEqualityComparisonCase RHS) const {
132 // Comparing pointers is ok as we only rely on the order for uniquing.
133 return Value < RHS.Value;
134 }
135
operator ==__anon7e275db20111::ValueEqualityComparisonCase136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138
139 class SimplifyCFGOpt {
140 const TargetTransformInfo &TTI;
141 const DataLayout &DL;
142 unsigned BonusInstThreshold;
143 AssumptionCache *AC;
144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145 Value *isValueEqualityComparison(TerminatorInst *TI);
146 BasicBlock *GetValueEqualityComparisonCases(
147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149 BasicBlock *Pred,
150 IRBuilder<> &Builder);
151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152 IRBuilder<> &Builder);
153
154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156 bool SimplifySingleResume(ResumeInst *RI);
157 bool SimplifyCommonResume(ResumeInst *RI);
158 bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159 bool SimplifyUnreachable(UnreachableInst *UI);
160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161 bool SimplifyIndirectBr(IndirectBrInst *IBI);
162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164
165 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout & DL,unsigned BonusInstThreshold,AssumptionCache * AC,SmallPtrSetImpl<BasicBlock * > * LoopHeaders)166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167 unsigned BonusInstThreshold, AssumptionCache *AC,
168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170 LoopHeaders(LoopHeaders) {}
171 bool run(BasicBlock *BB);
172 };
173 }
174
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
178 if (SI1 == SI2)
179 return false; // Can't merge with self!
180
181 // It is not safe to merge these two switch instructions if they have a common
182 // successor, and if that successor has a PHI node, and if *that* PHI node has
183 // conflicting incoming values from the two switch blocks.
184 BasicBlock *SI1BB = SI1->getParent();
185 BasicBlock *SI2BB = SI2->getParent();
186 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
187
188 for (BasicBlock *Succ : successors(SI2BB))
189 if (SI1Succs.count(Succ))
190 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
191 PHINode *PN = cast<PHINode>(BBI);
192 if (PN->getIncomingValueForBlock(SI1BB) !=
193 PN->getIncomingValueForBlock(SI2BB))
194 return false;
195 }
196
197 return true;
198 }
199
200 /// Return true if it is safe and profitable to merge these two terminator
201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
202 /// store all PHI nodes in common successors.
203 static bool
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
205 Instruction *Cond,
206 SmallVectorImpl<PHINode *> &PhiNodes) {
207 if (SI1 == SI2)
208 return false; // Can't merge with self!
209 assert(SI1->isUnconditional() && SI2->isConditional());
210
211 // We fold the unconditional branch if we can easily update all PHI nodes in
212 // common successors:
213 // 1> We have a constant incoming value for the conditional branch;
214 // 2> We have "Cond" as the incoming value for the unconditional branch;
215 // 3> SI2->getCondition() and Cond have same operands.
216 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
217 if (!Ci2)
218 return false;
219 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
220 Cond->getOperand(1) == Ci2->getOperand(1)) &&
221 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
222 Cond->getOperand(1) == Ci2->getOperand(0)))
223 return false;
224
225 BasicBlock *SI1BB = SI1->getParent();
226 BasicBlock *SI2BB = SI2->getParent();
227 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
228 for (BasicBlock *Succ : successors(SI2BB))
229 if (SI1Succs.count(Succ))
230 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
231 PHINode *PN = cast<PHINode>(BBI);
232 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
233 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
234 return false;
235 PhiNodes.push_back(PN);
236 }
237 return true;
238 }
239
240 /// Update PHI nodes in Succ to indicate that there will now be entries in it
241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
242 /// will be the same as those coming in from ExistPred, an existing predecessor
243 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
245 BasicBlock *ExistPred) {
246 if (!isa<PHINode>(Succ->begin()))
247 return; // Quick exit if nothing to do
248
249 PHINode *PN;
250 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
251 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
252 }
253
254 /// Compute an abstract "cost" of speculating the given instruction,
255 /// which is assumed to be safe to speculate. TCC_Free means cheap,
256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
257 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)258 static unsigned ComputeSpeculationCost(const User *I,
259 const TargetTransformInfo &TTI) {
260 assert(isSafeToSpeculativelyExecute(I) &&
261 "Instruction is not safe to speculatively execute!");
262 return TTI.getUserCost(I);
263 }
264
265 /// If we have a merge point of an "if condition" as accepted above,
266 /// return true if the specified value dominates the block. We
267 /// don't handle the true generality of domination here, just a special case
268 /// which works well enough for us.
269 ///
270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
271 /// see if V (which must be an instruction) and its recursive operands
272 /// that do not dominate BB have a combined cost lower than CostRemaining and
273 /// are non-trapping. If both are true, the instruction is inserted into the
274 /// set and true is returned.
275 ///
276 /// The cost for most non-trapping instructions is defined as 1 except for
277 /// Select whose cost is 2.
278 ///
279 /// After this function returns, CostRemaining is decreased by the cost of
280 /// V plus its non-dominating operands. If that cost is greater than
281 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > * AggressiveInsts,unsigned & CostRemaining,const TargetTransformInfo & TTI,unsigned Depth=0)282 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
283 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
284 unsigned &CostRemaining,
285 const TargetTransformInfo &TTI,
286 unsigned Depth = 0) {
287 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
288 // so limit the recursion depth.
289 // TODO: While this recursion limit does prevent pathological behavior, it
290 // would be better to track visited instructions to avoid cycles.
291 if (Depth == MaxSpeculationDepth)
292 return false;
293
294 Instruction *I = dyn_cast<Instruction>(V);
295 if (!I) {
296 // Non-instructions all dominate instructions, but not all constantexprs
297 // can be executed unconditionally.
298 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
299 if (C->canTrap())
300 return false;
301 return true;
302 }
303 BasicBlock *PBB = I->getParent();
304
305 // We don't want to allow weird loops that might have the "if condition" in
306 // the bottom of this block.
307 if (PBB == BB)
308 return false;
309
310 // If this instruction is defined in a block that contains an unconditional
311 // branch to BB, then it must be in the 'conditional' part of the "if
312 // statement". If not, it definitely dominates the region.
313 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
314 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
315 return true;
316
317 // If we aren't allowing aggressive promotion anymore, then don't consider
318 // instructions in the 'if region'.
319 if (!AggressiveInsts)
320 return false;
321
322 // If we have seen this instruction before, don't count it again.
323 if (AggressiveInsts->count(I))
324 return true;
325
326 // Okay, it looks like the instruction IS in the "condition". Check to
327 // see if it's a cheap instruction to unconditionally compute, and if it
328 // only uses stuff defined outside of the condition. If so, hoist it out.
329 if (!isSafeToSpeculativelyExecute(I))
330 return false;
331
332 unsigned Cost = ComputeSpeculationCost(I, TTI);
333
334 // Allow exactly one instruction to be speculated regardless of its cost
335 // (as long as it is safe to do so).
336 // This is intended to flatten the CFG even if the instruction is a division
337 // or other expensive operation. The speculation of an expensive instruction
338 // is expected to be undone in CodeGenPrepare if the speculation has not
339 // enabled further IR optimizations.
340 if (Cost > CostRemaining &&
341 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
342 return false;
343
344 // Avoid unsigned wrap.
345 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
346
347 // Okay, we can only really hoist these out if their operands do
348 // not take us over the cost threshold.
349 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
350 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
351 Depth + 1))
352 return false;
353 // Okay, it's safe to do this! Remember this instruction.
354 AggressiveInsts->insert(I);
355 return true;
356 }
357
358 /// Extract ConstantInt from value, looking through IntToPtr
359 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
361 // Normal constant int.
362 ConstantInt *CI = dyn_cast<ConstantInt>(V);
363 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
364 return CI;
365
366 // This is some kind of pointer constant. Turn it into a pointer-sized
367 // ConstantInt if possible.
368 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
369
370 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
371 if (isa<ConstantPointerNull>(V))
372 return ConstantInt::get(PtrTy, 0);
373
374 // IntToPtr const int.
375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
376 if (CE->getOpcode() == Instruction::IntToPtr)
377 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
378 // The constant is very likely to have the right type already.
379 if (CI->getType() == PtrTy)
380 return CI;
381 else
382 return cast<ConstantInt>(
383 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
384 }
385 return nullptr;
386 }
387
388 namespace {
389
390 /// Given a chain of or (||) or and (&&) comparison of a value against a
391 /// constant, this will try to recover the information required for a switch
392 /// structure.
393 /// It will depth-first traverse the chain of comparison, seeking for patterns
394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
395 /// representing the different cases for the switch.
396 /// Note that if the chain is composed of '||' it will build the set of elements
397 /// that matches the comparisons (i.e. any of this value validate the chain)
398 /// while for a chain of '&&' it will build the set elements that make the test
399 /// fail.
400 struct ConstantComparesGatherer {
401 const DataLayout &DL;
402 Value *CompValue; /// Value found for the switch comparison
403 Value *Extra; /// Extra clause to be checked before the switch
404 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
405 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
406
407 /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon7e275db20211::ConstantComparesGatherer408 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
409 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
410 gather(Cond);
411 }
412
413 /// Prevent copy
414 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
415 ConstantComparesGatherer &
416 operator=(const ConstantComparesGatherer &) = delete;
417
418 private:
419 /// Try to set the current value used for the comparison, it succeeds only if
420 /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon7e275db20211::ConstantComparesGatherer421 bool setValueOnce(Value *NewVal) {
422 if (CompValue && CompValue != NewVal)
423 return false;
424 CompValue = NewVal;
425 return (CompValue != nullptr);
426 }
427
428 /// Try to match Instruction "I" as a comparison against a constant and
429 /// populates the array Vals with the set of values that match (or do not
430 /// match depending on isEQ).
431 /// Return false on failure. On success, the Value the comparison matched
432 /// against is placed in CompValue.
433 /// If CompValue is already set, the function is expected to fail if a match
434 /// is found but the value compared to is different.
matchInstruction__anon7e275db20211::ConstantComparesGatherer435 bool matchInstruction(Instruction *I, bool isEQ) {
436 // If this is an icmp against a constant, handle this as one of the cases.
437 ICmpInst *ICI;
438 ConstantInt *C;
439 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
440 (C = GetConstantInt(I->getOperand(1), DL)))) {
441 return false;
442 }
443
444 Value *RHSVal;
445 const APInt *RHSC;
446
447 // Pattern match a special case
448 // (x & ~2^z) == y --> x == y || x == y|2^z
449 // This undoes a transformation done by instcombine to fuse 2 compares.
450 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
451
452 // It's a little bit hard to see why the following transformations are
453 // correct. Here is a CVC3 program to verify them for 64-bit values:
454
455 /*
456 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
457 x : BITVECTOR(64);
458 y : BITVECTOR(64);
459 z : BITVECTOR(64);
460 mask : BITVECTOR(64) = BVSHL(ONE, z);
461 QUERY( (y & ~mask = y) =>
462 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
463 );
464 QUERY( (y | mask = y) =>
465 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
466 );
467 */
468
469 // Please note that each pattern must be a dual implication (<--> or
470 // iff). One directional implication can create spurious matches. If the
471 // implication is only one-way, an unsatisfiable condition on the left
472 // side can imply a satisfiable condition on the right side. Dual
473 // implication ensures that satisfiable conditions are transformed to
474 // other satisfiable conditions and unsatisfiable conditions are
475 // transformed to other unsatisfiable conditions.
476
477 // Here is a concrete example of a unsatisfiable condition on the left
478 // implying a satisfiable condition on the right:
479 //
480 // mask = (1 << z)
481 // (x & ~mask) == y --> (x == y || x == (y | mask))
482 //
483 // Substituting y = 3, z = 0 yields:
484 // (x & -2) == 3 --> (x == 3 || x == 2)
485
486 // Pattern match a special case:
487 /*
488 QUERY( (y & ~mask = y) =>
489 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
490 );
491 */
492 if (match(ICI->getOperand(0),
493 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
494 APInt Mask = ~*RHSC;
495 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
496 // If we already have a value for the switch, it has to match!
497 if (!setValueOnce(RHSVal))
498 return false;
499
500 Vals.push_back(C);
501 Vals.push_back(
502 ConstantInt::get(C->getContext(),
503 C->getValue() | Mask));
504 UsedICmps++;
505 return true;
506 }
507 }
508
509 // Pattern match a special case:
510 /*
511 QUERY( (y | mask = y) =>
512 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
513 );
514 */
515 if (match(ICI->getOperand(0),
516 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
517 APInt Mask = *RHSC;
518 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
519 // If we already have a value for the switch, it has to match!
520 if (!setValueOnce(RHSVal))
521 return false;
522
523 Vals.push_back(C);
524 Vals.push_back(ConstantInt::get(C->getContext(),
525 C->getValue() & ~Mask));
526 UsedICmps++;
527 return true;
528 }
529 }
530
531 // If we already have a value for the switch, it has to match!
532 if (!setValueOnce(ICI->getOperand(0)))
533 return false;
534
535 UsedICmps++;
536 Vals.push_back(C);
537 return ICI->getOperand(0);
538 }
539
540 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
541 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
542 ICI->getPredicate(), C->getValue());
543
544 // Shift the range if the compare is fed by an add. This is the range
545 // compare idiom as emitted by instcombine.
546 Value *CandidateVal = I->getOperand(0);
547 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
548 Span = Span.subtract(*RHSC);
549 CandidateVal = RHSVal;
550 }
551
552 // If this is an and/!= check, then we are looking to build the set of
553 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
554 // x != 0 && x != 1.
555 if (!isEQ)
556 Span = Span.inverse();
557
558 // If there are a ton of values, we don't want to make a ginormous switch.
559 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
560 return false;
561 }
562
563 // If we already have a value for the switch, it has to match!
564 if (!setValueOnce(CandidateVal))
565 return false;
566
567 // Add all values from the range to the set
568 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
569 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
570
571 UsedICmps++;
572 return true;
573 }
574
575 /// Given a potentially 'or'd or 'and'd together collection of icmp
576 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
577 /// the value being compared, and stick the list constants into the Vals
578 /// vector.
579 /// One "Extra" case is allowed to differ from the other.
gather__anon7e275db20211::ConstantComparesGatherer580 void gather(Value *V) {
581 Instruction *I = dyn_cast<Instruction>(V);
582 bool isEQ = (I->getOpcode() == Instruction::Or);
583
584 // Keep a stack (SmallVector for efficiency) for depth-first traversal
585 SmallVector<Value *, 8> DFT;
586 SmallPtrSet<Value *, 8> Visited;
587
588 // Initialize
589 Visited.insert(V);
590 DFT.push_back(V);
591
592 while (!DFT.empty()) {
593 V = DFT.pop_back_val();
594
595 if (Instruction *I = dyn_cast<Instruction>(V)) {
596 // If it is a || (or && depending on isEQ), process the operands.
597 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
598 if (Visited.insert(I->getOperand(1)).second)
599 DFT.push_back(I->getOperand(1));
600 if (Visited.insert(I->getOperand(0)).second)
601 DFT.push_back(I->getOperand(0));
602 continue;
603 }
604
605 // Try to match the current instruction
606 if (matchInstruction(I, isEQ))
607 // Match succeed, continue the loop
608 continue;
609 }
610
611 // One element of the sequence of || (or &&) could not be match as a
612 // comparison against the same value as the others.
613 // We allow only one "Extra" case to be checked before the switch
614 if (!Extra) {
615 Extra = V;
616 continue;
617 }
618 // Failed to parse a proper sequence, abort now
619 CompValue = nullptr;
620 break;
621 }
622 }
623 };
624 }
625
EraseTerminatorInstAndDCECond(TerminatorInst * TI)626 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
627 Instruction *Cond = nullptr;
628 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
629 Cond = dyn_cast<Instruction>(SI->getCondition());
630 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
631 if (BI->isConditional())
632 Cond = dyn_cast<Instruction>(BI->getCondition());
633 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
634 Cond = dyn_cast<Instruction>(IBI->getAddress());
635 }
636
637 TI->eraseFromParent();
638 if (Cond)
639 RecursivelyDeleteTriviallyDeadInstructions(Cond);
640 }
641
642 /// Return true if the specified terminator checks
643 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)644 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
645 Value *CV = nullptr;
646 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
647 // Do not permit merging of large switch instructions into their
648 // predecessors unless there is only one predecessor.
649 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
650 pred_end(SI->getParent())) <=
651 128)
652 CV = SI->getCondition();
653 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
654 if (BI->isConditional() && BI->getCondition()->hasOneUse())
655 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
656 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
657 CV = ICI->getOperand(0);
658 }
659
660 // Unwrap any lossless ptrtoint cast.
661 if (CV) {
662 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
663 Value *Ptr = PTII->getPointerOperand();
664 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
665 CV = Ptr;
666 }
667 }
668 return CV;
669 }
670
671 /// Given a value comparison instruction,
672 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)673 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
674 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676 Cases.reserve(SI->getNumCases());
677 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
678 ++i)
679 Cases.push_back(
680 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
681 return SI->getDefaultDest();
682 }
683
684 BranchInst *BI = cast<BranchInst>(TI);
685 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
686 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
687 Cases.push_back(ValueEqualityComparisonCase(
688 GetConstantInt(ICI->getOperand(1), DL), Succ));
689 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
690 }
691
692 /// Given a vector of bb/value pairs, remove any entries
693 /// in the list that match the specified block.
694 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)695 EliminateBlockCases(BasicBlock *BB,
696 std::vector<ValueEqualityComparisonCase> &Cases) {
697 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
698 }
699
700 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)701 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
702 std::vector<ValueEqualityComparisonCase> &C2) {
703 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
704
705 // Make V1 be smaller than V2.
706 if (V1->size() > V2->size())
707 std::swap(V1, V2);
708
709 if (V1->size() == 0)
710 return false;
711 if (V1->size() == 1) {
712 // Just scan V2.
713 ConstantInt *TheVal = (*V1)[0].Value;
714 for (unsigned i = 0, e = V2->size(); i != e; ++i)
715 if (TheVal == (*V2)[i].Value)
716 return true;
717 }
718
719 // Otherwise, just sort both lists and compare element by element.
720 array_pod_sort(V1->begin(), V1->end());
721 array_pod_sort(V2->begin(), V2->end());
722 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
723 while (i1 != e1 && i2 != e2) {
724 if ((*V1)[i1].Value == (*V2)[i2].Value)
725 return true;
726 if ((*V1)[i1].Value < (*V2)[i2].Value)
727 ++i1;
728 else
729 ++i2;
730 }
731 return false;
732 }
733
734 /// If TI is known to be a terminator instruction and its block is known to
735 /// only have a single predecessor block, check to see if that predecessor is
736 /// also a value comparison with the same value, and if that comparison
737 /// determines the outcome of this comparison. If so, simplify TI. This does a
738 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)739 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
740 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
741 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
742 if (!PredVal)
743 return false; // Not a value comparison in predecessor.
744
745 Value *ThisVal = isValueEqualityComparison(TI);
746 assert(ThisVal && "This isn't a value comparison!!");
747 if (ThisVal != PredVal)
748 return false; // Different predicates.
749
750 // TODO: Preserve branch weight metadata, similarly to how
751 // FoldValueComparisonIntoPredecessors preserves it.
752
753 // Find out information about when control will move from Pred to TI's block.
754 std::vector<ValueEqualityComparisonCase> PredCases;
755 BasicBlock *PredDef =
756 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
757 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
758
759 // Find information about how control leaves this block.
760 std::vector<ValueEqualityComparisonCase> ThisCases;
761 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
762 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
763
764 // If TI's block is the default block from Pred's comparison, potentially
765 // simplify TI based on this knowledge.
766 if (PredDef == TI->getParent()) {
767 // If we are here, we know that the value is none of those cases listed in
768 // PredCases. If there are any cases in ThisCases that are in PredCases, we
769 // can simplify TI.
770 if (!ValuesOverlap(PredCases, ThisCases))
771 return false;
772
773 if (isa<BranchInst>(TI)) {
774 // Okay, one of the successors of this condbr is dead. Convert it to a
775 // uncond br.
776 assert(ThisCases.size() == 1 && "Branch can only have one case!");
777 // Insert the new branch.
778 Instruction *NI = Builder.CreateBr(ThisDef);
779 (void)NI;
780
781 // Remove PHI node entries for the dead edge.
782 ThisCases[0].Dest->removePredecessor(TI->getParent());
783
784 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
785 << "Through successor TI: " << *TI << "Leaving: " << *NI
786 << "\n");
787
788 EraseTerminatorInstAndDCECond(TI);
789 return true;
790 }
791
792 SwitchInst *SI = cast<SwitchInst>(TI);
793 // Okay, TI has cases that are statically dead, prune them away.
794 SmallPtrSet<Constant *, 16> DeadCases;
795 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
796 DeadCases.insert(PredCases[i].Value);
797
798 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
799 << "Through successor TI: " << *TI);
800
801 // Collect branch weights into a vector.
802 SmallVector<uint32_t, 8> Weights;
803 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
804 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
805 if (HasWeight)
806 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
807 ++MD_i) {
808 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
809 Weights.push_back(CI->getValue().getZExtValue());
810 }
811 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
812 --i;
813 if (DeadCases.count(i.getCaseValue())) {
814 if (HasWeight) {
815 std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
816 Weights.pop_back();
817 }
818 i.getCaseSuccessor()->removePredecessor(TI->getParent());
819 SI->removeCase(i);
820 }
821 }
822 if (HasWeight && Weights.size() >= 2)
823 SI->setMetadata(LLVMContext::MD_prof,
824 MDBuilder(SI->getParent()->getContext())
825 .createBranchWeights(Weights));
826
827 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
828 return true;
829 }
830
831 // Otherwise, TI's block must correspond to some matched value. Find out
832 // which value (or set of values) this is.
833 ConstantInt *TIV = nullptr;
834 BasicBlock *TIBB = TI->getParent();
835 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
836 if (PredCases[i].Dest == TIBB) {
837 if (TIV)
838 return false; // Cannot handle multiple values coming to this block.
839 TIV = PredCases[i].Value;
840 }
841 assert(TIV && "No edge from pred to succ?");
842
843 // Okay, we found the one constant that our value can be if we get into TI's
844 // BB. Find out which successor will unconditionally be branched to.
845 BasicBlock *TheRealDest = nullptr;
846 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
847 if (ThisCases[i].Value == TIV) {
848 TheRealDest = ThisCases[i].Dest;
849 break;
850 }
851
852 // If not handled by any explicit cases, it is handled by the default case.
853 if (!TheRealDest)
854 TheRealDest = ThisDef;
855
856 // Remove PHI node entries for dead edges.
857 BasicBlock *CheckEdge = TheRealDest;
858 for (BasicBlock *Succ : successors(TIBB))
859 if (Succ != CheckEdge)
860 Succ->removePredecessor(TIBB);
861 else
862 CheckEdge = nullptr;
863
864 // Insert the new branch.
865 Instruction *NI = Builder.CreateBr(TheRealDest);
866 (void)NI;
867
868 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
869 << "Through successor TI: " << *TI << "Leaving: " << *NI
870 << "\n");
871
872 EraseTerminatorInstAndDCECond(TI);
873 return true;
874 }
875
876 namespace {
877 /// This class implements a stable ordering of constant
878 /// integers that does not depend on their address. This is important for
879 /// applications that sort ConstantInt's to ensure uniqueness.
880 struct ConstantIntOrdering {
operator ()__anon7e275db20311::ConstantIntOrdering881 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
882 return LHS->getValue().ult(RHS->getValue());
883 }
884 };
885 }
886
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)887 static int ConstantIntSortPredicate(ConstantInt *const *P1,
888 ConstantInt *const *P2) {
889 const ConstantInt *LHS = *P1;
890 const ConstantInt *RHS = *P2;
891 if (LHS == RHS)
892 return 0;
893 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
894 }
895
HasBranchWeights(const Instruction * I)896 static inline bool HasBranchWeights(const Instruction *I) {
897 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
898 if (ProfMD && ProfMD->getOperand(0))
899 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
900 return MDS->getString().equals("branch_weights");
901
902 return false;
903 }
904
905 /// Get Weights of a given TerminatorInst, the default weight is at the front
906 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
907 /// metadata.
GetBranchWeights(TerminatorInst * TI,SmallVectorImpl<uint64_t> & Weights)908 static void GetBranchWeights(TerminatorInst *TI,
909 SmallVectorImpl<uint64_t> &Weights) {
910 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
911 assert(MD);
912 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
913 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
914 Weights.push_back(CI->getValue().getZExtValue());
915 }
916
917 // If TI is a conditional eq, the default case is the false case,
918 // and the corresponding branch-weight data is at index 2. We swap the
919 // default weight to be the first entry.
920 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
921 assert(Weights.size() == 2);
922 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
923 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
924 std::swap(Weights.front(), Weights.back());
925 }
926 }
927
928 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)929 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
930 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
931 if (Max > UINT_MAX) {
932 unsigned Offset = 32 - countLeadingZeros(Max);
933 for (uint64_t &I : Weights)
934 I >>= Offset;
935 }
936 }
937
938 /// The specified terminator is a value equality comparison instruction
939 /// (either a switch or a branch on "X == c").
940 /// See if any of the predecessors of the terminator block are value comparisons
941 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)942 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
943 IRBuilder<> &Builder) {
944 BasicBlock *BB = TI->getParent();
945 Value *CV = isValueEqualityComparison(TI); // CondVal
946 assert(CV && "Not a comparison?");
947 bool Changed = false;
948
949 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
950 while (!Preds.empty()) {
951 BasicBlock *Pred = Preds.pop_back_val();
952
953 // See if the predecessor is a comparison with the same value.
954 TerminatorInst *PTI = Pred->getTerminator();
955 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
956
957 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
958 // Figure out which 'cases' to copy from SI to PSI.
959 std::vector<ValueEqualityComparisonCase> BBCases;
960 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
961
962 std::vector<ValueEqualityComparisonCase> PredCases;
963 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
964
965 // Based on whether the default edge from PTI goes to BB or not, fill in
966 // PredCases and PredDefault with the new switch cases we would like to
967 // build.
968 SmallVector<BasicBlock *, 8> NewSuccessors;
969
970 // Update the branch weight metadata along the way
971 SmallVector<uint64_t, 8> Weights;
972 bool PredHasWeights = HasBranchWeights(PTI);
973 bool SuccHasWeights = HasBranchWeights(TI);
974
975 if (PredHasWeights) {
976 GetBranchWeights(PTI, Weights);
977 // branch-weight metadata is inconsistent here.
978 if (Weights.size() != 1 + PredCases.size())
979 PredHasWeights = SuccHasWeights = false;
980 } else if (SuccHasWeights)
981 // If there are no predecessor weights but there are successor weights,
982 // populate Weights with 1, which will later be scaled to the sum of
983 // successor's weights
984 Weights.assign(1 + PredCases.size(), 1);
985
986 SmallVector<uint64_t, 8> SuccWeights;
987 if (SuccHasWeights) {
988 GetBranchWeights(TI, SuccWeights);
989 // branch-weight metadata is inconsistent here.
990 if (SuccWeights.size() != 1 + BBCases.size())
991 PredHasWeights = SuccHasWeights = false;
992 } else if (PredHasWeights)
993 SuccWeights.assign(1 + BBCases.size(), 1);
994
995 if (PredDefault == BB) {
996 // If this is the default destination from PTI, only the edges in TI
997 // that don't occur in PTI, or that branch to BB will be activated.
998 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
999 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1000 if (PredCases[i].Dest != BB)
1001 PTIHandled.insert(PredCases[i].Value);
1002 else {
1003 // The default destination is BB, we don't need explicit targets.
1004 std::swap(PredCases[i], PredCases.back());
1005
1006 if (PredHasWeights || SuccHasWeights) {
1007 // Increase weight for the default case.
1008 Weights[0] += Weights[i + 1];
1009 std::swap(Weights[i + 1], Weights.back());
1010 Weights.pop_back();
1011 }
1012
1013 PredCases.pop_back();
1014 --i;
1015 --e;
1016 }
1017
1018 // Reconstruct the new switch statement we will be building.
1019 if (PredDefault != BBDefault) {
1020 PredDefault->removePredecessor(Pred);
1021 PredDefault = BBDefault;
1022 NewSuccessors.push_back(BBDefault);
1023 }
1024
1025 unsigned CasesFromPred = Weights.size();
1026 uint64_t ValidTotalSuccWeight = 0;
1027 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1028 if (!PTIHandled.count(BBCases[i].Value) &&
1029 BBCases[i].Dest != BBDefault) {
1030 PredCases.push_back(BBCases[i]);
1031 NewSuccessors.push_back(BBCases[i].Dest);
1032 if (SuccHasWeights || PredHasWeights) {
1033 // The default weight is at index 0, so weight for the ith case
1034 // should be at index i+1. Scale the cases from successor by
1035 // PredDefaultWeight (Weights[0]).
1036 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1037 ValidTotalSuccWeight += SuccWeights[i + 1];
1038 }
1039 }
1040
1041 if (SuccHasWeights || PredHasWeights) {
1042 ValidTotalSuccWeight += SuccWeights[0];
1043 // Scale the cases from predecessor by ValidTotalSuccWeight.
1044 for (unsigned i = 1; i < CasesFromPred; ++i)
1045 Weights[i] *= ValidTotalSuccWeight;
1046 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1047 Weights[0] *= SuccWeights[0];
1048 }
1049 } else {
1050 // If this is not the default destination from PSI, only the edges
1051 // in SI that occur in PSI with a destination of BB will be
1052 // activated.
1053 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1054 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1055 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1056 if (PredCases[i].Dest == BB) {
1057 PTIHandled.insert(PredCases[i].Value);
1058
1059 if (PredHasWeights || SuccHasWeights) {
1060 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1061 std::swap(Weights[i + 1], Weights.back());
1062 Weights.pop_back();
1063 }
1064
1065 std::swap(PredCases[i], PredCases.back());
1066 PredCases.pop_back();
1067 --i;
1068 --e;
1069 }
1070
1071 // Okay, now we know which constants were sent to BB from the
1072 // predecessor. Figure out where they will all go now.
1073 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1074 if (PTIHandled.count(BBCases[i].Value)) {
1075 // If this is one we are capable of getting...
1076 if (PredHasWeights || SuccHasWeights)
1077 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1078 PredCases.push_back(BBCases[i]);
1079 NewSuccessors.push_back(BBCases[i].Dest);
1080 PTIHandled.erase(
1081 BBCases[i].Value); // This constant is taken care of
1082 }
1083
1084 // If there are any constants vectored to BB that TI doesn't handle,
1085 // they must go to the default destination of TI.
1086 for (ConstantInt *I : PTIHandled) {
1087 if (PredHasWeights || SuccHasWeights)
1088 Weights.push_back(WeightsForHandled[I]);
1089 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1090 NewSuccessors.push_back(BBDefault);
1091 }
1092 }
1093
1094 // Okay, at this point, we know which new successor Pred will get. Make
1095 // sure we update the number of entries in the PHI nodes for these
1096 // successors.
1097 for (BasicBlock *NewSuccessor : NewSuccessors)
1098 AddPredecessorToBlock(NewSuccessor, Pred, BB);
1099
1100 Builder.SetInsertPoint(PTI);
1101 // Convert pointer to int before we switch.
1102 if (CV->getType()->isPointerTy()) {
1103 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1104 "magicptr");
1105 }
1106
1107 // Now that the successors are updated, create the new Switch instruction.
1108 SwitchInst *NewSI =
1109 Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1110 NewSI->setDebugLoc(PTI->getDebugLoc());
1111 for (ValueEqualityComparisonCase &V : PredCases)
1112 NewSI->addCase(V.Value, V.Dest);
1113
1114 if (PredHasWeights || SuccHasWeights) {
1115 // Halve the weights if any of them cannot fit in an uint32_t
1116 FitWeights(Weights);
1117
1118 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1119
1120 NewSI->setMetadata(
1121 LLVMContext::MD_prof,
1122 MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1123 }
1124
1125 EraseTerminatorInstAndDCECond(PTI);
1126
1127 // Okay, last check. If BB is still a successor of PSI, then we must
1128 // have an infinite loop case. If so, add an infinitely looping block
1129 // to handle the case to preserve the behavior of the code.
1130 BasicBlock *InfLoopBlock = nullptr;
1131 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1132 if (NewSI->getSuccessor(i) == BB) {
1133 if (!InfLoopBlock) {
1134 // Insert it at the end of the function, because it's either code,
1135 // or it won't matter if it's hot. :)
1136 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1137 BB->getParent());
1138 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1139 }
1140 NewSI->setSuccessor(i, InfLoopBlock);
1141 }
1142
1143 Changed = true;
1144 }
1145 }
1146 return Changed;
1147 }
1148
1149 // If we would need to insert a select that uses the value of this invoke
1150 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1151 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1152 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1153 Instruction *I1, Instruction *I2) {
1154 for (BasicBlock *Succ : successors(BB1)) {
1155 PHINode *PN;
1156 for (BasicBlock::iterator BBI = Succ->begin();
1157 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1158 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1161 return false;
1162 }
1163 }
1164 }
1165 return true;
1166 }
1167
1168 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1169
1170 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1171 /// in the two blocks up into the branch block. The caller of this function
1172 /// guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1173 static bool HoistThenElseCodeToIf(BranchInst *BI,
1174 const TargetTransformInfo &TTI) {
1175 // This does very trivial matching, with limited scanning, to find identical
1176 // instructions in the two blocks. In particular, we don't want to get into
1177 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1178 // such, we currently just scan for obviously identical instructions in an
1179 // identical order.
1180 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1181 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1182
1183 BasicBlock::iterator BB1_Itr = BB1->begin();
1184 BasicBlock::iterator BB2_Itr = BB2->begin();
1185
1186 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1187 // Skip debug info if it is not identical.
1188 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1189 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1190 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1191 while (isa<DbgInfoIntrinsic>(I1))
1192 I1 = &*BB1_Itr++;
1193 while (isa<DbgInfoIntrinsic>(I2))
1194 I2 = &*BB2_Itr++;
1195 }
1196 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1197 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1198 return false;
1199
1200 BasicBlock *BIParent = BI->getParent();
1201
1202 bool Changed = false;
1203 do {
1204 // If we are hoisting the terminator instruction, don't move one (making a
1205 // broken BB), instead clone it, and remove BI.
1206 if (isa<TerminatorInst>(I1))
1207 goto HoistTerminator;
1208
1209 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1210 return Changed;
1211
1212 // For a normal instruction, we just move one to right before the branch,
1213 // then replace all uses of the other with the first. Finally, we remove
1214 // the now redundant second instruction.
1215 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1216 if (!I2->use_empty())
1217 I2->replaceAllUsesWith(I1);
1218 I1->intersectOptionalDataWith(I2);
1219 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1220 LLVMContext::MD_range,
1221 LLVMContext::MD_fpmath,
1222 LLVMContext::MD_invariant_load,
1223 LLVMContext::MD_nonnull,
1224 LLVMContext::MD_invariant_group,
1225 LLVMContext::MD_align,
1226 LLVMContext::MD_dereferenceable,
1227 LLVMContext::MD_dereferenceable_or_null,
1228 LLVMContext::MD_mem_parallel_loop_access};
1229 combineMetadata(I1, I2, KnownIDs);
1230 I2->eraseFromParent();
1231 Changed = true;
1232
1233 I1 = &*BB1_Itr++;
1234 I2 = &*BB2_Itr++;
1235 // Skip debug info if it is not identical.
1236 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1237 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1238 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1239 while (isa<DbgInfoIntrinsic>(I1))
1240 I1 = &*BB1_Itr++;
1241 while (isa<DbgInfoIntrinsic>(I2))
1242 I2 = &*BB2_Itr++;
1243 }
1244 } while (I1->isIdenticalToWhenDefined(I2));
1245
1246 return true;
1247
1248 HoistTerminator:
1249 // It may not be possible to hoist an invoke.
1250 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1251 return Changed;
1252
1253 for (BasicBlock *Succ : successors(BB1)) {
1254 PHINode *PN;
1255 for (BasicBlock::iterator BBI = Succ->begin();
1256 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1257 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1258 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1259 if (BB1V == BB2V)
1260 continue;
1261
1262 // Check for passingValueIsAlwaysUndefined here because we would rather
1263 // eliminate undefined control flow then converting it to a select.
1264 if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1265 passingValueIsAlwaysUndefined(BB2V, PN))
1266 return Changed;
1267
1268 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1269 return Changed;
1270 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1271 return Changed;
1272 }
1273 }
1274
1275 // Okay, it is safe to hoist the terminator.
1276 Instruction *NT = I1->clone();
1277 BIParent->getInstList().insert(BI->getIterator(), NT);
1278 if (!NT->getType()->isVoidTy()) {
1279 I1->replaceAllUsesWith(NT);
1280 I2->replaceAllUsesWith(NT);
1281 NT->takeName(I1);
1282 }
1283
1284 IRBuilder<NoFolder> Builder(NT);
1285 // Hoisting one of the terminators from our successor is a great thing.
1286 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1287 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1288 // nodes, so we insert select instruction to compute the final result.
1289 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1290 for (BasicBlock *Succ : successors(BB1)) {
1291 PHINode *PN;
1292 for (BasicBlock::iterator BBI = Succ->begin();
1293 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1294 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1295 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1296 if (BB1V == BB2V)
1297 continue;
1298
1299 // These values do not agree. Insert a select instruction before NT
1300 // that determines the right value.
1301 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1302 if (!SI)
1303 SI = cast<SelectInst>(
1304 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1305 BB1V->getName() + "." + BB2V->getName(), BI));
1306
1307 // Make the PHI node use the select for all incoming values for BB1/BB2
1308 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1309 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1310 PN->setIncomingValue(i, SI);
1311 }
1312 }
1313
1314 // Update any PHI nodes in our new successors.
1315 for (BasicBlock *Succ : successors(BB1))
1316 AddPredecessorToBlock(Succ, BIParent, BB1);
1317
1318 EraseTerminatorInstAndDCECond(BI);
1319 return true;
1320 }
1321
1322 /// Given an unconditional branch that goes to BBEnd,
1323 /// check whether BBEnd has only two predecessors and the other predecessor
1324 /// ends with an unconditional branch. If it is true, sink any common code
1325 /// in the two predecessors to BBEnd.
SinkThenElseCodeToEnd(BranchInst * BI1)1326 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1327 assert(BI1->isUnconditional());
1328 BasicBlock *BB1 = BI1->getParent();
1329 BasicBlock *BBEnd = BI1->getSuccessor(0);
1330
1331 // Check that BBEnd has two predecessors and the other predecessor ends with
1332 // an unconditional branch.
1333 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1334 BasicBlock *Pred0 = *PI++;
1335 if (PI == PE) // Only one predecessor.
1336 return false;
1337 BasicBlock *Pred1 = *PI++;
1338 if (PI != PE) // More than two predecessors.
1339 return false;
1340 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1341 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1342 if (!BI2 || !BI2->isUnconditional())
1343 return false;
1344
1345 // Gather the PHI nodes in BBEnd.
1346 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1347 Instruction *FirstNonPhiInBBEnd = nullptr;
1348 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1349 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1350 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1351 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1352 JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1353 } else {
1354 FirstNonPhiInBBEnd = &*I;
1355 break;
1356 }
1357 }
1358 if (!FirstNonPhiInBBEnd)
1359 return false;
1360
1361 // This does very trivial matching, with limited scanning, to find identical
1362 // instructions in the two blocks. We scan backward for obviously identical
1363 // instructions in an identical order.
1364 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1365 RE1 = BB1->getInstList().rend(),
1366 RI2 = BB2->getInstList().rbegin(),
1367 RE2 = BB2->getInstList().rend();
1368 // Skip debug info.
1369 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1370 ++RI1;
1371 if (RI1 == RE1)
1372 return false;
1373 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1374 ++RI2;
1375 if (RI2 == RE2)
1376 return false;
1377 // Skip the unconditional branches.
1378 ++RI1;
1379 ++RI2;
1380
1381 bool Changed = false;
1382 while (RI1 != RE1 && RI2 != RE2) {
1383 // Skip debug info.
1384 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1385 ++RI1;
1386 if (RI1 == RE1)
1387 return Changed;
1388 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1389 ++RI2;
1390 if (RI2 == RE2)
1391 return Changed;
1392
1393 Instruction *I1 = &*RI1, *I2 = &*RI2;
1394 auto InstPair = std::make_pair(I1, I2);
1395 // I1 and I2 should have a single use in the same PHI node, and they
1396 // perform the same operation.
1397 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1398 if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) ||
1399 isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() ||
1400 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1401 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1402 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1403 !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair))
1404 return Changed;
1405
1406 // Check whether we should swap the operands of ICmpInst.
1407 // TODO: Add support of communativity.
1408 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1409 bool SwapOpnds = false;
1410 if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1411 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1412 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1413 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1414 ICmp2->swapOperands();
1415 SwapOpnds = true;
1416 }
1417 if (!I1->isSameOperationAs(I2)) {
1418 if (SwapOpnds)
1419 ICmp2->swapOperands();
1420 return Changed;
1421 }
1422
1423 // The operands should be either the same or they need to be generated
1424 // with a PHI node after sinking. We only handle the case where there is
1425 // a single pair of different operands.
1426 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1427 unsigned Op1Idx = ~0U;
1428 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1429 if (I1->getOperand(I) == I2->getOperand(I))
1430 continue;
1431 // Early exit if we have more-than one pair of different operands or if
1432 // we need a PHI node to replace a constant.
1433 if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) ||
1434 isa<Constant>(I2->getOperand(I))) {
1435 // If we can't sink the instructions, undo the swapping.
1436 if (SwapOpnds)
1437 ICmp2->swapOperands();
1438 return Changed;
1439 }
1440 DifferentOp1 = I1->getOperand(I);
1441 Op1Idx = I;
1442 DifferentOp2 = I2->getOperand(I);
1443 }
1444
1445 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1446 DEBUG(dbgs() << " " << *I2 << "\n");
1447
1448 // We insert the pair of different operands to JointValueMap and
1449 // remove (I1, I2) from JointValueMap.
1450 if (Op1Idx != ~0U) {
1451 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1452 if (!NewPN) {
1453 NewPN =
1454 PHINode::Create(DifferentOp1->getType(), 2,
1455 DifferentOp1->getName() + ".sink", &BBEnd->front());
1456 NewPN->addIncoming(DifferentOp1, BB1);
1457 NewPN->addIncoming(DifferentOp2, BB2);
1458 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1459 }
1460 // I1 should use NewPN instead of DifferentOp1.
1461 I1->setOperand(Op1Idx, NewPN);
1462 }
1463 PHINode *OldPN = JointValueMap[InstPair];
1464 JointValueMap.erase(InstPair);
1465
1466 // We need to update RE1 and RE2 if we are going to sink the first
1467 // instruction in the basic block down.
1468 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1469 // Sink the instruction.
1470 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1471 BB1->getInstList(), I1);
1472 if (!OldPN->use_empty())
1473 OldPN->replaceAllUsesWith(I1);
1474 OldPN->eraseFromParent();
1475
1476 if (!I2->use_empty())
1477 I2->replaceAllUsesWith(I1);
1478 I1->intersectOptionalDataWith(I2);
1479 // TODO: Use combineMetadata here to preserve what metadata we can
1480 // (analogous to the hoisting case above).
1481 I2->eraseFromParent();
1482
1483 if (UpdateRE1)
1484 RE1 = BB1->getInstList().rend();
1485 if (UpdateRE2)
1486 RE2 = BB2->getInstList().rend();
1487 FirstNonPhiInBBEnd = &*I1;
1488 NumSinkCommons++;
1489 Changed = true;
1490 }
1491 return Changed;
1492 }
1493
1494 /// \brief Determine if we can hoist sink a sole store instruction out of a
1495 /// conditional block.
1496 ///
1497 /// We are looking for code like the following:
1498 /// BrBB:
1499 /// store i32 %add, i32* %arrayidx2
1500 /// ... // No other stores or function calls (we could be calling a memory
1501 /// ... // function).
1502 /// %cmp = icmp ult %x, %y
1503 /// br i1 %cmp, label %EndBB, label %ThenBB
1504 /// ThenBB:
1505 /// store i32 %add5, i32* %arrayidx2
1506 /// br label EndBB
1507 /// EndBB:
1508 /// ...
1509 /// We are going to transform this into:
1510 /// BrBB:
1511 /// store i32 %add, i32* %arrayidx2
1512 /// ... //
1513 /// %cmp = icmp ult %x, %y
1514 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1515 /// store i32 %add.add5, i32* %arrayidx2
1516 /// ...
1517 ///
1518 /// \return The pointer to the value of the previous store if the store can be
1519 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1520 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1521 BasicBlock *StoreBB, BasicBlock *EndBB) {
1522 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1523 if (!StoreToHoist)
1524 return nullptr;
1525
1526 // Volatile or atomic.
1527 if (!StoreToHoist->isSimple())
1528 return nullptr;
1529
1530 Value *StorePtr = StoreToHoist->getPointerOperand();
1531
1532 // Look for a store to the same pointer in BrBB.
1533 unsigned MaxNumInstToLookAt = 9;
1534 for (Instruction &CurI : reverse(*BrBB)) {
1535 if (!MaxNumInstToLookAt)
1536 break;
1537 // Skip debug info.
1538 if (isa<DbgInfoIntrinsic>(CurI))
1539 continue;
1540 --MaxNumInstToLookAt;
1541
1542 // Could be calling an instruction that effects memory like free().
1543 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1544 return nullptr;
1545
1546 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1547 // Found the previous store make sure it stores to the same location.
1548 if (SI->getPointerOperand() == StorePtr)
1549 // Found the previous store, return its value operand.
1550 return SI->getValueOperand();
1551 return nullptr; // Unknown store.
1552 }
1553 }
1554
1555 return nullptr;
1556 }
1557
1558 /// \brief Speculate a conditional basic block flattening the CFG.
1559 ///
1560 /// Note that this is a very risky transform currently. Speculating
1561 /// instructions like this is most often not desirable. Instead, there is an MI
1562 /// pass which can do it with full awareness of the resource constraints.
1563 /// However, some cases are "obvious" and we should do directly. An example of
1564 /// this is speculating a single, reasonably cheap instruction.
1565 ///
1566 /// There is only one distinct advantage to flattening the CFG at the IR level:
1567 /// it makes very common but simplistic optimizations such as are common in
1568 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1569 /// modeling their effects with easier to reason about SSA value graphs.
1570 ///
1571 ///
1572 /// An illustration of this transform is turning this IR:
1573 /// \code
1574 /// BB:
1575 /// %cmp = icmp ult %x, %y
1576 /// br i1 %cmp, label %EndBB, label %ThenBB
1577 /// ThenBB:
1578 /// %sub = sub %x, %y
1579 /// br label BB2
1580 /// EndBB:
1581 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1582 /// ...
1583 /// \endcode
1584 ///
1585 /// Into this IR:
1586 /// \code
1587 /// BB:
1588 /// %cmp = icmp ult %x, %y
1589 /// %sub = sub %x, %y
1590 /// %cond = select i1 %cmp, 0, %sub
1591 /// ...
1592 /// \endcode
1593 ///
1594 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)1595 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1596 const TargetTransformInfo &TTI) {
1597 // Be conservative for now. FP select instruction can often be expensive.
1598 Value *BrCond = BI->getCondition();
1599 if (isa<FCmpInst>(BrCond))
1600 return false;
1601
1602 BasicBlock *BB = BI->getParent();
1603 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1604
1605 // If ThenBB is actually on the false edge of the conditional branch, remember
1606 // to swap the select operands later.
1607 bool Invert = false;
1608 if (ThenBB != BI->getSuccessor(0)) {
1609 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1610 Invert = true;
1611 }
1612 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1613
1614 // Keep a count of how many times instructions are used within CondBB when
1615 // they are candidates for sinking into CondBB. Specifically:
1616 // - They are defined in BB, and
1617 // - They have no side effects, and
1618 // - All of their uses are in CondBB.
1619 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1620
1621 unsigned SpeculationCost = 0;
1622 Value *SpeculatedStoreValue = nullptr;
1623 StoreInst *SpeculatedStore = nullptr;
1624 for (BasicBlock::iterator BBI = ThenBB->begin(),
1625 BBE = std::prev(ThenBB->end());
1626 BBI != BBE; ++BBI) {
1627 Instruction *I = &*BBI;
1628 // Skip debug info.
1629 if (isa<DbgInfoIntrinsic>(I))
1630 continue;
1631
1632 // Only speculatively execute a single instruction (not counting the
1633 // terminator) for now.
1634 ++SpeculationCost;
1635 if (SpeculationCost > 1)
1636 return false;
1637
1638 // Don't hoist the instruction if it's unsafe or expensive.
1639 if (!isSafeToSpeculativelyExecute(I) &&
1640 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1641 I, BB, ThenBB, EndBB))))
1642 return false;
1643 if (!SpeculatedStoreValue &&
1644 ComputeSpeculationCost(I, TTI) >
1645 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1646 return false;
1647
1648 // Store the store speculation candidate.
1649 if (SpeculatedStoreValue)
1650 SpeculatedStore = cast<StoreInst>(I);
1651
1652 // Do not hoist the instruction if any of its operands are defined but not
1653 // used in BB. The transformation will prevent the operand from
1654 // being sunk into the use block.
1655 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1656 Instruction *OpI = dyn_cast<Instruction>(*i);
1657 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1658 continue; // Not a candidate for sinking.
1659
1660 ++SinkCandidateUseCounts[OpI];
1661 }
1662 }
1663
1664 // Consider any sink candidates which are only used in CondBB as costs for
1665 // speculation. Note, while we iterate over a DenseMap here, we are summing
1666 // and so iteration order isn't significant.
1667 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1668 I = SinkCandidateUseCounts.begin(),
1669 E = SinkCandidateUseCounts.end();
1670 I != E; ++I)
1671 if (I->first->getNumUses() == I->second) {
1672 ++SpeculationCost;
1673 if (SpeculationCost > 1)
1674 return false;
1675 }
1676
1677 // Check that the PHI nodes can be converted to selects.
1678 bool HaveRewritablePHIs = false;
1679 for (BasicBlock::iterator I = EndBB->begin();
1680 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1681 Value *OrigV = PN->getIncomingValueForBlock(BB);
1682 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1683
1684 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1685 // Skip PHIs which are trivial.
1686 if (ThenV == OrigV)
1687 continue;
1688
1689 // Don't convert to selects if we could remove undefined behavior instead.
1690 if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1691 passingValueIsAlwaysUndefined(ThenV, PN))
1692 return false;
1693
1694 HaveRewritablePHIs = true;
1695 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1696 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1697 if (!OrigCE && !ThenCE)
1698 continue; // Known safe and cheap.
1699
1700 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1701 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1702 return false;
1703 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1704 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1705 unsigned MaxCost =
1706 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1707 if (OrigCost + ThenCost > MaxCost)
1708 return false;
1709
1710 // Account for the cost of an unfolded ConstantExpr which could end up
1711 // getting expanded into Instructions.
1712 // FIXME: This doesn't account for how many operations are combined in the
1713 // constant expression.
1714 ++SpeculationCost;
1715 if (SpeculationCost > 1)
1716 return false;
1717 }
1718
1719 // If there are no PHIs to process, bail early. This helps ensure idempotence
1720 // as well.
1721 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1722 return false;
1723
1724 // If we get here, we can hoist the instruction and if-convert.
1725 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1726
1727 // Insert a select of the value of the speculated store.
1728 if (SpeculatedStoreValue) {
1729 IRBuilder<NoFolder> Builder(BI);
1730 Value *TrueV = SpeculatedStore->getValueOperand();
1731 Value *FalseV = SpeculatedStoreValue;
1732 if (Invert)
1733 std::swap(TrueV, FalseV);
1734 Value *S = Builder.CreateSelect(
1735 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1736 SpeculatedStore->setOperand(0, S);
1737 }
1738
1739 // Metadata can be dependent on the condition we are hoisting above.
1740 // Conservatively strip all metadata on the instruction.
1741 for (auto &I : *ThenBB)
1742 I.dropUnknownNonDebugMetadata();
1743
1744 // Hoist the instructions.
1745 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1746 ThenBB->begin(), std::prev(ThenBB->end()));
1747
1748 // Insert selects and rewrite the PHI operands.
1749 IRBuilder<NoFolder> Builder(BI);
1750 for (BasicBlock::iterator I = EndBB->begin();
1751 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1752 unsigned OrigI = PN->getBasicBlockIndex(BB);
1753 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1754 Value *OrigV = PN->getIncomingValue(OrigI);
1755 Value *ThenV = PN->getIncomingValue(ThenI);
1756
1757 // Skip PHIs which are trivial.
1758 if (OrigV == ThenV)
1759 continue;
1760
1761 // Create a select whose true value is the speculatively executed value and
1762 // false value is the preexisting value. Swap them if the branch
1763 // destinations were inverted.
1764 Value *TrueV = ThenV, *FalseV = OrigV;
1765 if (Invert)
1766 std::swap(TrueV, FalseV);
1767 Value *V = Builder.CreateSelect(
1768 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1769 PN->setIncomingValue(OrigI, V);
1770 PN->setIncomingValue(ThenI, V);
1771 }
1772
1773 ++NumSpeculations;
1774 return true;
1775 }
1776
1777 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1778 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1779 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1780 unsigned Size = 0;
1781
1782 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1783 if (isa<DbgInfoIntrinsic>(BBI))
1784 continue;
1785 if (Size > 10)
1786 return false; // Don't clone large BB's.
1787 ++Size;
1788
1789 // We can only support instructions that do not define values that are
1790 // live outside of the current basic block.
1791 for (User *U : BBI->users()) {
1792 Instruction *UI = cast<Instruction>(U);
1793 if (UI->getParent() != BB || isa<PHINode>(UI))
1794 return false;
1795 }
1796
1797 // Looks ok, continue checking.
1798 }
1799
1800 return true;
1801 }
1802
1803 /// If we have a conditional branch on a PHI node value that is defined in the
1804 /// same block as the branch and if any PHI entries are constants, thread edges
1805 /// corresponding to that entry to be branches to their ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout & DL)1806 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1807 BasicBlock *BB = BI->getParent();
1808 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1809 // NOTE: we currently cannot transform this case if the PHI node is used
1810 // outside of the block.
1811 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1812 return false;
1813
1814 // Degenerate case of a single entry PHI.
1815 if (PN->getNumIncomingValues() == 1) {
1816 FoldSingleEntryPHINodes(PN->getParent());
1817 return true;
1818 }
1819
1820 // Now we know that this block has multiple preds and two succs.
1821 if (!BlockIsSimpleEnoughToThreadThrough(BB))
1822 return false;
1823
1824 // Can't fold blocks that contain noduplicate or convergent calls.
1825 if (llvm::any_of(*BB, [](const Instruction &I) {
1826 const CallInst *CI = dyn_cast<CallInst>(&I);
1827 return CI && (CI->cannotDuplicate() || CI->isConvergent());
1828 }))
1829 return false;
1830
1831 // Okay, this is a simple enough basic block. See if any phi values are
1832 // constants.
1833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1834 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1835 if (!CB || !CB->getType()->isIntegerTy(1))
1836 continue;
1837
1838 // Okay, we now know that all edges from PredBB should be revectored to
1839 // branch to RealDest.
1840 BasicBlock *PredBB = PN->getIncomingBlock(i);
1841 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1842
1843 if (RealDest == BB)
1844 continue; // Skip self loops.
1845 // Skip if the predecessor's terminator is an indirect branch.
1846 if (isa<IndirectBrInst>(PredBB->getTerminator()))
1847 continue;
1848
1849 // The dest block might have PHI nodes, other predecessors and other
1850 // difficult cases. Instead of being smart about this, just insert a new
1851 // block that jumps to the destination block, effectively splitting
1852 // the edge we are about to create.
1853 BasicBlock *EdgeBB =
1854 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
1855 RealDest->getParent(), RealDest);
1856 BranchInst::Create(RealDest, EdgeBB);
1857
1858 // Update PHI nodes.
1859 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1860
1861 // BB may have instructions that are being threaded over. Clone these
1862 // instructions into EdgeBB. We know that there will be no uses of the
1863 // cloned instructions outside of EdgeBB.
1864 BasicBlock::iterator InsertPt = EdgeBB->begin();
1865 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
1866 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1867 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1868 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1869 continue;
1870 }
1871 // Clone the instruction.
1872 Instruction *N = BBI->clone();
1873 if (BBI->hasName())
1874 N->setName(BBI->getName() + ".c");
1875
1876 // Update operands due to translation.
1877 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
1878 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
1879 if (PI != TranslateMap.end())
1880 *i = PI->second;
1881 }
1882
1883 // Check for trivial simplification.
1884 if (Value *V = SimplifyInstruction(N, DL)) {
1885 if (!BBI->use_empty())
1886 TranslateMap[&*BBI] = V;
1887 if (!N->mayHaveSideEffects()) {
1888 delete N; // Instruction folded away, don't need actual inst
1889 N = nullptr;
1890 }
1891 } else {
1892 if (!BBI->use_empty())
1893 TranslateMap[&*BBI] = N;
1894 }
1895 // Insert the new instruction into its new home.
1896 if (N)
1897 EdgeBB->getInstList().insert(InsertPt, N);
1898 }
1899
1900 // Loop over all of the edges from PredBB to BB, changing them to branch
1901 // to EdgeBB instead.
1902 TerminatorInst *PredBBTI = PredBB->getTerminator();
1903 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1904 if (PredBBTI->getSuccessor(i) == BB) {
1905 BB->removePredecessor(PredBB);
1906 PredBBTI->setSuccessor(i, EdgeBB);
1907 }
1908
1909 // Recurse, simplifying any other constants.
1910 return FoldCondBranchOnPHI(BI, DL) | true;
1911 }
1912
1913 return false;
1914 }
1915
1916 /// Given a BB that starts with the specified two-entry PHI node,
1917 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,const DataLayout & DL)1918 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1919 const DataLayout &DL) {
1920 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1921 // statement", which has a very simple dominance structure. Basically, we
1922 // are trying to find the condition that is being branched on, which
1923 // subsequently causes this merge to happen. We really want control
1924 // dependence information for this check, but simplifycfg can't keep it up
1925 // to date, and this catches most of the cases we care about anyway.
1926 BasicBlock *BB = PN->getParent();
1927 BasicBlock *IfTrue, *IfFalse;
1928 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1929 if (!IfCond ||
1930 // Don't bother if the branch will be constant folded trivially.
1931 isa<ConstantInt>(IfCond))
1932 return false;
1933
1934 // Okay, we found that we can merge this two-entry phi node into a select.
1935 // Doing so would require us to fold *all* two entry phi nodes in this block.
1936 // At some point this becomes non-profitable (particularly if the target
1937 // doesn't support cmov's). Only do this transformation if there are two or
1938 // fewer PHI nodes in this block.
1939 unsigned NumPhis = 0;
1940 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1941 if (NumPhis > 2)
1942 return false;
1943
1944 // Loop over the PHI's seeing if we can promote them all to select
1945 // instructions. While we are at it, keep track of the instructions
1946 // that need to be moved to the dominating block.
1947 SmallPtrSet<Instruction *, 4> AggressiveInsts;
1948 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1949 MaxCostVal1 = PHINodeFoldingThreshold;
1950 MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1951 MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1952
1953 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1954 PHINode *PN = cast<PHINode>(II++);
1955 if (Value *V = SimplifyInstruction(PN, DL)) {
1956 PN->replaceAllUsesWith(V);
1957 PN->eraseFromParent();
1958 continue;
1959 }
1960
1961 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1962 MaxCostVal0, TTI) ||
1963 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1964 MaxCostVal1, TTI))
1965 return false;
1966 }
1967
1968 // If we folded the first phi, PN dangles at this point. Refresh it. If
1969 // we ran out of PHIs then we simplified them all.
1970 PN = dyn_cast<PHINode>(BB->begin());
1971 if (!PN)
1972 return true;
1973
1974 // Don't fold i1 branches on PHIs which contain binary operators. These can
1975 // often be turned into switches and other things.
1976 if (PN->getType()->isIntegerTy(1) &&
1977 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1978 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1979 isa<BinaryOperator>(IfCond)))
1980 return false;
1981
1982 // If all PHI nodes are promotable, check to make sure that all instructions
1983 // in the predecessor blocks can be promoted as well. If not, we won't be able
1984 // to get rid of the control flow, so it's not worth promoting to select
1985 // instructions.
1986 BasicBlock *DomBlock = nullptr;
1987 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1988 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1989 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1990 IfBlock1 = nullptr;
1991 } else {
1992 DomBlock = *pred_begin(IfBlock1);
1993 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
1994 ++I)
1995 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1996 // This is not an aggressive instruction that we can promote.
1997 // Because of this, we won't be able to get rid of the control flow, so
1998 // the xform is not worth it.
1999 return false;
2000 }
2001 }
2002
2003 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2004 IfBlock2 = nullptr;
2005 } else {
2006 DomBlock = *pred_begin(IfBlock2);
2007 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2008 ++I)
2009 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2010 // This is not an aggressive instruction that we can promote.
2011 // Because of this, we won't be able to get rid of the control flow, so
2012 // the xform is not worth it.
2013 return false;
2014 }
2015 }
2016
2017 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
2018 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
2019
2020 // If we can still promote the PHI nodes after this gauntlet of tests,
2021 // do all of the PHI's now.
2022 Instruction *InsertPt = DomBlock->getTerminator();
2023 IRBuilder<NoFolder> Builder(InsertPt);
2024
2025 // Move all 'aggressive' instructions, which are defined in the
2026 // conditional parts of the if's up to the dominating block.
2027 if (IfBlock1)
2028 DomBlock->getInstList().splice(InsertPt->getIterator(),
2029 IfBlock1->getInstList(), IfBlock1->begin(),
2030 IfBlock1->getTerminator()->getIterator());
2031 if (IfBlock2)
2032 DomBlock->getInstList().splice(InsertPt->getIterator(),
2033 IfBlock2->getInstList(), IfBlock2->begin(),
2034 IfBlock2->getTerminator()->getIterator());
2035
2036 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2037 // Change the PHI node into a select instruction.
2038 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2039 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2040
2041 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2042 PN->replaceAllUsesWith(Sel);
2043 Sel->takeName(PN);
2044 PN->eraseFromParent();
2045 }
2046
2047 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2048 // has been flattened. Change DomBlock to jump directly to our new block to
2049 // avoid other simplifycfg's kicking in on the diamond.
2050 TerminatorInst *OldTI = DomBlock->getTerminator();
2051 Builder.SetInsertPoint(OldTI);
2052 Builder.CreateBr(BB);
2053 OldTI->eraseFromParent();
2054 return true;
2055 }
2056
2057 /// If we found a conditional branch that goes to two returning blocks,
2058 /// try to merge them together into one return,
2059 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)2060 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2061 IRBuilder<> &Builder) {
2062 assert(BI->isConditional() && "Must be a conditional branch");
2063 BasicBlock *TrueSucc = BI->getSuccessor(0);
2064 BasicBlock *FalseSucc = BI->getSuccessor(1);
2065 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2066 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2067
2068 // Check to ensure both blocks are empty (just a return) or optionally empty
2069 // with PHI nodes. If there are other instructions, merging would cause extra
2070 // computation on one path or the other.
2071 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2072 return false;
2073 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2074 return false;
2075
2076 Builder.SetInsertPoint(BI);
2077 // Okay, we found a branch that is going to two return nodes. If
2078 // there is no return value for this function, just change the
2079 // branch into a return.
2080 if (FalseRet->getNumOperands() == 0) {
2081 TrueSucc->removePredecessor(BI->getParent());
2082 FalseSucc->removePredecessor(BI->getParent());
2083 Builder.CreateRetVoid();
2084 EraseTerminatorInstAndDCECond(BI);
2085 return true;
2086 }
2087
2088 // Otherwise, figure out what the true and false return values are
2089 // so we can insert a new select instruction.
2090 Value *TrueValue = TrueRet->getReturnValue();
2091 Value *FalseValue = FalseRet->getReturnValue();
2092
2093 // Unwrap any PHI nodes in the return blocks.
2094 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2095 if (TVPN->getParent() == TrueSucc)
2096 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2097 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2098 if (FVPN->getParent() == FalseSucc)
2099 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2100
2101 // In order for this transformation to be safe, we must be able to
2102 // unconditionally execute both operands to the return. This is
2103 // normally the case, but we could have a potentially-trapping
2104 // constant expression that prevents this transformation from being
2105 // safe.
2106 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2107 if (TCV->canTrap())
2108 return false;
2109 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2110 if (FCV->canTrap())
2111 return false;
2112
2113 // Okay, we collected all the mapped values and checked them for sanity, and
2114 // defined to really do this transformation. First, update the CFG.
2115 TrueSucc->removePredecessor(BI->getParent());
2116 FalseSucc->removePredecessor(BI->getParent());
2117
2118 // Insert select instructions where needed.
2119 Value *BrCond = BI->getCondition();
2120 if (TrueValue) {
2121 // Insert a select if the results differ.
2122 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2123 } else if (isa<UndefValue>(TrueValue)) {
2124 TrueValue = FalseValue;
2125 } else {
2126 TrueValue =
2127 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2128 }
2129 }
2130
2131 Value *RI =
2132 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2133
2134 (void)RI;
2135
2136 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2137 << "\n " << *BI << "NewRet = " << *RI
2138 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2139
2140 EraseTerminatorInstAndDCECond(BI);
2141
2142 return true;
2143 }
2144
2145 /// Return true if the given instruction is available
2146 /// in its predecessor block. If yes, the instruction will be removed.
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)2147 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2148 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2149 return false;
2150 for (Instruction &I : *PB) {
2151 Instruction *PBI = &I;
2152 // Check whether Inst and PBI generate the same value.
2153 if (Inst->isIdenticalTo(PBI)) {
2154 Inst->replaceAllUsesWith(PBI);
2155 Inst->eraseFromParent();
2156 return true;
2157 }
2158 }
2159 return false;
2160 }
2161
2162 /// Return true if either PBI or BI has branch weight available, and store
2163 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2164 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)2165 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2166 uint64_t &PredTrueWeight,
2167 uint64_t &PredFalseWeight,
2168 uint64_t &SuccTrueWeight,
2169 uint64_t &SuccFalseWeight) {
2170 bool PredHasWeights =
2171 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2172 bool SuccHasWeights =
2173 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2174 if (PredHasWeights || SuccHasWeights) {
2175 if (!PredHasWeights)
2176 PredTrueWeight = PredFalseWeight = 1;
2177 if (!SuccHasWeights)
2178 SuccTrueWeight = SuccFalseWeight = 1;
2179 return true;
2180 } else {
2181 return false;
2182 }
2183 }
2184
2185 /// If this basic block is simple enough, and if a predecessor branches to us
2186 /// and one of our successors, fold the block into the predecessor and use
2187 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,unsigned BonusInstThreshold)2188 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2189 BasicBlock *BB = BI->getParent();
2190
2191 Instruction *Cond = nullptr;
2192 if (BI->isConditional())
2193 Cond = dyn_cast<Instruction>(BI->getCondition());
2194 else {
2195 // For unconditional branch, check for a simple CFG pattern, where
2196 // BB has a single predecessor and BB's successor is also its predecessor's
2197 // successor. If such pattern exisits, check for CSE between BB and its
2198 // predecessor.
2199 if (BasicBlock *PB = BB->getSinglePredecessor())
2200 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2201 if (PBI->isConditional() &&
2202 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2203 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2204 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2205 Instruction *Curr = &*I++;
2206 if (isa<CmpInst>(Curr)) {
2207 Cond = Curr;
2208 break;
2209 }
2210 // Quit if we can't remove this instruction.
2211 if (!checkCSEInPredecessor(Curr, PB))
2212 return false;
2213 }
2214 }
2215
2216 if (!Cond)
2217 return false;
2218 }
2219
2220 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2221 Cond->getParent() != BB || !Cond->hasOneUse())
2222 return false;
2223
2224 // Make sure the instruction after the condition is the cond branch.
2225 BasicBlock::iterator CondIt = ++Cond->getIterator();
2226
2227 // Ignore dbg intrinsics.
2228 while (isa<DbgInfoIntrinsic>(CondIt))
2229 ++CondIt;
2230
2231 if (&*CondIt != BI)
2232 return false;
2233
2234 // Only allow this transformation if computing the condition doesn't involve
2235 // too many instructions and these involved instructions can be executed
2236 // unconditionally. We denote all involved instructions except the condition
2237 // as "bonus instructions", and only allow this transformation when the
2238 // number of the bonus instructions does not exceed a certain threshold.
2239 unsigned NumBonusInsts = 0;
2240 for (auto I = BB->begin(); Cond != &*I; ++I) {
2241 // Ignore dbg intrinsics.
2242 if (isa<DbgInfoIntrinsic>(I))
2243 continue;
2244 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2245 return false;
2246 // I has only one use and can be executed unconditionally.
2247 Instruction *User = dyn_cast<Instruction>(I->user_back());
2248 if (User == nullptr || User->getParent() != BB)
2249 return false;
2250 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2251 // to use any other instruction, User must be an instruction between next(I)
2252 // and Cond.
2253 ++NumBonusInsts;
2254 // Early exits once we reach the limit.
2255 if (NumBonusInsts > BonusInstThreshold)
2256 return false;
2257 }
2258
2259 // Cond is known to be a compare or binary operator. Check to make sure that
2260 // neither operand is a potentially-trapping constant expression.
2261 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2262 if (CE->canTrap())
2263 return false;
2264 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2265 if (CE->canTrap())
2266 return false;
2267
2268 // Finally, don't infinitely unroll conditional loops.
2269 BasicBlock *TrueDest = BI->getSuccessor(0);
2270 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2271 if (TrueDest == BB || FalseDest == BB)
2272 return false;
2273
2274 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2275 BasicBlock *PredBlock = *PI;
2276 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2277
2278 // Check that we have two conditional branches. If there is a PHI node in
2279 // the common successor, verify that the same value flows in from both
2280 // blocks.
2281 SmallVector<PHINode *, 4> PHIs;
2282 if (!PBI || PBI->isUnconditional() ||
2283 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2284 (!BI->isConditional() &&
2285 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2286 continue;
2287
2288 // Determine if the two branches share a common destination.
2289 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2290 bool InvertPredCond = false;
2291
2292 if (BI->isConditional()) {
2293 if (PBI->getSuccessor(0) == TrueDest) {
2294 Opc = Instruction::Or;
2295 } else if (PBI->getSuccessor(1) == FalseDest) {
2296 Opc = Instruction::And;
2297 } else if (PBI->getSuccessor(0) == FalseDest) {
2298 Opc = Instruction::And;
2299 InvertPredCond = true;
2300 } else if (PBI->getSuccessor(1) == TrueDest) {
2301 Opc = Instruction::Or;
2302 InvertPredCond = true;
2303 } else {
2304 continue;
2305 }
2306 } else {
2307 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2308 continue;
2309 }
2310
2311 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2312 IRBuilder<> Builder(PBI);
2313
2314 // If we need to invert the condition in the pred block to match, do so now.
2315 if (InvertPredCond) {
2316 Value *NewCond = PBI->getCondition();
2317
2318 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2319 CmpInst *CI = cast<CmpInst>(NewCond);
2320 CI->setPredicate(CI->getInversePredicate());
2321 } else {
2322 NewCond =
2323 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2324 }
2325
2326 PBI->setCondition(NewCond);
2327 PBI->swapSuccessors();
2328 }
2329
2330 // If we have bonus instructions, clone them into the predecessor block.
2331 // Note that there may be multiple predecessor blocks, so we cannot move
2332 // bonus instructions to a predecessor block.
2333 ValueToValueMapTy VMap; // maps original values to cloned values
2334 // We already make sure Cond is the last instruction before BI. Therefore,
2335 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2336 // instructions.
2337 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2338 if (isa<DbgInfoIntrinsic>(BonusInst))
2339 continue;
2340 Instruction *NewBonusInst = BonusInst->clone();
2341 RemapInstruction(NewBonusInst, VMap,
2342 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2343 VMap[&*BonusInst] = NewBonusInst;
2344
2345 // If we moved a load, we cannot any longer claim any knowledge about
2346 // its potential value. The previous information might have been valid
2347 // only given the branch precondition.
2348 // For an analogous reason, we must also drop all the metadata whose
2349 // semantics we don't understand.
2350 NewBonusInst->dropUnknownNonDebugMetadata();
2351
2352 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2353 NewBonusInst->takeName(&*BonusInst);
2354 BonusInst->setName(BonusInst->getName() + ".old");
2355 }
2356
2357 // Clone Cond into the predecessor basic block, and or/and the
2358 // two conditions together.
2359 Instruction *New = Cond->clone();
2360 RemapInstruction(New, VMap,
2361 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2362 PredBlock->getInstList().insert(PBI->getIterator(), New);
2363 New->takeName(Cond);
2364 Cond->setName(New->getName() + ".old");
2365
2366 if (BI->isConditional()) {
2367 Instruction *NewCond = cast<Instruction>(
2368 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2369 PBI->setCondition(NewCond);
2370
2371 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2372 bool HasWeights =
2373 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2374 SuccTrueWeight, SuccFalseWeight);
2375 SmallVector<uint64_t, 8> NewWeights;
2376
2377 if (PBI->getSuccessor(0) == BB) {
2378 if (HasWeights) {
2379 // PBI: br i1 %x, BB, FalseDest
2380 // BI: br i1 %y, TrueDest, FalseDest
2381 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2382 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2383 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2384 // TrueWeight for PBI * FalseWeight for BI.
2385 // We assume that total weights of a BranchInst can fit into 32 bits.
2386 // Therefore, we will not have overflow using 64-bit arithmetic.
2387 NewWeights.push_back(PredFalseWeight *
2388 (SuccFalseWeight + SuccTrueWeight) +
2389 PredTrueWeight * SuccFalseWeight);
2390 }
2391 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2392 PBI->setSuccessor(0, TrueDest);
2393 }
2394 if (PBI->getSuccessor(1) == BB) {
2395 if (HasWeights) {
2396 // PBI: br i1 %x, TrueDest, BB
2397 // BI: br i1 %y, TrueDest, FalseDest
2398 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2399 // FalseWeight for PBI * TrueWeight for BI.
2400 NewWeights.push_back(PredTrueWeight *
2401 (SuccFalseWeight + SuccTrueWeight) +
2402 PredFalseWeight * SuccTrueWeight);
2403 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2404 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2405 }
2406 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2407 PBI->setSuccessor(1, FalseDest);
2408 }
2409 if (NewWeights.size() == 2) {
2410 // Halve the weights if any of them cannot fit in an uint32_t
2411 FitWeights(NewWeights);
2412
2413 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2414 NewWeights.end());
2415 PBI->setMetadata(
2416 LLVMContext::MD_prof,
2417 MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2418 } else
2419 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2420 } else {
2421 // Update PHI nodes in the common successors.
2422 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2423 ConstantInt *PBI_C = cast<ConstantInt>(
2424 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2425 assert(PBI_C->getType()->isIntegerTy(1));
2426 Instruction *MergedCond = nullptr;
2427 if (PBI->getSuccessor(0) == TrueDest) {
2428 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2429 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2430 // is false: !PBI_Cond and BI_Value
2431 Instruction *NotCond = cast<Instruction>(
2432 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2433 MergedCond = cast<Instruction>(
2434 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2435 if (PBI_C->isOne())
2436 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2437 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2438 } else {
2439 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2440 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2441 // is false: PBI_Cond and BI_Value
2442 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2443 Instruction::And, PBI->getCondition(), New, "and.cond"));
2444 if (PBI_C->isOne()) {
2445 Instruction *NotCond = cast<Instruction>(
2446 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2447 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2448 Instruction::Or, NotCond, MergedCond, "or.cond"));
2449 }
2450 }
2451 // Update PHI Node.
2452 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2453 MergedCond);
2454 }
2455 // Change PBI from Conditional to Unconditional.
2456 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2457 EraseTerminatorInstAndDCECond(PBI);
2458 PBI = New_PBI;
2459 }
2460
2461 // TODO: If BB is reachable from all paths through PredBlock, then we
2462 // could replace PBI's branch probabilities with BI's.
2463
2464 // Copy any debug value intrinsics into the end of PredBlock.
2465 for (Instruction &I : *BB)
2466 if (isa<DbgInfoIntrinsic>(I))
2467 I.clone()->insertBefore(PBI);
2468
2469 return true;
2470 }
2471 return false;
2472 }
2473
2474 // If there is only one store in BB1 and BB2, return it, otherwise return
2475 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)2476 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2477 StoreInst *S = nullptr;
2478 for (auto *BB : {BB1, BB2}) {
2479 if (!BB)
2480 continue;
2481 for (auto &I : *BB)
2482 if (auto *SI = dyn_cast<StoreInst>(&I)) {
2483 if (S)
2484 // Multiple stores seen.
2485 return nullptr;
2486 else
2487 S = SI;
2488 }
2489 }
2490 return S;
2491 }
2492
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)2493 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2494 Value *AlternativeV = nullptr) {
2495 // PHI is going to be a PHI node that allows the value V that is defined in
2496 // BB to be referenced in BB's only successor.
2497 //
2498 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2499 // doesn't matter to us what the other operand is (it'll never get used). We
2500 // could just create a new PHI with an undef incoming value, but that could
2501 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2502 // other PHI. So here we directly look for some PHI in BB's successor with V
2503 // as an incoming operand. If we find one, we use it, else we create a new
2504 // one.
2505 //
2506 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2507 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2508 // where OtherBB is the single other predecessor of BB's only successor.
2509 PHINode *PHI = nullptr;
2510 BasicBlock *Succ = BB->getSingleSuccessor();
2511
2512 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2513 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2514 PHI = cast<PHINode>(I);
2515 if (!AlternativeV)
2516 break;
2517
2518 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2519 auto PredI = pred_begin(Succ);
2520 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2521 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2522 break;
2523 PHI = nullptr;
2524 }
2525 if (PHI)
2526 return PHI;
2527
2528 // If V is not an instruction defined in BB, just return it.
2529 if (!AlternativeV &&
2530 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2531 return V;
2532
2533 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2534 PHI->addIncoming(V, BB);
2535 for (BasicBlock *PredBB : predecessors(Succ))
2536 if (PredBB != BB)
2537 PHI->addIncoming(
2538 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2539 return PHI;
2540 }
2541
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond)2542 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2543 BasicBlock *QTB, BasicBlock *QFB,
2544 BasicBlock *PostBB, Value *Address,
2545 bool InvertPCond, bool InvertQCond) {
2546 auto IsaBitcastOfPointerType = [](const Instruction &I) {
2547 return Operator::getOpcode(&I) == Instruction::BitCast &&
2548 I.getType()->isPointerTy();
2549 };
2550
2551 // If we're not in aggressive mode, we only optimize if we have some
2552 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2553 auto IsWorthwhile = [&](BasicBlock *BB) {
2554 if (!BB)
2555 return true;
2556 // Heuristic: if the block can be if-converted/phi-folded and the
2557 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2558 // thread this store.
2559 unsigned N = 0;
2560 for (auto &I : *BB) {
2561 // Cheap instructions viable for folding.
2562 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2563 isa<StoreInst>(I))
2564 ++N;
2565 // Free instructions.
2566 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2567 IsaBitcastOfPointerType(I))
2568 continue;
2569 else
2570 return false;
2571 }
2572 return N <= PHINodeFoldingThreshold;
2573 };
2574
2575 if (!MergeCondStoresAggressively &&
2576 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2577 !IsWorthwhile(QFB)))
2578 return false;
2579
2580 // For every pointer, there must be exactly two stores, one coming from
2581 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2582 // store (to any address) in PTB,PFB or QTB,QFB.
2583 // FIXME: We could relax this restriction with a bit more work and performance
2584 // testing.
2585 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2586 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2587 if (!PStore || !QStore)
2588 return false;
2589
2590 // Now check the stores are compatible.
2591 if (!QStore->isUnordered() || !PStore->isUnordered())
2592 return false;
2593
2594 // Check that sinking the store won't cause program behavior changes. Sinking
2595 // the store out of the Q blocks won't change any behavior as we're sinking
2596 // from a block to its unconditional successor. But we're moving a store from
2597 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2598 // So we need to check that there are no aliasing loads or stores in
2599 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2600 // operations between PStore and the end of its parent block.
2601 //
2602 // The ideal way to do this is to query AliasAnalysis, but we don't
2603 // preserve AA currently so that is dangerous. Be super safe and just
2604 // check there are no other memory operations at all.
2605 for (auto &I : *QFB->getSinglePredecessor())
2606 if (I.mayReadOrWriteMemory())
2607 return false;
2608 for (auto &I : *QFB)
2609 if (&I != QStore && I.mayReadOrWriteMemory())
2610 return false;
2611 if (QTB)
2612 for (auto &I : *QTB)
2613 if (&I != QStore && I.mayReadOrWriteMemory())
2614 return false;
2615 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2616 I != E; ++I)
2617 if (&*I != PStore && I->mayReadOrWriteMemory())
2618 return false;
2619
2620 // OK, we're going to sink the stores to PostBB. The store has to be
2621 // conditional though, so first create the predicate.
2622 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2623 ->getCondition();
2624 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2625 ->getCondition();
2626
2627 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2628 PStore->getParent());
2629 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2630 QStore->getParent(), PPHI);
2631
2632 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2633
2634 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2635 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2636
2637 if (InvertPCond)
2638 PPred = QB.CreateNot(PPred);
2639 if (InvertQCond)
2640 QPred = QB.CreateNot(QPred);
2641 Value *CombinedPred = QB.CreateOr(PPred, QPred);
2642
2643 auto *T =
2644 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2645 QB.SetInsertPoint(T);
2646 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2647 AAMDNodes AAMD;
2648 PStore->getAAMetadata(AAMD, /*Merge=*/false);
2649 PStore->getAAMetadata(AAMD, /*Merge=*/true);
2650 SI->setAAMetadata(AAMD);
2651
2652 QStore->eraseFromParent();
2653 PStore->eraseFromParent();
2654
2655 return true;
2656 }
2657
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI)2658 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2659 // The intention here is to find diamonds or triangles (see below) where each
2660 // conditional block contains a store to the same address. Both of these
2661 // stores are conditional, so they can't be unconditionally sunk. But it may
2662 // be profitable to speculatively sink the stores into one merged store at the
2663 // end, and predicate the merged store on the union of the two conditions of
2664 // PBI and QBI.
2665 //
2666 // This can reduce the number of stores executed if both of the conditions are
2667 // true, and can allow the blocks to become small enough to be if-converted.
2668 // This optimization will also chain, so that ladders of test-and-set
2669 // sequences can be if-converted away.
2670 //
2671 // We only deal with simple diamonds or triangles:
2672 //
2673 // PBI or PBI or a combination of the two
2674 // / \ | \
2675 // PTB PFB | PFB
2676 // \ / | /
2677 // QBI QBI
2678 // / \ | \
2679 // QTB QFB | QFB
2680 // \ / | /
2681 // PostBB PostBB
2682 //
2683 // We model triangles as a type of diamond with a nullptr "true" block.
2684 // Triangles are canonicalized so that the fallthrough edge is represented by
2685 // a true condition, as in the diagram above.
2686 //
2687 BasicBlock *PTB = PBI->getSuccessor(0);
2688 BasicBlock *PFB = PBI->getSuccessor(1);
2689 BasicBlock *QTB = QBI->getSuccessor(0);
2690 BasicBlock *QFB = QBI->getSuccessor(1);
2691 BasicBlock *PostBB = QFB->getSingleSuccessor();
2692
2693 bool InvertPCond = false, InvertQCond = false;
2694 // Canonicalize fallthroughs to the true branches.
2695 if (PFB == QBI->getParent()) {
2696 std::swap(PFB, PTB);
2697 InvertPCond = true;
2698 }
2699 if (QFB == PostBB) {
2700 std::swap(QFB, QTB);
2701 InvertQCond = true;
2702 }
2703
2704 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2705 // and QFB may not. Model fallthroughs as a nullptr block.
2706 if (PTB == QBI->getParent())
2707 PTB = nullptr;
2708 if (QTB == PostBB)
2709 QTB = nullptr;
2710
2711 // Legality bailouts. We must have at least the non-fallthrough blocks and
2712 // the post-dominating block, and the non-fallthroughs must only have one
2713 // predecessor.
2714 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2715 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2716 };
2717 if (!PostBB ||
2718 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2719 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2720 return false;
2721 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2722 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2723 return false;
2724 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2725 return false;
2726
2727 // OK, this is a sequence of two diamonds or triangles.
2728 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2729 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
2730 for (auto *BB : {PTB, PFB}) {
2731 if (!BB)
2732 continue;
2733 for (auto &I : *BB)
2734 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2735 PStoreAddresses.insert(SI->getPointerOperand());
2736 }
2737 for (auto *BB : {QTB, QFB}) {
2738 if (!BB)
2739 continue;
2740 for (auto &I : *BB)
2741 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2742 QStoreAddresses.insert(SI->getPointerOperand());
2743 }
2744
2745 set_intersect(PStoreAddresses, QStoreAddresses);
2746 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2747 // clear what it contains.
2748 auto &CommonAddresses = PStoreAddresses;
2749
2750 bool Changed = false;
2751 for (auto *Address : CommonAddresses)
2752 Changed |= mergeConditionalStoreToAddress(
2753 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2754 return Changed;
2755 }
2756
2757 /// If we have a conditional branch as a predecessor of another block,
2758 /// this function tries to simplify it. We know
2759 /// that PBI and BI are both conditional branches, and BI is in one of the
2760 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,const DataLayout & DL)2761 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2762 const DataLayout &DL) {
2763 assert(PBI->isConditional() && BI->isConditional());
2764 BasicBlock *BB = BI->getParent();
2765
2766 // If this block ends with a branch instruction, and if there is a
2767 // predecessor that ends on a branch of the same condition, make
2768 // this conditional branch redundant.
2769 if (PBI->getCondition() == BI->getCondition() &&
2770 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2771 // Okay, the outcome of this conditional branch is statically
2772 // knowable. If this block had a single pred, handle specially.
2773 if (BB->getSinglePredecessor()) {
2774 // Turn this into a branch on constant.
2775 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2776 BI->setCondition(
2777 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
2778 return true; // Nuke the branch on constant.
2779 }
2780
2781 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2782 // in the constant and simplify the block result. Subsequent passes of
2783 // simplifycfg will thread the block.
2784 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2785 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2786 PHINode *NewPN = PHINode::Create(
2787 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2788 BI->getCondition()->getName() + ".pr", &BB->front());
2789 // Okay, we're going to insert the PHI node. Since PBI is not the only
2790 // predecessor, compute the PHI'd conditional value for all of the preds.
2791 // Any predecessor where the condition is not computable we keep symbolic.
2792 for (pred_iterator PI = PB; PI != PE; ++PI) {
2793 BasicBlock *P = *PI;
2794 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
2795 PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
2796 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2797 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2798 NewPN->addIncoming(
2799 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
2800 P);
2801 } else {
2802 NewPN->addIncoming(BI->getCondition(), P);
2803 }
2804 }
2805
2806 BI->setCondition(NewPN);
2807 return true;
2808 }
2809 }
2810
2811 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2812 if (CE->canTrap())
2813 return false;
2814
2815 // If both branches are conditional and both contain stores to the same
2816 // address, remove the stores from the conditionals and create a conditional
2817 // merged store at the end.
2818 if (MergeCondStores && mergeConditionalStores(PBI, BI))
2819 return true;
2820
2821 // If this is a conditional branch in an empty block, and if any
2822 // predecessors are a conditional branch to one of our destinations,
2823 // fold the conditions into logical ops and one cond br.
2824 BasicBlock::iterator BBI = BB->begin();
2825 // Ignore dbg intrinsics.
2826 while (isa<DbgInfoIntrinsic>(BBI))
2827 ++BBI;
2828 if (&*BBI != BI)
2829 return false;
2830
2831 int PBIOp, BIOp;
2832 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2833 PBIOp = 0;
2834 BIOp = 0;
2835 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2836 PBIOp = 0;
2837 BIOp = 1;
2838 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2839 PBIOp = 1;
2840 BIOp = 0;
2841 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2842 PBIOp = 1;
2843 BIOp = 1;
2844 } else {
2845 return false;
2846 }
2847
2848 // Check to make sure that the other destination of this branch
2849 // isn't BB itself. If so, this is an infinite loop that will
2850 // keep getting unwound.
2851 if (PBI->getSuccessor(PBIOp) == BB)
2852 return false;
2853
2854 // Do not perform this transformation if it would require
2855 // insertion of a large number of select instructions. For targets
2856 // without predication/cmovs, this is a big pessimization.
2857
2858 // Also do not perform this transformation if any phi node in the common
2859 // destination block can trap when reached by BB or PBB (PR17073). In that
2860 // case, it would be unsafe to hoist the operation into a select instruction.
2861
2862 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2863 unsigned NumPhis = 0;
2864 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
2865 ++II, ++NumPhis) {
2866 if (NumPhis > 2) // Disable this xform.
2867 return false;
2868
2869 PHINode *PN = cast<PHINode>(II);
2870 Value *BIV = PN->getIncomingValueForBlock(BB);
2871 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2872 if (CE->canTrap())
2873 return false;
2874
2875 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2876 Value *PBIV = PN->getIncomingValue(PBBIdx);
2877 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2878 if (CE->canTrap())
2879 return false;
2880 }
2881
2882 // Finally, if everything is ok, fold the branches to logical ops.
2883 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2884
2885 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2886 << "AND: " << *BI->getParent());
2887
2888 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2889 // branch in it, where one edge (OtherDest) goes back to itself but the other
2890 // exits. We don't *know* that the program avoids the infinite loop
2891 // (even though that seems likely). If we do this xform naively, we'll end up
2892 // recursively unpeeling the loop. Since we know that (after the xform is
2893 // done) that the block *is* infinite if reached, we just make it an obviously
2894 // infinite loop with no cond branch.
2895 if (OtherDest == BB) {
2896 // Insert it at the end of the function, because it's either code,
2897 // or it won't matter if it's hot. :)
2898 BasicBlock *InfLoopBlock =
2899 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
2900 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2901 OtherDest = InfLoopBlock;
2902 }
2903
2904 DEBUG(dbgs() << *PBI->getParent()->getParent());
2905
2906 // BI may have other predecessors. Because of this, we leave
2907 // it alone, but modify PBI.
2908
2909 // Make sure we get to CommonDest on True&True directions.
2910 Value *PBICond = PBI->getCondition();
2911 IRBuilder<NoFolder> Builder(PBI);
2912 if (PBIOp)
2913 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
2914
2915 Value *BICond = BI->getCondition();
2916 if (BIOp)
2917 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
2918
2919 // Merge the conditions.
2920 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2921
2922 // Modify PBI to branch on the new condition to the new dests.
2923 PBI->setCondition(Cond);
2924 PBI->setSuccessor(0, CommonDest);
2925 PBI->setSuccessor(1, OtherDest);
2926
2927 // Update branch weight for PBI.
2928 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2929 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
2930 bool HasWeights =
2931 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2932 SuccTrueWeight, SuccFalseWeight);
2933 if (HasWeights) {
2934 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2935 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2936 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2937 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2938 // The weight to CommonDest should be PredCommon * SuccTotal +
2939 // PredOther * SuccCommon.
2940 // The weight to OtherDest should be PredOther * SuccOther.
2941 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2942 PredOther * SuccCommon,
2943 PredOther * SuccOther};
2944 // Halve the weights if any of them cannot fit in an uint32_t
2945 FitWeights(NewWeights);
2946
2947 PBI->setMetadata(LLVMContext::MD_prof,
2948 MDBuilder(BI->getContext())
2949 .createBranchWeights(NewWeights[0], NewWeights[1]));
2950 }
2951
2952 // OtherDest may have phi nodes. If so, add an entry from PBI's
2953 // block that are identical to the entries for BI's block.
2954 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2955
2956 // We know that the CommonDest already had an edge from PBI to
2957 // it. If it has PHIs though, the PHIs may have different
2958 // entries for BB and PBI's BB. If so, insert a select to make
2959 // them agree.
2960 PHINode *PN;
2961 for (BasicBlock::iterator II = CommonDest->begin();
2962 (PN = dyn_cast<PHINode>(II)); ++II) {
2963 Value *BIV = PN->getIncomingValueForBlock(BB);
2964 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2965 Value *PBIV = PN->getIncomingValue(PBBIdx);
2966 if (BIV != PBIV) {
2967 // Insert a select in PBI to pick the right value.
2968 SelectInst *NV = cast<SelectInst>(
2969 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
2970 PN->setIncomingValue(PBBIdx, NV);
2971 // Although the select has the same condition as PBI, the original branch
2972 // weights for PBI do not apply to the new select because the select's
2973 // 'logical' edges are incoming edges of the phi that is eliminated, not
2974 // the outgoing edges of PBI.
2975 if (HasWeights) {
2976 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2977 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2978 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2979 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2980 // The weight to PredCommonDest should be PredCommon * SuccTotal.
2981 // The weight to PredOtherDest should be PredOther * SuccCommon.
2982 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
2983 PredOther * SuccCommon};
2984
2985 FitWeights(NewWeights);
2986
2987 NV->setMetadata(LLVMContext::MD_prof,
2988 MDBuilder(BI->getContext())
2989 .createBranchWeights(NewWeights[0], NewWeights[1]));
2990 }
2991 }
2992 }
2993
2994 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2995 DEBUG(dbgs() << *PBI->getParent()->getParent());
2996
2997 // This basic block is probably dead. We know it has at least
2998 // one fewer predecessor.
2999 return true;
3000 }
3001
3002 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3003 // true or to FalseBB if Cond is false.
3004 // Takes care of updating the successors and removing the old terminator.
3005 // Also makes sure not to introduce new successors by assuming that edges to
3006 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)3007 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3008 BasicBlock *TrueBB, BasicBlock *FalseBB,
3009 uint32_t TrueWeight,
3010 uint32_t FalseWeight) {
3011 // Remove any superfluous successor edges from the CFG.
3012 // First, figure out which successors to preserve.
3013 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3014 // successor.
3015 BasicBlock *KeepEdge1 = TrueBB;
3016 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3017
3018 // Then remove the rest.
3019 for (BasicBlock *Succ : OldTerm->successors()) {
3020 // Make sure only to keep exactly one copy of each edge.
3021 if (Succ == KeepEdge1)
3022 KeepEdge1 = nullptr;
3023 else if (Succ == KeepEdge2)
3024 KeepEdge2 = nullptr;
3025 else
3026 Succ->removePredecessor(OldTerm->getParent(),
3027 /*DontDeleteUselessPHIs=*/true);
3028 }
3029
3030 IRBuilder<> Builder(OldTerm);
3031 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3032
3033 // Insert an appropriate new terminator.
3034 if (!KeepEdge1 && !KeepEdge2) {
3035 if (TrueBB == FalseBB)
3036 // We were only looking for one successor, and it was present.
3037 // Create an unconditional branch to it.
3038 Builder.CreateBr(TrueBB);
3039 else {
3040 // We found both of the successors we were looking for.
3041 // Create a conditional branch sharing the condition of the select.
3042 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3043 if (TrueWeight != FalseWeight)
3044 NewBI->setMetadata(LLVMContext::MD_prof,
3045 MDBuilder(OldTerm->getContext())
3046 .createBranchWeights(TrueWeight, FalseWeight));
3047 }
3048 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3049 // Neither of the selected blocks were successors, so this
3050 // terminator must be unreachable.
3051 new UnreachableInst(OldTerm->getContext(), OldTerm);
3052 } else {
3053 // One of the selected values was a successor, but the other wasn't.
3054 // Insert an unconditional branch to the one that was found;
3055 // the edge to the one that wasn't must be unreachable.
3056 if (!KeepEdge1)
3057 // Only TrueBB was found.
3058 Builder.CreateBr(TrueBB);
3059 else
3060 // Only FalseBB was found.
3061 Builder.CreateBr(FalseBB);
3062 }
3063
3064 EraseTerminatorInstAndDCECond(OldTerm);
3065 return true;
3066 }
3067
3068 // Replaces
3069 // (switch (select cond, X, Y)) on constant X, Y
3070 // with a branch - conditional if X and Y lead to distinct BBs,
3071 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)3072 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3073 // Check for constant integer values in the select.
3074 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3075 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3076 if (!TrueVal || !FalseVal)
3077 return false;
3078
3079 // Find the relevant condition and destinations.
3080 Value *Condition = Select->getCondition();
3081 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3082 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3083
3084 // Get weight for TrueBB and FalseBB.
3085 uint32_t TrueWeight = 0, FalseWeight = 0;
3086 SmallVector<uint64_t, 8> Weights;
3087 bool HasWeights = HasBranchWeights(SI);
3088 if (HasWeights) {
3089 GetBranchWeights(SI, Weights);
3090 if (Weights.size() == 1 + SI->getNumCases()) {
3091 TrueWeight =
3092 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3093 FalseWeight =
3094 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3095 }
3096 }
3097
3098 // Perform the actual simplification.
3099 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3100 FalseWeight);
3101 }
3102
3103 // Replaces
3104 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3105 // blockaddress(@fn, BlockB)))
3106 // with
3107 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)3108 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3109 // Check that both operands of the select are block addresses.
3110 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3111 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3112 if (!TBA || !FBA)
3113 return false;
3114
3115 // Extract the actual blocks.
3116 BasicBlock *TrueBB = TBA->getBasicBlock();
3117 BasicBlock *FalseBB = FBA->getBasicBlock();
3118
3119 // Perform the actual simplification.
3120 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3121 0);
3122 }
3123
3124 /// This is called when we find an icmp instruction
3125 /// (a seteq/setne with a constant) as the only instruction in a
3126 /// block that ends with an uncond branch. We are looking for a very specific
3127 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3128 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3129 /// default value goes to an uncond block with a seteq in it, we get something
3130 /// like:
3131 ///
3132 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3133 /// DEFAULT:
3134 /// %tmp = icmp eq i8 %A, 92
3135 /// br label %end
3136 /// end:
3137 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3138 ///
3139 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3140 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)3141 static bool TryToSimplifyUncondBranchWithICmpInIt(
3142 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3143 const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3144 AssumptionCache *AC) {
3145 BasicBlock *BB = ICI->getParent();
3146
3147 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3148 // complex.
3149 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3150 return false;
3151
3152 Value *V = ICI->getOperand(0);
3153 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3154
3155 // The pattern we're looking for is where our only predecessor is a switch on
3156 // 'V' and this block is the default case for the switch. In this case we can
3157 // fold the compared value into the switch to simplify things.
3158 BasicBlock *Pred = BB->getSinglePredecessor();
3159 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3160 return false;
3161
3162 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3163 if (SI->getCondition() != V)
3164 return false;
3165
3166 // If BB is reachable on a non-default case, then we simply know the value of
3167 // V in this block. Substitute it and constant fold the icmp instruction
3168 // away.
3169 if (SI->getDefaultDest() != BB) {
3170 ConstantInt *VVal = SI->findCaseDest(BB);
3171 assert(VVal && "Should have a unique destination value");
3172 ICI->setOperand(0, VVal);
3173
3174 if (Value *V = SimplifyInstruction(ICI, DL)) {
3175 ICI->replaceAllUsesWith(V);
3176 ICI->eraseFromParent();
3177 }
3178 // BB is now empty, so it is likely to simplify away.
3179 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3180 }
3181
3182 // Ok, the block is reachable from the default dest. If the constant we're
3183 // comparing exists in one of the other edges, then we can constant fold ICI
3184 // and zap it.
3185 if (SI->findCaseValue(Cst) != SI->case_default()) {
3186 Value *V;
3187 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3188 V = ConstantInt::getFalse(BB->getContext());
3189 else
3190 V = ConstantInt::getTrue(BB->getContext());
3191
3192 ICI->replaceAllUsesWith(V);
3193 ICI->eraseFromParent();
3194 // BB is now empty, so it is likely to simplify away.
3195 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3196 }
3197
3198 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3199 // the block.
3200 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3201 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3202 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3203 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3204 return false;
3205
3206 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3207 // true in the PHI.
3208 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3209 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3210
3211 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3212 std::swap(DefaultCst, NewCst);
3213
3214 // Replace ICI (which is used by the PHI for the default value) with true or
3215 // false depending on if it is EQ or NE.
3216 ICI->replaceAllUsesWith(DefaultCst);
3217 ICI->eraseFromParent();
3218
3219 // Okay, the switch goes to this block on a default value. Add an edge from
3220 // the switch to the merge point on the compared value.
3221 BasicBlock *NewBB =
3222 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3223 SmallVector<uint64_t, 8> Weights;
3224 bool HasWeights = HasBranchWeights(SI);
3225 if (HasWeights) {
3226 GetBranchWeights(SI, Weights);
3227 if (Weights.size() == 1 + SI->getNumCases()) {
3228 // Split weight for default case to case for "Cst".
3229 Weights[0] = (Weights[0] + 1) >> 1;
3230 Weights.push_back(Weights[0]);
3231
3232 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3233 SI->setMetadata(
3234 LLVMContext::MD_prof,
3235 MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3236 }
3237 }
3238 SI->addCase(Cst, NewBB);
3239
3240 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3241 Builder.SetInsertPoint(NewBB);
3242 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3243 Builder.CreateBr(SuccBlock);
3244 PHIUse->addIncoming(NewCst, NewBB);
3245 return true;
3246 }
3247
3248 /// The specified branch is a conditional branch.
3249 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3250 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)3251 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3252 const DataLayout &DL) {
3253 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3254 if (!Cond)
3255 return false;
3256
3257 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3258 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3259 // 'setne's and'ed together, collect them.
3260
3261 // Try to gather values from a chain of and/or to be turned into a switch
3262 ConstantComparesGatherer ConstantCompare(Cond, DL);
3263 // Unpack the result
3264 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3265 Value *CompVal = ConstantCompare.CompValue;
3266 unsigned UsedICmps = ConstantCompare.UsedICmps;
3267 Value *ExtraCase = ConstantCompare.Extra;
3268
3269 // If we didn't have a multiply compared value, fail.
3270 if (!CompVal)
3271 return false;
3272
3273 // Avoid turning single icmps into a switch.
3274 if (UsedICmps <= 1)
3275 return false;
3276
3277 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3278
3279 // There might be duplicate constants in the list, which the switch
3280 // instruction can't handle, remove them now.
3281 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3282 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3283
3284 // If Extra was used, we require at least two switch values to do the
3285 // transformation. A switch with one value is just a conditional branch.
3286 if (ExtraCase && Values.size() < 2)
3287 return false;
3288
3289 // TODO: Preserve branch weight metadata, similarly to how
3290 // FoldValueComparisonIntoPredecessors preserves it.
3291
3292 // Figure out which block is which destination.
3293 BasicBlock *DefaultBB = BI->getSuccessor(1);
3294 BasicBlock *EdgeBB = BI->getSuccessor(0);
3295 if (!TrueWhenEqual)
3296 std::swap(DefaultBB, EdgeBB);
3297
3298 BasicBlock *BB = BI->getParent();
3299
3300 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3301 << " cases into SWITCH. BB is:\n"
3302 << *BB);
3303
3304 // If there are any extra values that couldn't be folded into the switch
3305 // then we evaluate them with an explicit branch first. Split the block
3306 // right before the condbr to handle it.
3307 if (ExtraCase) {
3308 BasicBlock *NewBB =
3309 BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3310 // Remove the uncond branch added to the old block.
3311 TerminatorInst *OldTI = BB->getTerminator();
3312 Builder.SetInsertPoint(OldTI);
3313
3314 if (TrueWhenEqual)
3315 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3316 else
3317 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3318
3319 OldTI->eraseFromParent();
3320
3321 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3322 // for the edge we just added.
3323 AddPredecessorToBlock(EdgeBB, BB, NewBB);
3324
3325 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3326 << "\nEXTRABB = " << *BB);
3327 BB = NewBB;
3328 }
3329
3330 Builder.SetInsertPoint(BI);
3331 // Convert pointer to int before we switch.
3332 if (CompVal->getType()->isPointerTy()) {
3333 CompVal = Builder.CreatePtrToInt(
3334 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3335 }
3336
3337 // Create the new switch instruction now.
3338 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3339
3340 // Add all of the 'cases' to the switch instruction.
3341 for (unsigned i = 0, e = Values.size(); i != e; ++i)
3342 New->addCase(Values[i], EdgeBB);
3343
3344 // We added edges from PI to the EdgeBB. As such, if there were any
3345 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3346 // the number of edges added.
3347 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3348 PHINode *PN = cast<PHINode>(BBI);
3349 Value *InVal = PN->getIncomingValueForBlock(BB);
3350 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3351 PN->addIncoming(InVal, BB);
3352 }
3353
3354 // Erase the old branch instruction.
3355 EraseTerminatorInstAndDCECond(BI);
3356
3357 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
3358 return true;
3359 }
3360
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)3361 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3362 if (isa<PHINode>(RI->getValue()))
3363 return SimplifyCommonResume(RI);
3364 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3365 RI->getValue() == RI->getParent()->getFirstNonPHI())
3366 // The resume must unwind the exception that caused control to branch here.
3367 return SimplifySingleResume(RI);
3368
3369 return false;
3370 }
3371
3372 // Simplify resume that is shared by several landing pads (phi of landing pad).
SimplifyCommonResume(ResumeInst * RI)3373 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3374 BasicBlock *BB = RI->getParent();
3375
3376 // Check that there are no other instructions except for debug intrinsics
3377 // between the phi of landing pads (RI->getValue()) and resume instruction.
3378 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3379 E = RI->getIterator();
3380 while (++I != E)
3381 if (!isa<DbgInfoIntrinsic>(I))
3382 return false;
3383
3384 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3385 auto *PhiLPInst = cast<PHINode>(RI->getValue());
3386
3387 // Check incoming blocks to see if any of them are trivial.
3388 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3389 Idx++) {
3390 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3391 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3392
3393 // If the block has other successors, we can not delete it because
3394 // it has other dependents.
3395 if (IncomingBB->getUniqueSuccessor() != BB)
3396 continue;
3397
3398 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3399 // Not the landing pad that caused the control to branch here.
3400 if (IncomingValue != LandingPad)
3401 continue;
3402
3403 bool isTrivial = true;
3404
3405 I = IncomingBB->getFirstNonPHI()->getIterator();
3406 E = IncomingBB->getTerminator()->getIterator();
3407 while (++I != E)
3408 if (!isa<DbgInfoIntrinsic>(I)) {
3409 isTrivial = false;
3410 break;
3411 }
3412
3413 if (isTrivial)
3414 TrivialUnwindBlocks.insert(IncomingBB);
3415 }
3416
3417 // If no trivial unwind blocks, don't do any simplifications.
3418 if (TrivialUnwindBlocks.empty())
3419 return false;
3420
3421 // Turn all invokes that unwind here into calls.
3422 for (auto *TrivialBB : TrivialUnwindBlocks) {
3423 // Blocks that will be simplified should be removed from the phi node.
3424 // Note there could be multiple edges to the resume block, and we need
3425 // to remove them all.
3426 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3427 BB->removePredecessor(TrivialBB, true);
3428
3429 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3430 PI != PE;) {
3431 BasicBlock *Pred = *PI++;
3432 removeUnwindEdge(Pred);
3433 }
3434
3435 // In each SimplifyCFG run, only the current processed block can be erased.
3436 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3437 // of erasing TrivialBB, we only remove the branch to the common resume
3438 // block so that we can later erase the resume block since it has no
3439 // predecessors.
3440 TrivialBB->getTerminator()->eraseFromParent();
3441 new UnreachableInst(RI->getContext(), TrivialBB);
3442 }
3443
3444 // Delete the resume block if all its predecessors have been removed.
3445 if (pred_empty(BB))
3446 BB->eraseFromParent();
3447
3448 return !TrivialUnwindBlocks.empty();
3449 }
3450
3451 // Simplify resume that is only used by a single (non-phi) landing pad.
SimplifySingleResume(ResumeInst * RI)3452 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3453 BasicBlock *BB = RI->getParent();
3454 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3455 assert(RI->getValue() == LPInst &&
3456 "Resume must unwind the exception that caused control to here");
3457
3458 // Check that there are no other instructions except for debug intrinsics.
3459 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3460 while (++I != E)
3461 if (!isa<DbgInfoIntrinsic>(I))
3462 return false;
3463
3464 // Turn all invokes that unwind here into calls and delete the basic block.
3465 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3466 BasicBlock *Pred = *PI++;
3467 removeUnwindEdge(Pred);
3468 }
3469
3470 // The landingpad is now unreachable. Zap it.
3471 BB->eraseFromParent();
3472 if (LoopHeaders)
3473 LoopHeaders->erase(BB);
3474 return true;
3475 }
3476
removeEmptyCleanup(CleanupReturnInst * RI)3477 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3478 // If this is a trivial cleanup pad that executes no instructions, it can be
3479 // eliminated. If the cleanup pad continues to the caller, any predecessor
3480 // that is an EH pad will be updated to continue to the caller and any
3481 // predecessor that terminates with an invoke instruction will have its invoke
3482 // instruction converted to a call instruction. If the cleanup pad being
3483 // simplified does not continue to the caller, each predecessor will be
3484 // updated to continue to the unwind destination of the cleanup pad being
3485 // simplified.
3486 BasicBlock *BB = RI->getParent();
3487 CleanupPadInst *CPInst = RI->getCleanupPad();
3488 if (CPInst->getParent() != BB)
3489 // This isn't an empty cleanup.
3490 return false;
3491
3492 // We cannot kill the pad if it has multiple uses. This typically arises
3493 // from unreachable basic blocks.
3494 if (!CPInst->hasOneUse())
3495 return false;
3496
3497 // Check that there are no other instructions except for benign intrinsics.
3498 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3499 while (++I != E) {
3500 auto *II = dyn_cast<IntrinsicInst>(I);
3501 if (!II)
3502 return false;
3503
3504 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3505 switch (IntrinsicID) {
3506 case Intrinsic::dbg_declare:
3507 case Intrinsic::dbg_value:
3508 case Intrinsic::lifetime_end:
3509 break;
3510 default:
3511 return false;
3512 }
3513 }
3514
3515 // If the cleanup return we are simplifying unwinds to the caller, this will
3516 // set UnwindDest to nullptr.
3517 BasicBlock *UnwindDest = RI->getUnwindDest();
3518 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3519
3520 // We're about to remove BB from the control flow. Before we do, sink any
3521 // PHINodes into the unwind destination. Doing this before changing the
3522 // control flow avoids some potentially slow checks, since we can currently
3523 // be certain that UnwindDest and BB have no common predecessors (since they
3524 // are both EH pads).
3525 if (UnwindDest) {
3526 // First, go through the PHI nodes in UnwindDest and update any nodes that
3527 // reference the block we are removing
3528 for (BasicBlock::iterator I = UnwindDest->begin(),
3529 IE = DestEHPad->getIterator();
3530 I != IE; ++I) {
3531 PHINode *DestPN = cast<PHINode>(I);
3532
3533 int Idx = DestPN->getBasicBlockIndex(BB);
3534 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3535 assert(Idx != -1);
3536 // This PHI node has an incoming value that corresponds to a control
3537 // path through the cleanup pad we are removing. If the incoming
3538 // value is in the cleanup pad, it must be a PHINode (because we
3539 // verified above that the block is otherwise empty). Otherwise, the
3540 // value is either a constant or a value that dominates the cleanup
3541 // pad being removed.
3542 //
3543 // Because BB and UnwindDest are both EH pads, all of their
3544 // predecessors must unwind to these blocks, and since no instruction
3545 // can have multiple unwind destinations, there will be no overlap in
3546 // incoming blocks between SrcPN and DestPN.
3547 Value *SrcVal = DestPN->getIncomingValue(Idx);
3548 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3549
3550 // Remove the entry for the block we are deleting.
3551 DestPN->removeIncomingValue(Idx, false);
3552
3553 if (SrcPN && SrcPN->getParent() == BB) {
3554 // If the incoming value was a PHI node in the cleanup pad we are
3555 // removing, we need to merge that PHI node's incoming values into
3556 // DestPN.
3557 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3558 SrcIdx != SrcE; ++SrcIdx) {
3559 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3560 SrcPN->getIncomingBlock(SrcIdx));
3561 }
3562 } else {
3563 // Otherwise, the incoming value came from above BB and
3564 // so we can just reuse it. We must associate all of BB's
3565 // predecessors with this value.
3566 for (auto *pred : predecessors(BB)) {
3567 DestPN->addIncoming(SrcVal, pred);
3568 }
3569 }
3570 }
3571
3572 // Sink any remaining PHI nodes directly into UnwindDest.
3573 Instruction *InsertPt = DestEHPad;
3574 for (BasicBlock::iterator I = BB->begin(),
3575 IE = BB->getFirstNonPHI()->getIterator();
3576 I != IE;) {
3577 // The iterator must be incremented here because the instructions are
3578 // being moved to another block.
3579 PHINode *PN = cast<PHINode>(I++);
3580 if (PN->use_empty())
3581 // If the PHI node has no uses, just leave it. It will be erased
3582 // when we erase BB below.
3583 continue;
3584
3585 // Otherwise, sink this PHI node into UnwindDest.
3586 // Any predecessors to UnwindDest which are not already represented
3587 // must be back edges which inherit the value from the path through
3588 // BB. In this case, the PHI value must reference itself.
3589 for (auto *pred : predecessors(UnwindDest))
3590 if (pred != BB)
3591 PN->addIncoming(PN, pred);
3592 PN->moveBefore(InsertPt);
3593 }
3594 }
3595
3596 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3597 // The iterator must be updated here because we are removing this pred.
3598 BasicBlock *PredBB = *PI++;
3599 if (UnwindDest == nullptr) {
3600 removeUnwindEdge(PredBB);
3601 } else {
3602 TerminatorInst *TI = PredBB->getTerminator();
3603 TI->replaceUsesOfWith(BB, UnwindDest);
3604 }
3605 }
3606
3607 // The cleanup pad is now unreachable. Zap it.
3608 BB->eraseFromParent();
3609 return true;
3610 }
3611
3612 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)3613 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3614 // Skip any cleanuprets which unwind to caller, there is nothing to merge
3615 // with.
3616 BasicBlock *UnwindDest = RI->getUnwindDest();
3617 if (!UnwindDest)
3618 return false;
3619
3620 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3621 // be safe to merge without code duplication.
3622 if (UnwindDest->getSinglePredecessor() != RI->getParent())
3623 return false;
3624
3625 // Verify that our cleanuppad's unwind destination is another cleanuppad.
3626 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3627 if (!SuccessorCleanupPad)
3628 return false;
3629
3630 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3631 // Replace any uses of the successor cleanupad with the predecessor pad
3632 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3633 // funclet bundle operands.
3634 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3635 // Remove the old cleanuppad.
3636 SuccessorCleanupPad->eraseFromParent();
3637 // Now, we simply replace the cleanupret with a branch to the unwind
3638 // destination.
3639 BranchInst::Create(UnwindDest, RI->getParent());
3640 RI->eraseFromParent();
3641
3642 return true;
3643 }
3644
SimplifyCleanupReturn(CleanupReturnInst * RI)3645 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3646 // It is possible to transiantly have an undef cleanuppad operand because we
3647 // have deleted some, but not all, dead blocks.
3648 // Eventually, this block will be deleted.
3649 if (isa<UndefValue>(RI->getOperand(0)))
3650 return false;
3651
3652 if (mergeCleanupPad(RI))
3653 return true;
3654
3655 if (removeEmptyCleanup(RI))
3656 return true;
3657
3658 return false;
3659 }
3660
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)3661 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3662 BasicBlock *BB = RI->getParent();
3663 if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3664 return false;
3665
3666 // Find predecessors that end with branches.
3667 SmallVector<BasicBlock *, 8> UncondBranchPreds;
3668 SmallVector<BranchInst *, 8> CondBranchPreds;
3669 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3670 BasicBlock *P = *PI;
3671 TerminatorInst *PTI = P->getTerminator();
3672 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3673 if (BI->isUnconditional())
3674 UncondBranchPreds.push_back(P);
3675 else
3676 CondBranchPreds.push_back(BI);
3677 }
3678 }
3679
3680 // If we found some, do the transformation!
3681 if (!UncondBranchPreds.empty() && DupRet) {
3682 while (!UncondBranchPreds.empty()) {
3683 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3684 DEBUG(dbgs() << "FOLDING: " << *BB
3685 << "INTO UNCOND BRANCH PRED: " << *Pred);
3686 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3687 }
3688
3689 // If we eliminated all predecessors of the block, delete the block now.
3690 if (pred_empty(BB)) {
3691 // We know there are no successors, so just nuke the block.
3692 BB->eraseFromParent();
3693 if (LoopHeaders)
3694 LoopHeaders->erase(BB);
3695 }
3696
3697 return true;
3698 }
3699
3700 // Check out all of the conditional branches going to this return
3701 // instruction. If any of them just select between returns, change the
3702 // branch itself into a select/return pair.
3703 while (!CondBranchPreds.empty()) {
3704 BranchInst *BI = CondBranchPreds.pop_back_val();
3705
3706 // Check to see if the non-BB successor is also a return block.
3707 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3708 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3709 SimplifyCondBranchToTwoReturns(BI, Builder))
3710 return true;
3711 }
3712 return false;
3713 }
3714
SimplifyUnreachable(UnreachableInst * UI)3715 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3716 BasicBlock *BB = UI->getParent();
3717
3718 bool Changed = false;
3719
3720 // If there are any instructions immediately before the unreachable that can
3721 // be removed, do so.
3722 while (UI->getIterator() != BB->begin()) {
3723 BasicBlock::iterator BBI = UI->getIterator();
3724 --BBI;
3725 // Do not delete instructions that can have side effects which might cause
3726 // the unreachable to not be reachable; specifically, calls and volatile
3727 // operations may have this effect.
3728 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
3729 break;
3730
3731 if (BBI->mayHaveSideEffects()) {
3732 if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3733 if (SI->isVolatile())
3734 break;
3735 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3736 if (LI->isVolatile())
3737 break;
3738 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3739 if (RMWI->isVolatile())
3740 break;
3741 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3742 if (CXI->isVolatile())
3743 break;
3744 } else if (isa<CatchPadInst>(BBI)) {
3745 // A catchpad may invoke exception object constructors and such, which
3746 // in some languages can be arbitrary code, so be conservative by
3747 // default.
3748 // For CoreCLR, it just involves a type test, so can be removed.
3749 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3750 EHPersonality::CoreCLR)
3751 break;
3752 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3753 !isa<LandingPadInst>(BBI)) {
3754 break;
3755 }
3756 // Note that deleting LandingPad's here is in fact okay, although it
3757 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3758 // all the predecessors of this block will be the unwind edges of Invokes,
3759 // and we can therefore guarantee this block will be erased.
3760 }
3761
3762 // Delete this instruction (any uses are guaranteed to be dead)
3763 if (!BBI->use_empty())
3764 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3765 BBI->eraseFromParent();
3766 Changed = true;
3767 }
3768
3769 // If the unreachable instruction is the first in the block, take a gander
3770 // at all of the predecessors of this instruction, and simplify them.
3771 if (&BB->front() != UI)
3772 return Changed;
3773
3774 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
3775 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3776 TerminatorInst *TI = Preds[i]->getTerminator();
3777 IRBuilder<> Builder(TI);
3778 if (auto *BI = dyn_cast<BranchInst>(TI)) {
3779 if (BI->isUnconditional()) {
3780 if (BI->getSuccessor(0) == BB) {
3781 new UnreachableInst(TI->getContext(), TI);
3782 TI->eraseFromParent();
3783 Changed = true;
3784 }
3785 } else {
3786 if (BI->getSuccessor(0) == BB) {
3787 Builder.CreateBr(BI->getSuccessor(1));
3788 EraseTerminatorInstAndDCECond(BI);
3789 } else if (BI->getSuccessor(1) == BB) {
3790 Builder.CreateBr(BI->getSuccessor(0));
3791 EraseTerminatorInstAndDCECond(BI);
3792 Changed = true;
3793 }
3794 }
3795 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3796 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
3797 ++i)
3798 if (i.getCaseSuccessor() == BB) {
3799 BB->removePredecessor(SI->getParent());
3800 SI->removeCase(i);
3801 --i;
3802 --e;
3803 Changed = true;
3804 }
3805 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3806 if (II->getUnwindDest() == BB) {
3807 removeUnwindEdge(TI->getParent());
3808 Changed = true;
3809 }
3810 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3811 if (CSI->getUnwindDest() == BB) {
3812 removeUnwindEdge(TI->getParent());
3813 Changed = true;
3814 continue;
3815 }
3816
3817 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3818 E = CSI->handler_end();
3819 I != E; ++I) {
3820 if (*I == BB) {
3821 CSI->removeHandler(I);
3822 --I;
3823 --E;
3824 Changed = true;
3825 }
3826 }
3827 if (CSI->getNumHandlers() == 0) {
3828 BasicBlock *CatchSwitchBB = CSI->getParent();
3829 if (CSI->hasUnwindDest()) {
3830 // Redirect preds to the unwind dest
3831 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3832 } else {
3833 // Rewrite all preds to unwind to caller (or from invoke to call).
3834 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3835 for (BasicBlock *EHPred : EHPreds)
3836 removeUnwindEdge(EHPred);
3837 }
3838 // The catchswitch is no longer reachable.
3839 new UnreachableInst(CSI->getContext(), CSI);
3840 CSI->eraseFromParent();
3841 Changed = true;
3842 }
3843 } else if (isa<CleanupReturnInst>(TI)) {
3844 new UnreachableInst(TI->getContext(), TI);
3845 TI->eraseFromParent();
3846 Changed = true;
3847 }
3848 }
3849
3850 // If this block is now dead, remove it.
3851 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
3852 // We know there are no successors, so just nuke the block.
3853 BB->eraseFromParent();
3854 if (LoopHeaders)
3855 LoopHeaders->erase(BB);
3856 return true;
3857 }
3858
3859 return Changed;
3860 }
3861
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)3862 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3863 assert(Cases.size() >= 1);
3864
3865 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3866 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3867 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3868 return false;
3869 }
3870 return true;
3871 }
3872
3873 /// Turn a switch with two reachable destinations into an integer range
3874 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)3875 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3876 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3877
3878 bool HasDefault =
3879 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3880
3881 // Partition the cases into two sets with different destinations.
3882 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3883 BasicBlock *DestB = nullptr;
3884 SmallVector<ConstantInt *, 16> CasesA;
3885 SmallVector<ConstantInt *, 16> CasesB;
3886
3887 for (SwitchInst::CaseIt I : SI->cases()) {
3888 BasicBlock *Dest = I.getCaseSuccessor();
3889 if (!DestA)
3890 DestA = Dest;
3891 if (Dest == DestA) {
3892 CasesA.push_back(I.getCaseValue());
3893 continue;
3894 }
3895 if (!DestB)
3896 DestB = Dest;
3897 if (Dest == DestB) {
3898 CasesB.push_back(I.getCaseValue());
3899 continue;
3900 }
3901 return false; // More than two destinations.
3902 }
3903
3904 assert(DestA && DestB &&
3905 "Single-destination switch should have been folded.");
3906 assert(DestA != DestB);
3907 assert(DestB != SI->getDefaultDest());
3908 assert(!CasesB.empty() && "There must be non-default cases.");
3909 assert(!CasesA.empty() || HasDefault);
3910
3911 // Figure out if one of the sets of cases form a contiguous range.
3912 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3913 BasicBlock *ContiguousDest = nullptr;
3914 BasicBlock *OtherDest = nullptr;
3915 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3916 ContiguousCases = &CasesA;
3917 ContiguousDest = DestA;
3918 OtherDest = DestB;
3919 } else if (CasesAreContiguous(CasesB)) {
3920 ContiguousCases = &CasesB;
3921 ContiguousDest = DestB;
3922 OtherDest = DestA;
3923 } else
3924 return false;
3925
3926 // Start building the compare and branch.
3927
3928 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3929 Constant *NumCases =
3930 ConstantInt::get(Offset->getType(), ContiguousCases->size());
3931
3932 Value *Sub = SI->getCondition();
3933 if (!Offset->isNullValue())
3934 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3935
3936 Value *Cmp;
3937 // If NumCases overflowed, then all possible values jump to the successor.
3938 if (NumCases->isNullValue() && !ContiguousCases->empty())
3939 Cmp = ConstantInt::getTrue(SI->getContext());
3940 else
3941 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3942 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3943
3944 // Update weight for the newly-created conditional branch.
3945 if (HasBranchWeights(SI)) {
3946 SmallVector<uint64_t, 8> Weights;
3947 GetBranchWeights(SI, Weights);
3948 if (Weights.size() == 1 + SI->getNumCases()) {
3949 uint64_t TrueWeight = 0;
3950 uint64_t FalseWeight = 0;
3951 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3952 if (SI->getSuccessor(I) == ContiguousDest)
3953 TrueWeight += Weights[I];
3954 else
3955 FalseWeight += Weights[I];
3956 }
3957 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3958 TrueWeight /= 2;
3959 FalseWeight /= 2;
3960 }
3961 NewBI->setMetadata(LLVMContext::MD_prof,
3962 MDBuilder(SI->getContext())
3963 .createBranchWeights((uint32_t)TrueWeight,
3964 (uint32_t)FalseWeight));
3965 }
3966 }
3967
3968 // Prune obsolete incoming values off the successors' PHI nodes.
3969 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3970 unsigned PreviousEdges = ContiguousCases->size();
3971 if (ContiguousDest == SI->getDefaultDest())
3972 ++PreviousEdges;
3973 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3974 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3975 }
3976 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3977 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3978 if (OtherDest == SI->getDefaultDest())
3979 ++PreviousEdges;
3980 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3981 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3982 }
3983
3984 // Drop the switch.
3985 SI->eraseFromParent();
3986
3987 return true;
3988 }
3989
3990 /// Compute masked bits for the condition of a switch
3991 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI,AssumptionCache * AC,const DataLayout & DL)3992 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3993 const DataLayout &DL) {
3994 Value *Cond = SI->getCondition();
3995 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3996 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3997 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3998
3999 // We can also eliminate cases by determining that their values are outside of
4000 // the limited range of the condition based on how many significant (non-sign)
4001 // bits are in the condition value.
4002 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4003 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4004
4005 // Gather dead cases.
4006 SmallVector<ConstantInt *, 8> DeadCases;
4007 for (auto &Case : SI->cases()) {
4008 APInt CaseVal = Case.getCaseValue()->getValue();
4009 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4010 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4011 DeadCases.push_back(Case.getCaseValue());
4012 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4013 }
4014 }
4015
4016 // If we can prove that the cases must cover all possible values, the
4017 // default destination becomes dead and we can remove it. If we know some
4018 // of the bits in the value, we can use that to more precisely compute the
4019 // number of possible unique case values.
4020 bool HasDefault =
4021 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4022 const unsigned NumUnknownBits =
4023 Bits - (KnownZero.Or(KnownOne)).countPopulation();
4024 assert(NumUnknownBits <= Bits);
4025 if (HasDefault && DeadCases.empty() &&
4026 NumUnknownBits < 64 /* avoid overflow */ &&
4027 SI->getNumCases() == (1ULL << NumUnknownBits)) {
4028 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4029 BasicBlock *NewDefault =
4030 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4031 SI->setDefaultDest(&*NewDefault);
4032 SplitBlock(&*NewDefault, &NewDefault->front());
4033 auto *OldTI = NewDefault->getTerminator();
4034 new UnreachableInst(SI->getContext(), OldTI);
4035 EraseTerminatorInstAndDCECond(OldTI);
4036 return true;
4037 }
4038
4039 SmallVector<uint64_t, 8> Weights;
4040 bool HasWeight = HasBranchWeights(SI);
4041 if (HasWeight) {
4042 GetBranchWeights(SI, Weights);
4043 HasWeight = (Weights.size() == 1 + SI->getNumCases());
4044 }
4045
4046 // Remove dead cases from the switch.
4047 for (ConstantInt *DeadCase : DeadCases) {
4048 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4049 assert(Case != SI->case_default() &&
4050 "Case was not found. Probably mistake in DeadCases forming.");
4051 if (HasWeight) {
4052 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4053 Weights.pop_back();
4054 }
4055
4056 // Prune unused values from PHI nodes.
4057 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4058 SI->removeCase(Case);
4059 }
4060 if (HasWeight && Weights.size() >= 2) {
4061 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4062 SI->setMetadata(LLVMContext::MD_prof,
4063 MDBuilder(SI->getParent()->getContext())
4064 .createBranchWeights(MDWeights));
4065 }
4066
4067 return !DeadCases.empty();
4068 }
4069
4070 /// If BB would be eligible for simplification by
4071 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4072 /// by an unconditional branch), look at the phi node for BB in the successor
4073 /// block and see if the incoming value is equal to CaseValue. If so, return
4074 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)4075 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4076 BasicBlock *BB, int *PhiIndex) {
4077 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4078 return nullptr; // BB must be empty to be a candidate for simplification.
4079 if (!BB->getSinglePredecessor())
4080 return nullptr; // BB must be dominated by the switch.
4081
4082 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4083 if (!Branch || !Branch->isUnconditional())
4084 return nullptr; // Terminator must be unconditional branch.
4085
4086 BasicBlock *Succ = Branch->getSuccessor(0);
4087
4088 BasicBlock::iterator I = Succ->begin();
4089 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4090 int Idx = PHI->getBasicBlockIndex(BB);
4091 assert(Idx >= 0 && "PHI has no entry for predecessor?");
4092
4093 Value *InValue = PHI->getIncomingValue(Idx);
4094 if (InValue != CaseValue)
4095 continue;
4096
4097 *PhiIndex = Idx;
4098 return PHI;
4099 }
4100
4101 return nullptr;
4102 }
4103
4104 /// Try to forward the condition of a switch instruction to a phi node
4105 /// dominated by the switch, if that would mean that some of the destination
4106 /// blocks of the switch can be folded away.
4107 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)4108 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4109 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4110 ForwardingNodesMap ForwardingNodes;
4111
4112 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4113 ++I) {
4114 ConstantInt *CaseValue = I.getCaseValue();
4115 BasicBlock *CaseDest = I.getCaseSuccessor();
4116
4117 int PhiIndex;
4118 PHINode *PHI =
4119 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4120 if (!PHI)
4121 continue;
4122
4123 ForwardingNodes[PHI].push_back(PhiIndex);
4124 }
4125
4126 bool Changed = false;
4127
4128 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4129 E = ForwardingNodes.end();
4130 I != E; ++I) {
4131 PHINode *Phi = I->first;
4132 SmallVectorImpl<int> &Indexes = I->second;
4133
4134 if (Indexes.size() < 2)
4135 continue;
4136
4137 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4138 Phi->setIncomingValue(Indexes[I], SI->getCondition());
4139 Changed = true;
4140 }
4141
4142 return Changed;
4143 }
4144
4145 /// Return true if the backend will be able to handle
4146 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)4147 static bool ValidLookupTableConstant(Constant *C) {
4148 if (C->isThreadDependent())
4149 return false;
4150 if (C->isDLLImportDependent())
4151 return false;
4152
4153 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4154 return CE->isGEPWithNoNotionalOverIndexing();
4155
4156 return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4157 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4158 isa<UndefValue>(C);
4159 }
4160
4161 /// If V is a Constant, return it. Otherwise, try to look up
4162 /// its constant value in ConstantPool, returning 0 if it's not there.
4163 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)4164 LookupConstant(Value *V,
4165 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4166 if (Constant *C = dyn_cast<Constant>(V))
4167 return C;
4168 return ConstantPool.lookup(V);
4169 }
4170
4171 /// Try to fold instruction I into a constant. This works for
4172 /// simple instructions such as binary operations where both operands are
4173 /// constant or can be replaced by constants from the ConstantPool. Returns the
4174 /// resulting constant on success, 0 otherwise.
4175 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)4176 ConstantFold(Instruction *I, const DataLayout &DL,
4177 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4178 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4179 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4180 if (!A)
4181 return nullptr;
4182 if (A->isAllOnesValue())
4183 return LookupConstant(Select->getTrueValue(), ConstantPool);
4184 if (A->isNullValue())
4185 return LookupConstant(Select->getFalseValue(), ConstantPool);
4186 return nullptr;
4187 }
4188
4189 SmallVector<Constant *, 4> COps;
4190 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4191 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4192 COps.push_back(A);
4193 else
4194 return nullptr;
4195 }
4196
4197 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4198 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4199 COps[1], DL);
4200 }
4201
4202 return ConstantFoldInstOperands(I, COps, DL);
4203 }
4204
4205 /// Try to determine the resulting constant values in phi nodes
4206 /// at the common destination basic block, *CommonDest, for one of the case
4207 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4208 /// case), of a switch instruction SI.
4209 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL)4210 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4211 BasicBlock **CommonDest,
4212 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4213 const DataLayout &DL) {
4214 // The block from which we enter the common destination.
4215 BasicBlock *Pred = SI->getParent();
4216
4217 // If CaseDest is empty except for some side-effect free instructions through
4218 // which we can constant-propagate the CaseVal, continue to its successor.
4219 SmallDenseMap<Value *, Constant *> ConstantPool;
4220 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4221 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4222 ++I) {
4223 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4224 // If the terminator is a simple branch, continue to the next block.
4225 if (T->getNumSuccessors() != 1)
4226 return false;
4227 Pred = CaseDest;
4228 CaseDest = T->getSuccessor(0);
4229 } else if (isa<DbgInfoIntrinsic>(I)) {
4230 // Skip debug intrinsic.
4231 continue;
4232 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4233 // Instruction is side-effect free and constant.
4234
4235 // If the instruction has uses outside this block or a phi node slot for
4236 // the block, it is not safe to bypass the instruction since it would then
4237 // no longer dominate all its uses.
4238 for (auto &Use : I->uses()) {
4239 User *User = Use.getUser();
4240 if (Instruction *I = dyn_cast<Instruction>(User))
4241 if (I->getParent() == CaseDest)
4242 continue;
4243 if (PHINode *Phi = dyn_cast<PHINode>(User))
4244 if (Phi->getIncomingBlock(Use) == CaseDest)
4245 continue;
4246 return false;
4247 }
4248
4249 ConstantPool.insert(std::make_pair(&*I, C));
4250 } else {
4251 break;
4252 }
4253 }
4254
4255 // If we did not have a CommonDest before, use the current one.
4256 if (!*CommonDest)
4257 *CommonDest = CaseDest;
4258 // If the destination isn't the common one, abort.
4259 if (CaseDest != *CommonDest)
4260 return false;
4261
4262 // Get the values for this case from phi nodes in the destination block.
4263 BasicBlock::iterator I = (*CommonDest)->begin();
4264 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4265 int Idx = PHI->getBasicBlockIndex(Pred);
4266 if (Idx == -1)
4267 continue;
4268
4269 Constant *ConstVal =
4270 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4271 if (!ConstVal)
4272 return false;
4273
4274 // Be conservative about which kinds of constants we support.
4275 if (!ValidLookupTableConstant(ConstVal))
4276 return false;
4277
4278 Res.push_back(std::make_pair(PHI, ConstVal));
4279 }
4280
4281 return Res.size() > 0;
4282 }
4283
4284 // Helper function used to add CaseVal to the list of cases that generate
4285 // Result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)4286 static void MapCaseToResult(ConstantInt *CaseVal,
4287 SwitchCaseResultVectorTy &UniqueResults,
4288 Constant *Result) {
4289 for (auto &I : UniqueResults) {
4290 if (I.first == Result) {
4291 I.second.push_back(CaseVal);
4292 return;
4293 }
4294 }
4295 UniqueResults.push_back(
4296 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4297 }
4298
4299 // Helper function that initializes a map containing
4300 // results for the PHI node of the common destination block for a switch
4301 // instruction. Returns false if multiple PHI nodes have been found or if
4302 // there is not a common destination block for the switch.
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL)4303 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4304 BasicBlock *&CommonDest,
4305 SwitchCaseResultVectorTy &UniqueResults,
4306 Constant *&DefaultResult,
4307 const DataLayout &DL) {
4308 for (auto &I : SI->cases()) {
4309 ConstantInt *CaseVal = I.getCaseValue();
4310
4311 // Resulting value at phi nodes for this case value.
4312 SwitchCaseResultsTy Results;
4313 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4314 DL))
4315 return false;
4316
4317 // Only one value per case is permitted
4318 if (Results.size() > 1)
4319 return false;
4320 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4321
4322 // Check the PHI consistency.
4323 if (!PHI)
4324 PHI = Results[0].first;
4325 else if (PHI != Results[0].first)
4326 return false;
4327 }
4328 // Find the default result value.
4329 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4330 BasicBlock *DefaultDest = SI->getDefaultDest();
4331 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4332 DL);
4333 // If the default value is not found abort unless the default destination
4334 // is unreachable.
4335 DefaultResult =
4336 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4337 if ((!DefaultResult &&
4338 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4339 return false;
4340
4341 return true;
4342 }
4343
4344 // Helper function that checks if it is possible to transform a switch with only
4345 // two cases (or two cases + default) that produces a result into a select.
4346 // Example:
4347 // switch (a) {
4348 // case 10: %0 = icmp eq i32 %a, 10
4349 // return 10; %1 = select i1 %0, i32 10, i32 4
4350 // case 20: ----> %2 = icmp eq i32 %a, 20
4351 // return 2; %3 = select i1 %2, i32 2, i32 %1
4352 // default:
4353 // return 4;
4354 // }
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)4355 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4356 Constant *DefaultResult, Value *Condition,
4357 IRBuilder<> &Builder) {
4358 assert(ResultVector.size() == 2 &&
4359 "We should have exactly two unique results at this point");
4360 // If we are selecting between only two cases transform into a simple
4361 // select or a two-way select if default is possible.
4362 if (ResultVector[0].second.size() == 1 &&
4363 ResultVector[1].second.size() == 1) {
4364 ConstantInt *const FirstCase = ResultVector[0].second[0];
4365 ConstantInt *const SecondCase = ResultVector[1].second[0];
4366
4367 bool DefaultCanTrigger = DefaultResult;
4368 Value *SelectValue = ResultVector[1].first;
4369 if (DefaultCanTrigger) {
4370 Value *const ValueCompare =
4371 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4372 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4373 DefaultResult, "switch.select");
4374 }
4375 Value *const ValueCompare =
4376 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4377 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4378 SelectValue, "switch.select");
4379 }
4380
4381 return nullptr;
4382 }
4383
4384 // Helper function to cleanup a switch instruction that has been converted into
4385 // a select, fixing up PHI nodes and basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder)4386 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4387 Value *SelectValue,
4388 IRBuilder<> &Builder) {
4389 BasicBlock *SelectBB = SI->getParent();
4390 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4391 PHI->removeIncomingValue(SelectBB);
4392 PHI->addIncoming(SelectValue, SelectBB);
4393
4394 Builder.CreateBr(PHI->getParent());
4395
4396 // Remove the switch.
4397 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4398 BasicBlock *Succ = SI->getSuccessor(i);
4399
4400 if (Succ == PHI->getParent())
4401 continue;
4402 Succ->removePredecessor(SelectBB);
4403 }
4404 SI->eraseFromParent();
4405 }
4406
4407 /// If the switch is only used to initialize one or more
4408 /// phi nodes in a common successor block with only two different
4409 /// constant values, replace the switch with select.
SwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,AssumptionCache * AC,const DataLayout & DL)4410 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4411 AssumptionCache *AC, const DataLayout &DL) {
4412 Value *const Cond = SI->getCondition();
4413 PHINode *PHI = nullptr;
4414 BasicBlock *CommonDest = nullptr;
4415 Constant *DefaultResult;
4416 SwitchCaseResultVectorTy UniqueResults;
4417 // Collect all the cases that will deliver the same value from the switch.
4418 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4419 DL))
4420 return false;
4421 // Selects choose between maximum two values.
4422 if (UniqueResults.size() != 2)
4423 return false;
4424 assert(PHI != nullptr && "PHI for value select not found");
4425
4426 Builder.SetInsertPoint(SI);
4427 Value *SelectValue =
4428 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4429 if (SelectValue) {
4430 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4431 return true;
4432 }
4433 // The switch couldn't be converted into a select.
4434 return false;
4435 }
4436
4437 namespace {
4438 /// This class represents a lookup table that can be used to replace a switch.
4439 class SwitchLookupTable {
4440 public:
4441 /// Create a lookup table to use as a switch replacement with the contents
4442 /// of Values, using DefaultValue to fill any holes in the table.
4443 SwitchLookupTable(
4444 Module &M, uint64_t TableSize, ConstantInt *Offset,
4445 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4446 Constant *DefaultValue, const DataLayout &DL);
4447
4448 /// Build instructions with Builder to retrieve the value at
4449 /// the position given by Index in the lookup table.
4450 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4451
4452 /// Return true if a table with TableSize elements of
4453 /// type ElementType would fit in a target-legal register.
4454 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4455 Type *ElementType);
4456
4457 private:
4458 // Depending on the contents of the table, it can be represented in
4459 // different ways.
4460 enum {
4461 // For tables where each element contains the same value, we just have to
4462 // store that single value and return it for each lookup.
4463 SingleValueKind,
4464
4465 // For tables where there is a linear relationship between table index
4466 // and values. We calculate the result with a simple multiplication
4467 // and addition instead of a table lookup.
4468 LinearMapKind,
4469
4470 // For small tables with integer elements, we can pack them into a bitmap
4471 // that fits into a target-legal register. Values are retrieved by
4472 // shift and mask operations.
4473 BitMapKind,
4474
4475 // The table is stored as an array of values. Values are retrieved by load
4476 // instructions from the table.
4477 ArrayKind
4478 } Kind;
4479
4480 // For SingleValueKind, this is the single value.
4481 Constant *SingleValue;
4482
4483 // For BitMapKind, this is the bitmap.
4484 ConstantInt *BitMap;
4485 IntegerType *BitMapElementTy;
4486
4487 // For LinearMapKind, these are the constants used to derive the value.
4488 ConstantInt *LinearOffset;
4489 ConstantInt *LinearMultiplier;
4490
4491 // For ArrayKind, this is the array.
4492 GlobalVariable *Array;
4493 };
4494 }
4495
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL)4496 SwitchLookupTable::SwitchLookupTable(
4497 Module &M, uint64_t TableSize, ConstantInt *Offset,
4498 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4499 Constant *DefaultValue, const DataLayout &DL)
4500 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4501 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4502 assert(Values.size() && "Can't build lookup table without values!");
4503 assert(TableSize >= Values.size() && "Can't fit values in table!");
4504
4505 // If all values in the table are equal, this is that value.
4506 SingleValue = Values.begin()->second;
4507
4508 Type *ValueType = Values.begin()->second->getType();
4509
4510 // Build up the table contents.
4511 SmallVector<Constant *, 64> TableContents(TableSize);
4512 for (size_t I = 0, E = Values.size(); I != E; ++I) {
4513 ConstantInt *CaseVal = Values[I].first;
4514 Constant *CaseRes = Values[I].second;
4515 assert(CaseRes->getType() == ValueType);
4516
4517 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4518 TableContents[Idx] = CaseRes;
4519
4520 if (CaseRes != SingleValue)
4521 SingleValue = nullptr;
4522 }
4523
4524 // Fill in any holes in the table with the default result.
4525 if (Values.size() < TableSize) {
4526 assert(DefaultValue &&
4527 "Need a default value to fill the lookup table holes.");
4528 assert(DefaultValue->getType() == ValueType);
4529 for (uint64_t I = 0; I < TableSize; ++I) {
4530 if (!TableContents[I])
4531 TableContents[I] = DefaultValue;
4532 }
4533
4534 if (DefaultValue != SingleValue)
4535 SingleValue = nullptr;
4536 }
4537
4538 // If each element in the table contains the same value, we only need to store
4539 // that single value.
4540 if (SingleValue) {
4541 Kind = SingleValueKind;
4542 return;
4543 }
4544
4545 // Check if we can derive the value with a linear transformation from the
4546 // table index.
4547 if (isa<IntegerType>(ValueType)) {
4548 bool LinearMappingPossible = true;
4549 APInt PrevVal;
4550 APInt DistToPrev;
4551 assert(TableSize >= 2 && "Should be a SingleValue table.");
4552 // Check if there is the same distance between two consecutive values.
4553 for (uint64_t I = 0; I < TableSize; ++I) {
4554 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4555 if (!ConstVal) {
4556 // This is an undef. We could deal with it, but undefs in lookup tables
4557 // are very seldom. It's probably not worth the additional complexity.
4558 LinearMappingPossible = false;
4559 break;
4560 }
4561 APInt Val = ConstVal->getValue();
4562 if (I != 0) {
4563 APInt Dist = Val - PrevVal;
4564 if (I == 1) {
4565 DistToPrev = Dist;
4566 } else if (Dist != DistToPrev) {
4567 LinearMappingPossible = false;
4568 break;
4569 }
4570 }
4571 PrevVal = Val;
4572 }
4573 if (LinearMappingPossible) {
4574 LinearOffset = cast<ConstantInt>(TableContents[0]);
4575 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4576 Kind = LinearMapKind;
4577 ++NumLinearMaps;
4578 return;
4579 }
4580 }
4581
4582 // If the type is integer and the table fits in a register, build a bitmap.
4583 if (WouldFitInRegister(DL, TableSize, ValueType)) {
4584 IntegerType *IT = cast<IntegerType>(ValueType);
4585 APInt TableInt(TableSize * IT->getBitWidth(), 0);
4586 for (uint64_t I = TableSize; I > 0; --I) {
4587 TableInt <<= IT->getBitWidth();
4588 // Insert values into the bitmap. Undef values are set to zero.
4589 if (!isa<UndefValue>(TableContents[I - 1])) {
4590 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4591 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4592 }
4593 }
4594 BitMap = ConstantInt::get(M.getContext(), TableInt);
4595 BitMapElementTy = IT;
4596 Kind = BitMapKind;
4597 ++NumBitMaps;
4598 return;
4599 }
4600
4601 // Store the table in an array.
4602 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4603 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4604
4605 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4606 GlobalVariable::PrivateLinkage, Initializer,
4607 "switch.table");
4608 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4609 Kind = ArrayKind;
4610 }
4611
BuildLookup(Value * Index,IRBuilder<> & Builder)4612 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4613 switch (Kind) {
4614 case SingleValueKind:
4615 return SingleValue;
4616 case LinearMapKind: {
4617 // Derive the result value from the input value.
4618 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4619 false, "switch.idx.cast");
4620 if (!LinearMultiplier->isOne())
4621 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4622 if (!LinearOffset->isZero())
4623 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4624 return Result;
4625 }
4626 case BitMapKind: {
4627 // Type of the bitmap (e.g. i59).
4628 IntegerType *MapTy = BitMap->getType();
4629
4630 // Cast Index to the same type as the bitmap.
4631 // Note: The Index is <= the number of elements in the table, so
4632 // truncating it to the width of the bitmask is safe.
4633 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4634
4635 // Multiply the shift amount by the element width.
4636 ShiftAmt = Builder.CreateMul(
4637 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4638 "switch.shiftamt");
4639
4640 // Shift down.
4641 Value *DownShifted =
4642 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4643 // Mask off.
4644 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4645 }
4646 case ArrayKind: {
4647 // Make sure the table index will not overflow when treated as signed.
4648 IntegerType *IT = cast<IntegerType>(Index->getType());
4649 uint64_t TableSize =
4650 Array->getInitializer()->getType()->getArrayNumElements();
4651 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4652 Index = Builder.CreateZExt(
4653 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4654 "switch.tableidx.zext");
4655
4656 Value *GEPIndices[] = {Builder.getInt32(0), Index};
4657 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4658 GEPIndices, "switch.gep");
4659 return Builder.CreateLoad(GEP, "switch.load");
4660 }
4661 }
4662 llvm_unreachable("Unknown lookup table kind!");
4663 }
4664
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)4665 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4666 uint64_t TableSize,
4667 Type *ElementType) {
4668 auto *IT = dyn_cast<IntegerType>(ElementType);
4669 if (!IT)
4670 return false;
4671 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4672 // are <= 15, we could try to narrow the type.
4673
4674 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4675 if (TableSize >= UINT_MAX / IT->getBitWidth())
4676 return false;
4677 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4678 }
4679
4680 /// Determine whether a lookup table should be built for this switch, based on
4681 /// the number of cases, size of the table, and the types of the results.
4682 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)4683 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4684 const TargetTransformInfo &TTI, const DataLayout &DL,
4685 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4686 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4687 return false; // TableSize overflowed, or mul below might overflow.
4688
4689 bool AllTablesFitInRegister = true;
4690 bool HasIllegalType = false;
4691 for (const auto &I : ResultTypes) {
4692 Type *Ty = I.second;
4693
4694 // Saturate this flag to true.
4695 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4696
4697 // Saturate this flag to false.
4698 AllTablesFitInRegister =
4699 AllTablesFitInRegister &&
4700 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4701
4702 // If both flags saturate, we're done. NOTE: This *only* works with
4703 // saturating flags, and all flags have to saturate first due to the
4704 // non-deterministic behavior of iterating over a dense map.
4705 if (HasIllegalType && !AllTablesFitInRegister)
4706 break;
4707 }
4708
4709 // If each table would fit in a register, we should build it anyway.
4710 if (AllTablesFitInRegister)
4711 return true;
4712
4713 // Don't build a table that doesn't fit in-register if it has illegal types.
4714 if (HasIllegalType)
4715 return false;
4716
4717 // The table density should be at least 40%. This is the same criterion as for
4718 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4719 // FIXME: Find the best cut-off.
4720 return SI->getNumCases() * 10 >= TableSize * 4;
4721 }
4722
4723 /// Try to reuse the switch table index compare. Following pattern:
4724 /// \code
4725 /// if (idx < tablesize)
4726 /// r = table[idx]; // table does not contain default_value
4727 /// else
4728 /// r = default_value;
4729 /// if (r != default_value)
4730 /// ...
4731 /// \endcode
4732 /// Is optimized to:
4733 /// \code
4734 /// cond = idx < tablesize;
4735 /// if (cond)
4736 /// r = table[idx];
4737 /// else
4738 /// r = default_value;
4739 /// if (cond)
4740 /// ...
4741 /// \endcode
4742 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)4743 static void reuseTableCompare(
4744 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
4745 Constant *DefaultValue,
4746 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
4747
4748 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4749 if (!CmpInst)
4750 return;
4751
4752 // We require that the compare is in the same block as the phi so that jump
4753 // threading can do its work afterwards.
4754 if (CmpInst->getParent() != PhiBlock)
4755 return;
4756
4757 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4758 if (!CmpOp1)
4759 return;
4760
4761 Value *RangeCmp = RangeCheckBranch->getCondition();
4762 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4763 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4764
4765 // Check if the compare with the default value is constant true or false.
4766 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4767 DefaultValue, CmpOp1, true);
4768 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4769 return;
4770
4771 // Check if the compare with the case values is distinct from the default
4772 // compare result.
4773 for (auto ValuePair : Values) {
4774 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4775 ValuePair.second, CmpOp1, true);
4776 if (!CaseConst || CaseConst == DefaultConst)
4777 return;
4778 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4779 "Expect true or false as compare result.");
4780 }
4781
4782 // Check if the branch instruction dominates the phi node. It's a simple
4783 // dominance check, but sufficient for our needs.
4784 // Although this check is invariant in the calling loops, it's better to do it
4785 // at this late stage. Practically we do it at most once for a switch.
4786 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4787 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4788 BasicBlock *Pred = *PI;
4789 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4790 return;
4791 }
4792
4793 if (DefaultConst == FalseConst) {
4794 // The compare yields the same result. We can replace it.
4795 CmpInst->replaceAllUsesWith(RangeCmp);
4796 ++NumTableCmpReuses;
4797 } else {
4798 // The compare yields the same result, just inverted. We can replace it.
4799 Value *InvertedTableCmp = BinaryOperator::CreateXor(
4800 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4801 RangeCheckBranch);
4802 CmpInst->replaceAllUsesWith(InvertedTableCmp);
4803 ++NumTableCmpReuses;
4804 }
4805 }
4806
4807 /// If the switch is only used to initialize one or more phi nodes in a common
4808 /// successor block with different constant values, replace the switch with
4809 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)4810 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4811 const DataLayout &DL,
4812 const TargetTransformInfo &TTI) {
4813 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4814
4815 // Only build lookup table when we have a target that supports it.
4816 if (!TTI.shouldBuildLookupTables())
4817 return false;
4818
4819 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4820 // split off a dense part and build a lookup table for that.
4821
4822 // FIXME: This creates arrays of GEPs to constant strings, which means each
4823 // GEP needs a runtime relocation in PIC code. We should just build one big
4824 // string and lookup indices into that.
4825
4826 // Ignore switches with less than three cases. Lookup tables will not make
4827 // them
4828 // faster, so we don't analyze them.
4829 if (SI->getNumCases() < 3)
4830 return false;
4831
4832 // Figure out the corresponding result for each case value and phi node in the
4833 // common destination, as well as the min and max case values.
4834 assert(SI->case_begin() != SI->case_end());
4835 SwitchInst::CaseIt CI = SI->case_begin();
4836 ConstantInt *MinCaseVal = CI.getCaseValue();
4837 ConstantInt *MaxCaseVal = CI.getCaseValue();
4838
4839 BasicBlock *CommonDest = nullptr;
4840 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
4841 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
4842 SmallDenseMap<PHINode *, Constant *> DefaultResults;
4843 SmallDenseMap<PHINode *, Type *> ResultTypes;
4844 SmallVector<PHINode *, 4> PHIs;
4845
4846 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4847 ConstantInt *CaseVal = CI.getCaseValue();
4848 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4849 MinCaseVal = CaseVal;
4850 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4851 MaxCaseVal = CaseVal;
4852
4853 // Resulting value at phi nodes for this case value.
4854 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
4855 ResultsTy Results;
4856 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4857 Results, DL))
4858 return false;
4859
4860 // Append the result from this case to the list for each phi.
4861 for (const auto &I : Results) {
4862 PHINode *PHI = I.first;
4863 Constant *Value = I.second;
4864 if (!ResultLists.count(PHI))
4865 PHIs.push_back(PHI);
4866 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4867 }
4868 }
4869
4870 // Keep track of the result types.
4871 for (PHINode *PHI : PHIs) {
4872 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4873 }
4874
4875 uint64_t NumResults = ResultLists[PHIs[0]].size();
4876 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4877 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4878 bool TableHasHoles = (NumResults < TableSize);
4879
4880 // If the table has holes, we need a constant result for the default case
4881 // or a bitmask that fits in a register.
4882 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
4883 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4884 &CommonDest, DefaultResultsList, DL);
4885
4886 bool NeedMask = (TableHasHoles && !HasDefaultResults);
4887 if (NeedMask) {
4888 // As an extra penalty for the validity test we require more cases.
4889 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4890 return false;
4891 if (!DL.fitsInLegalInteger(TableSize))
4892 return false;
4893 }
4894
4895 for (const auto &I : DefaultResultsList) {
4896 PHINode *PHI = I.first;
4897 Constant *Result = I.second;
4898 DefaultResults[PHI] = Result;
4899 }
4900
4901 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4902 return false;
4903
4904 // Create the BB that does the lookups.
4905 Module &Mod = *CommonDest->getParent()->getParent();
4906 BasicBlock *LookupBB = BasicBlock::Create(
4907 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
4908
4909 // Compute the table index value.
4910 Builder.SetInsertPoint(SI);
4911 Value *TableIndex =
4912 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
4913
4914 // Compute the maximum table size representable by the integer type we are
4915 // switching upon.
4916 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4917 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4918 assert(MaxTableSize >= TableSize &&
4919 "It is impossible for a switch to have more entries than the max "
4920 "representable value of its input integer type's size.");
4921
4922 // If the default destination is unreachable, or if the lookup table covers
4923 // all values of the conditional variable, branch directly to the lookup table
4924 // BB. Otherwise, check that the condition is within the case range.
4925 const bool DefaultIsReachable =
4926 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4927 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4928 BranchInst *RangeCheckBranch = nullptr;
4929
4930 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4931 Builder.CreateBr(LookupBB);
4932 // Note: We call removeProdecessor later since we need to be able to get the
4933 // PHI value for the default case in case we're using a bit mask.
4934 } else {
4935 Value *Cmp = Builder.CreateICmpULT(
4936 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
4937 RangeCheckBranch =
4938 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4939 }
4940
4941 // Populate the BB that does the lookups.
4942 Builder.SetInsertPoint(LookupBB);
4943
4944 if (NeedMask) {
4945 // Before doing the lookup we do the hole check.
4946 // The LookupBB is therefore re-purposed to do the hole check
4947 // and we create a new LookupBB.
4948 BasicBlock *MaskBB = LookupBB;
4949 MaskBB->setName("switch.hole_check");
4950 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
4951 CommonDest->getParent(), CommonDest);
4952
4953 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4954 // unnecessary illegal types.
4955 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4956 APInt MaskInt(TableSizePowOf2, 0);
4957 APInt One(TableSizePowOf2, 1);
4958 // Build bitmask; fill in a 1 bit for every case.
4959 const ResultListTy &ResultList = ResultLists[PHIs[0]];
4960 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4961 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
4962 .getLimitedValue();
4963 MaskInt |= One << Idx;
4964 }
4965 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4966
4967 // Get the TableIndex'th bit of the bitmask.
4968 // If this bit is 0 (meaning hole) jump to the default destination,
4969 // else continue with table lookup.
4970 IntegerType *MapTy = TableMask->getType();
4971 Value *MaskIndex =
4972 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
4973 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
4974 Value *LoBit = Builder.CreateTrunc(
4975 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
4976 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4977
4978 Builder.SetInsertPoint(LookupBB);
4979 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4980 }
4981
4982 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4983 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4984 // do not delete PHINodes here.
4985 SI->getDefaultDest()->removePredecessor(SI->getParent(),
4986 /*DontDeleteUselessPHIs=*/true);
4987 }
4988
4989 bool ReturnedEarly = false;
4990 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4991 PHINode *PHI = PHIs[I];
4992 const ResultListTy &ResultList = ResultLists[PHI];
4993
4994 // If using a bitmask, use any value to fill the lookup table holes.
4995 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4996 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4997
4998 Value *Result = Table.BuildLookup(TableIndex, Builder);
4999
5000 // If the result is used to return immediately from the function, we want to
5001 // do that right here.
5002 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5003 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5004 Builder.CreateRet(Result);
5005 ReturnedEarly = true;
5006 break;
5007 }
5008
5009 // Do a small peephole optimization: re-use the switch table compare if
5010 // possible.
5011 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5012 BasicBlock *PhiBlock = PHI->getParent();
5013 // Search for compare instructions which use the phi.
5014 for (auto *User : PHI->users()) {
5015 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5016 }
5017 }
5018
5019 PHI->addIncoming(Result, LookupBB);
5020 }
5021
5022 if (!ReturnedEarly)
5023 Builder.CreateBr(CommonDest);
5024
5025 // Remove the switch.
5026 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5027 BasicBlock *Succ = SI->getSuccessor(i);
5028
5029 if (Succ == SI->getDefaultDest())
5030 continue;
5031 Succ->removePredecessor(SI->getParent());
5032 }
5033 SI->eraseFromParent();
5034
5035 ++NumLookupTables;
5036 if (NeedMask)
5037 ++NumLookupTablesHoles;
5038 return true;
5039 }
5040
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)5041 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5042 BasicBlock *BB = SI->getParent();
5043
5044 if (isValueEqualityComparison(SI)) {
5045 // If we only have one predecessor, and if it is a branch on this value,
5046 // see if that predecessor totally determines the outcome of this switch.
5047 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5048 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5049 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5050
5051 Value *Cond = SI->getCondition();
5052 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5053 if (SimplifySwitchOnSelect(SI, Select))
5054 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5055
5056 // If the block only contains the switch, see if we can fold the block
5057 // away into any preds.
5058 BasicBlock::iterator BBI = BB->begin();
5059 // Ignore dbg intrinsics.
5060 while (isa<DbgInfoIntrinsic>(BBI))
5061 ++BBI;
5062 if (SI == &*BBI)
5063 if (FoldValueComparisonIntoPredecessors(SI, Builder))
5064 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5065 }
5066
5067 // Try to transform the switch into an icmp and a branch.
5068 if (TurnSwitchRangeIntoICmp(SI, Builder))
5069 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5070
5071 // Remove unreachable cases.
5072 if (EliminateDeadSwitchCases(SI, AC, DL))
5073 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5074
5075 if (SwitchToSelect(SI, Builder, AC, DL))
5076 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5077
5078 if (ForwardSwitchConditionToPHI(SI))
5079 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5080
5081 if (SwitchToLookupTable(SI, Builder, DL, TTI))
5082 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5083
5084 return false;
5085 }
5086
SimplifyIndirectBr(IndirectBrInst * IBI)5087 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5088 BasicBlock *BB = IBI->getParent();
5089 bool Changed = false;
5090
5091 // Eliminate redundant destinations.
5092 SmallPtrSet<Value *, 8> Succs;
5093 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5094 BasicBlock *Dest = IBI->getDestination(i);
5095 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5096 Dest->removePredecessor(BB);
5097 IBI->removeDestination(i);
5098 --i;
5099 --e;
5100 Changed = true;
5101 }
5102 }
5103
5104 if (IBI->getNumDestinations() == 0) {
5105 // If the indirectbr has no successors, change it to unreachable.
5106 new UnreachableInst(IBI->getContext(), IBI);
5107 EraseTerminatorInstAndDCECond(IBI);
5108 return true;
5109 }
5110
5111 if (IBI->getNumDestinations() == 1) {
5112 // If the indirectbr has one successor, change it to a direct branch.
5113 BranchInst::Create(IBI->getDestination(0), IBI);
5114 EraseTerminatorInstAndDCECond(IBI);
5115 return true;
5116 }
5117
5118 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5119 if (SimplifyIndirectBrOnSelect(IBI, SI))
5120 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5121 }
5122 return Changed;
5123 }
5124
5125 /// Given an block with only a single landing pad and a unconditional branch
5126 /// try to find another basic block which this one can be merged with. This
5127 /// handles cases where we have multiple invokes with unique landing pads, but
5128 /// a shared handler.
5129 ///
5130 /// We specifically choose to not worry about merging non-empty blocks
5131 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5132 /// practice, the optimizer produces empty landing pad blocks quite frequently
5133 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5134 /// sinking in this file)
5135 ///
5136 /// This is primarily a code size optimization. We need to avoid performing
5137 /// any transform which might inhibit optimization (such as our ability to
5138 /// specialize a particular handler via tail commoning). We do this by not
5139 /// merging any blocks which require us to introduce a phi. Since the same
5140 /// values are flowing through both blocks, we don't loose any ability to
5141 /// specialize. If anything, we make such specialization more likely.
5142 ///
5143 /// TODO - This transformation could remove entries from a phi in the target
5144 /// block when the inputs in the phi are the same for the two blocks being
5145 /// merged. In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB)5146 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5147 BasicBlock *BB) {
5148 auto Succ = BB->getUniqueSuccessor();
5149 assert(Succ);
5150 // If there's a phi in the successor block, we'd likely have to introduce
5151 // a phi into the merged landing pad block.
5152 if (isa<PHINode>(*Succ->begin()))
5153 return false;
5154
5155 for (BasicBlock *OtherPred : predecessors(Succ)) {
5156 if (BB == OtherPred)
5157 continue;
5158 BasicBlock::iterator I = OtherPred->begin();
5159 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5160 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5161 continue;
5162 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5163 }
5164 BranchInst *BI2 = dyn_cast<BranchInst>(I);
5165 if (!BI2 || !BI2->isIdenticalTo(BI))
5166 continue;
5167
5168 // We've found an identical block. Update our predecessors to take that
5169 // path instead and make ourselves dead.
5170 SmallSet<BasicBlock *, 16> Preds;
5171 Preds.insert(pred_begin(BB), pred_end(BB));
5172 for (BasicBlock *Pred : Preds) {
5173 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5174 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5175 "unexpected successor");
5176 II->setUnwindDest(OtherPred);
5177 }
5178
5179 // The debug info in OtherPred doesn't cover the merged control flow that
5180 // used to go through BB. We need to delete it or update it.
5181 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5182 Instruction &Inst = *I;
5183 I++;
5184 if (isa<DbgInfoIntrinsic>(Inst))
5185 Inst.eraseFromParent();
5186 }
5187
5188 SmallSet<BasicBlock *, 16> Succs;
5189 Succs.insert(succ_begin(BB), succ_end(BB));
5190 for (BasicBlock *Succ : Succs) {
5191 Succ->removePredecessor(BB);
5192 }
5193
5194 IRBuilder<> Builder(BI);
5195 Builder.CreateUnreachable();
5196 BI->eraseFromParent();
5197 return true;
5198 }
5199 return false;
5200 }
5201
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)5202 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5203 IRBuilder<> &Builder) {
5204 BasicBlock *BB = BI->getParent();
5205
5206 if (SinkCommon && SinkThenElseCodeToEnd(BI))
5207 return true;
5208
5209 // If the Terminator is the only non-phi instruction, simplify the block.
5210 // if LoopHeader is provided, check if the block is a loop header
5211 // (This is for early invocations before loop simplify and vectorization
5212 // to keep canonical loop forms for nested loops.
5213 // These blocks can be eliminated when the pass is invoked later
5214 // in the back-end.)
5215 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5216 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5217 (!LoopHeaders || !LoopHeaders->count(BB)) &&
5218 TryToSimplifyUncondBranchFromEmptyBlock(BB))
5219 return true;
5220
5221 // If the only instruction in the block is a seteq/setne comparison
5222 // against a constant, try to simplify the block.
5223 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5224 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5225 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5226 ;
5227 if (I->isTerminator() &&
5228 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5229 BonusInstThreshold, AC))
5230 return true;
5231 }
5232
5233 // See if we can merge an empty landing pad block with another which is
5234 // equivalent.
5235 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5236 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5237 }
5238 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5239 return true;
5240 }
5241
5242 // If this basic block is ONLY a compare and a branch, and if a predecessor
5243 // branches to us and our successor, fold the comparison into the
5244 // predecessor and use logical operations to update the incoming value
5245 // for PHI nodes in common successor.
5246 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5247 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5248 return false;
5249 }
5250
allPredecessorsComeFromSameSource(BasicBlock * BB)5251 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5252 BasicBlock *PredPred = nullptr;
5253 for (auto *P : predecessors(BB)) {
5254 BasicBlock *PPred = P->getSinglePredecessor();
5255 if (!PPred || (PredPred && PredPred != PPred))
5256 return nullptr;
5257 PredPred = PPred;
5258 }
5259 return PredPred;
5260 }
5261
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)5262 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5263 BasicBlock *BB = BI->getParent();
5264
5265 // Conditional branch
5266 if (isValueEqualityComparison(BI)) {
5267 // If we only have one predecessor, and if it is a branch on this value,
5268 // see if that predecessor totally determines the outcome of this
5269 // switch.
5270 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5271 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5272 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5273
5274 // This block must be empty, except for the setcond inst, if it exists.
5275 // Ignore dbg intrinsics.
5276 BasicBlock::iterator I = BB->begin();
5277 // Ignore dbg intrinsics.
5278 while (isa<DbgInfoIntrinsic>(I))
5279 ++I;
5280 if (&*I == BI) {
5281 if (FoldValueComparisonIntoPredecessors(BI, Builder))
5282 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5283 } else if (&*I == cast<Instruction>(BI->getCondition())) {
5284 ++I;
5285 // Ignore dbg intrinsics.
5286 while (isa<DbgInfoIntrinsic>(I))
5287 ++I;
5288 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5289 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5290 }
5291 }
5292
5293 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5294 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5295 return true;
5296
5297 // If this basic block has a single dominating predecessor block and the
5298 // dominating block's condition implies BI's condition, we know the direction
5299 // of the BI branch.
5300 if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5301 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5302 if (PBI && PBI->isConditional() &&
5303 PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5304 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5305 bool CondIsFalse = PBI->getSuccessor(1) == BB;
5306 Optional<bool> Implication = isImpliedCondition(
5307 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5308 if (Implication) {
5309 // Turn this into a branch on constant.
5310 auto *OldCond = BI->getCondition();
5311 ConstantInt *CI = *Implication
5312 ? ConstantInt::getTrue(BB->getContext())
5313 : ConstantInt::getFalse(BB->getContext());
5314 BI->setCondition(CI);
5315 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5316 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5317 }
5318 }
5319 }
5320
5321 // If this basic block is ONLY a compare and a branch, and if a predecessor
5322 // branches to us and one of our successors, fold the comparison into the
5323 // predecessor and use logical operations to pick the right destination.
5324 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5325 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5326
5327 // We have a conditional branch to two blocks that are only reachable
5328 // from BI. We know that the condbr dominates the two blocks, so see if
5329 // there is any identical code in the "then" and "else" blocks. If so, we
5330 // can hoist it up to the branching block.
5331 if (BI->getSuccessor(0)->getSinglePredecessor()) {
5332 if (BI->getSuccessor(1)->getSinglePredecessor()) {
5333 if (HoistThenElseCodeToIf(BI, TTI))
5334 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5335 } else {
5336 // If Successor #1 has multiple preds, we may be able to conditionally
5337 // execute Successor #0 if it branches to Successor #1.
5338 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5339 if (Succ0TI->getNumSuccessors() == 1 &&
5340 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5341 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5342 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5343 }
5344 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5345 // If Successor #0 has multiple preds, we may be able to conditionally
5346 // execute Successor #1 if it branches to Successor #0.
5347 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5348 if (Succ1TI->getNumSuccessors() == 1 &&
5349 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5350 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5351 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5352 }
5353
5354 // If this is a branch on a phi node in the current block, thread control
5355 // through this block if any PHI node entries are constants.
5356 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5357 if (PN->getParent() == BI->getParent())
5358 if (FoldCondBranchOnPHI(BI, DL))
5359 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5360
5361 // Scan predecessor blocks for conditional branches.
5362 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5363 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5364 if (PBI != BI && PBI->isConditional())
5365 if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5366 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5367
5368 // Look for diamond patterns.
5369 if (MergeCondStores)
5370 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5371 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5372 if (PBI != BI && PBI->isConditional())
5373 if (mergeConditionalStores(PBI, BI))
5374 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5375
5376 return false;
5377 }
5378
5379 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)5380 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5381 Constant *C = dyn_cast<Constant>(V);
5382 if (!C)
5383 return false;
5384
5385 if (I->use_empty())
5386 return false;
5387
5388 if (C->isNullValue() || isa<UndefValue>(C)) {
5389 // Only look at the first use, avoid hurting compile time with long uselists
5390 User *Use = *I->user_begin();
5391
5392 // Now make sure that there are no instructions in between that can alter
5393 // control flow (eg. calls)
5394 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5395 if (i == I->getParent()->end() || i->mayHaveSideEffects())
5396 return false;
5397
5398 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5399 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5400 if (GEP->getPointerOperand() == I)
5401 return passingValueIsAlwaysUndefined(V, GEP);
5402
5403 // Look through bitcasts.
5404 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5405 return passingValueIsAlwaysUndefined(V, BC);
5406
5407 // Load from null is undefined.
5408 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5409 if (!LI->isVolatile())
5410 return LI->getPointerAddressSpace() == 0;
5411
5412 // Store to null is undefined.
5413 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5414 if (!SI->isVolatile())
5415 return SI->getPointerAddressSpace() == 0 &&
5416 SI->getPointerOperand() == I;
5417
5418 // A call to null is undefined.
5419 if (auto CS = CallSite(Use))
5420 return CS.getCalledValue() == I;
5421 }
5422 return false;
5423 }
5424
5425 /// If BB has an incoming value that will always trigger undefined behavior
5426 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)5427 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5428 for (BasicBlock::iterator i = BB->begin();
5429 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5430 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5431 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5432 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5433 IRBuilder<> Builder(T);
5434 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5435 BB->removePredecessor(PHI->getIncomingBlock(i));
5436 // Turn uncoditional branches into unreachables and remove the dead
5437 // destination from conditional branches.
5438 if (BI->isUnconditional())
5439 Builder.CreateUnreachable();
5440 else
5441 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5442 : BI->getSuccessor(0));
5443 BI->eraseFromParent();
5444 return true;
5445 }
5446 // TODO: SwitchInst.
5447 }
5448
5449 return false;
5450 }
5451
run(BasicBlock * BB)5452 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5453 bool Changed = false;
5454
5455 assert(BB && BB->getParent() && "Block not embedded in function!");
5456 assert(BB->getTerminator() && "Degenerate basic block encountered!");
5457
5458 // Remove basic blocks that have no predecessors (except the entry block)...
5459 // or that just have themself as a predecessor. These are unreachable.
5460 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5461 BB->getSinglePredecessor() == BB) {
5462 DEBUG(dbgs() << "Removing BB: \n" << *BB);
5463 DeleteDeadBlock(BB);
5464 return true;
5465 }
5466
5467 // Check to see if we can constant propagate this terminator instruction
5468 // away...
5469 Changed |= ConstantFoldTerminator(BB, true);
5470
5471 // Check for and eliminate duplicate PHI nodes in this block.
5472 Changed |= EliminateDuplicatePHINodes(BB);
5473
5474 // Check for and remove branches that will always cause undefined behavior.
5475 Changed |= removeUndefIntroducingPredecessor(BB);
5476
5477 // Merge basic blocks into their predecessor if there is only one distinct
5478 // pred, and if there is only one distinct successor of the predecessor, and
5479 // if there are no PHI nodes.
5480 //
5481 if (MergeBlockIntoPredecessor(BB))
5482 return true;
5483
5484 IRBuilder<> Builder(BB);
5485
5486 // If there is a trivial two-entry PHI node in this basic block, and we can
5487 // eliminate it, do so now.
5488 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5489 if (PN->getNumIncomingValues() == 2)
5490 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5491
5492 Builder.SetInsertPoint(BB->getTerminator());
5493 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5494 if (BI->isUnconditional()) {
5495 if (SimplifyUncondBranch(BI, Builder))
5496 return true;
5497 } else {
5498 if (SimplifyCondBranch(BI, Builder))
5499 return true;
5500 }
5501 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5502 if (SimplifyReturn(RI, Builder))
5503 return true;
5504 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5505 if (SimplifyResume(RI, Builder))
5506 return true;
5507 } else if (CleanupReturnInst *RI =
5508 dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5509 if (SimplifyCleanupReturn(RI))
5510 return true;
5511 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5512 if (SimplifySwitch(SI, Builder))
5513 return true;
5514 } else if (UnreachableInst *UI =
5515 dyn_cast<UnreachableInst>(BB->getTerminator())) {
5516 if (SimplifyUnreachable(UI))
5517 return true;
5518 } else if (IndirectBrInst *IBI =
5519 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5520 if (SimplifyIndirectBr(IBI))
5521 return true;
5522 }
5523
5524 return Changed;
5525 }
5526
5527 /// This function is used to do simplification of a CFG.
5528 /// For example, it adjusts branches to branches to eliminate the extra hop,
5529 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5530 /// of the CFG. It returns true if a modification was made.
5531 ///
SimplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC,SmallPtrSetImpl<BasicBlock * > * LoopHeaders)5532 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5533 unsigned BonusInstThreshold, AssumptionCache *AC,
5534 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5535 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5536 BonusInstThreshold, AC, LoopHeaders)
5537 .run(BB);
5538 }
5539