1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DAG Matcher optimizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DAGISelMatcher.h"
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/StringSet.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19 using namespace llvm;
20
21 #define DEBUG_TYPE "isel-opt"
22
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24 /// into single compound nodes like RecordChild.
ContractNodes(std::unique_ptr<Matcher> & MatcherPtr,const CodeGenDAGPatterns & CGP)25 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
26 const CodeGenDAGPatterns &CGP) {
27 // If we reached the end of the chain, we're done.
28 Matcher *N = MatcherPtr.get();
29 if (!N) return;
30
31 // If we have a scope node, walk down all of the children.
32 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
33 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
34 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
35 ContractNodes(Child, CGP);
36 Scope->resetChild(i, Child.release());
37 }
38 return;
39 }
40
41 // If we found a movechild node with a node that comes in a 'foochild' form,
42 // transform it.
43 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
44 Matcher *New = nullptr;
45 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
46 if (MC->getChildNo() < 8) // Only have RecordChild0...7
47 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48 RM->getResultNo());
49
50 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
51 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
52 CT->getResNo() == 0) // CheckChildType checks res #0
53 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
54
55 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
56 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
57 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
58
59 if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
60 if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
61 New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
62
63 if (New) {
64 // Insert the new node.
65 New->setNext(MatcherPtr.release());
66 MatcherPtr.reset(New);
67 // Remove the old one.
68 MC->setNext(MC->getNext()->takeNext());
69 return ContractNodes(MatcherPtr, CGP);
70 }
71 }
72
73 // Zap movechild -> moveparent.
74 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
75 if (MoveParentMatcher *MP =
76 dyn_cast<MoveParentMatcher>(MC->getNext())) {
77 MatcherPtr.reset(MP->takeNext());
78 return ContractNodes(MatcherPtr, CGP);
79 }
80
81 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
82 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
83 if (CompleteMatchMatcher *CM =
84 dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
85 // We can only use MorphNodeTo if the result values match up.
86 unsigned RootResultFirst = EN->getFirstResultSlot();
87 bool ResultsMatch = true;
88 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
89 if (CM->getResult(i) != RootResultFirst+i)
90 ResultsMatch = false;
91
92 // If the selected node defines a subset of the glue/chain results, we
93 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
94 // matched pattern has a chain but the root node doesn't.
95 const PatternToMatch &Pattern = CM->getPattern();
96
97 if (!EN->hasChain() &&
98 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
99 ResultsMatch = false;
100
101 // If the matched node has glue and the output root doesn't, we can't
102 // use MorphNodeTo.
103 //
104 // NOTE: Strictly speaking, we don't have to check for glue here
105 // because the code in the pattern generator doesn't handle it right. We
106 // do it anyway for thoroughness.
107 if (!EN->hasOutFlag() &&
108 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
109 ResultsMatch = false;
110
111
112 // If the root result node defines more results than the source root node
113 // *and* has a chain or glue input, then we can't match it because it
114 // would end up replacing the extra result with the chain/glue.
115 #if 0
116 if ((EN->hasGlue() || EN->hasChain()) &&
117 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
118 ResultMatch = false;
119 #endif
120
121 if (ResultsMatch) {
122 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
123 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
124 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
125 VTs, Operands,
126 EN->hasChain(), EN->hasInFlag(),
127 EN->hasOutFlag(),
128 EN->hasMemRefs(),
129 EN->getNumFixedArityOperands(),
130 Pattern));
131 return;
132 }
133
134 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
135 // variants.
136 }
137
138 ContractNodes(N->getNextPtr(), CGP);
139
140
141 // If we have a CheckType/CheckChildType/Record node followed by a
142 // CheckOpcode, invert the two nodes. We prefer to do structural checks
143 // before type checks, as this opens opportunities for factoring on targets
144 // like X86 where many operations are valid on multiple types.
145 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
146 isa<RecordMatcher>(N)) &&
147 isa<CheckOpcodeMatcher>(N->getNext())) {
148 // Unlink the two nodes from the list.
149 Matcher *CheckType = MatcherPtr.release();
150 Matcher *CheckOpcode = CheckType->takeNext();
151 Matcher *Tail = CheckOpcode->takeNext();
152
153 // Relink them.
154 MatcherPtr.reset(CheckOpcode);
155 CheckOpcode->setNext(CheckType);
156 CheckType->setNext(Tail);
157 return ContractNodes(MatcherPtr, CGP);
158 }
159 }
160
161 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
162 /// specified kind. Return null if we didn't find one otherwise return the
163 /// matcher.
FindNodeWithKind(Matcher * M,Matcher::KindTy Kind)164 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
165 for (; M; M = M->getNext())
166 if (M->getKind() == Kind)
167 return M;
168 return nullptr;
169 }
170
171
172 /// FactorNodes - Turn matches like this:
173 /// Scope
174 /// OPC_CheckType i32
175 /// ABC
176 /// OPC_CheckType i32
177 /// XYZ
178 /// into:
179 /// OPC_CheckType i32
180 /// Scope
181 /// ABC
182 /// XYZ
183 ///
FactorNodes(std::unique_ptr<Matcher> & MatcherPtr)184 static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
185 // If we reached the end of the chain, we're done.
186 Matcher *N = MatcherPtr.get();
187 if (!N) return;
188
189 // If this is not a push node, just scan for one.
190 ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
191 if (!Scope)
192 return FactorNodes(N->getNextPtr());
193
194 // Okay, pull together the children of the scope node into a vector so we can
195 // inspect it more easily.
196 SmallVector<Matcher*, 32> OptionsToMatch;
197
198 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
199 // Factor the subexpression.
200 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
201 FactorNodes(Child);
202
203 if (Matcher *N = Child.release())
204 OptionsToMatch.push_back(N);
205 }
206
207 SmallVector<Matcher*, 32> NewOptionsToMatch;
208
209 // Loop over options to match, merging neighboring patterns with identical
210 // starting nodes into a shared matcher.
211 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
212 // Find the set of matchers that start with this node.
213 Matcher *Optn = OptionsToMatch[OptionIdx++];
214
215 if (OptionIdx == e) {
216 NewOptionsToMatch.push_back(Optn);
217 continue;
218 }
219
220 // See if the next option starts with the same matcher. If the two
221 // neighbors *do* start with the same matcher, we can factor the matcher out
222 // of at least these two patterns. See what the maximal set we can merge
223 // together is.
224 SmallVector<Matcher*, 8> EqualMatchers;
225 EqualMatchers.push_back(Optn);
226
227 // Factor all of the known-equal matchers after this one into the same
228 // group.
229 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
230 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
231
232 // If we found a non-equal matcher, see if it is contradictory with the
233 // current node. If so, we know that the ordering relation between the
234 // current sets of nodes and this node don't matter. Look past it to see if
235 // we can merge anything else into this matching group.
236 unsigned Scan = OptionIdx;
237 while (1) {
238 // If we ran out of stuff to scan, we're done.
239 if (Scan == e) break;
240
241 Matcher *ScanMatcher = OptionsToMatch[Scan];
242
243 // If we found an entry that matches out matcher, merge it into the set to
244 // handle.
245 if (Optn->isEqual(ScanMatcher)) {
246 // If is equal after all, add the option to EqualMatchers and remove it
247 // from OptionsToMatch.
248 EqualMatchers.push_back(ScanMatcher);
249 OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
250 --e;
251 continue;
252 }
253
254 // If the option we're checking for contradicts the start of the list,
255 // skip over it.
256 if (Optn->isContradictory(ScanMatcher)) {
257 ++Scan;
258 continue;
259 }
260
261 // If we're scanning for a simple node, see if it occurs later in the
262 // sequence. If so, and if we can move it up, it might be contradictory
263 // or the same as what we're looking for. If so, reorder it.
264 if (Optn->isSimplePredicateOrRecordNode()) {
265 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
266 if (M2 && M2 != ScanMatcher &&
267 M2->canMoveBefore(ScanMatcher) &&
268 (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
269 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
270 M2->setNext(MatcherWithoutM2);
271 OptionsToMatch[Scan] = M2;
272 continue;
273 }
274 }
275
276 // Otherwise, we don't know how to handle this entry, we have to bail.
277 break;
278 }
279
280 if (Scan != e &&
281 // Don't print it's obvious nothing extra could be merged anyway.
282 Scan+1 != e) {
283 DEBUG(errs() << "Couldn't merge this:\n";
284 Optn->print(errs(), 4);
285 errs() << "into this:\n";
286 OptionsToMatch[Scan]->print(errs(), 4);
287 if (Scan+1 != e)
288 OptionsToMatch[Scan+1]->printOne(errs());
289 if (Scan+2 < e)
290 OptionsToMatch[Scan+2]->printOne(errs());
291 errs() << "\n");
292 }
293
294 // If we only found one option starting with this matcher, no factoring is
295 // possible.
296 if (EqualMatchers.size() == 1) {
297 NewOptionsToMatch.push_back(EqualMatchers[0]);
298 continue;
299 }
300
301 // Factor these checks by pulling the first node off each entry and
302 // discarding it. Take the first one off the first entry to reuse.
303 Matcher *Shared = Optn;
304 Optn = Optn->takeNext();
305 EqualMatchers[0] = Optn;
306
307 // Remove and delete the first node from the other matchers we're factoring.
308 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
309 Matcher *Tmp = EqualMatchers[i]->takeNext();
310 delete EqualMatchers[i];
311 EqualMatchers[i] = Tmp;
312 }
313
314 Shared->setNext(new ScopeMatcher(EqualMatchers));
315
316 // Recursively factor the newly created node.
317 FactorNodes(Shared->getNextPtr());
318
319 NewOptionsToMatch.push_back(Shared);
320 }
321
322 // If we're down to a single pattern to match, then we don't need this scope
323 // anymore.
324 if (NewOptionsToMatch.size() == 1) {
325 MatcherPtr.reset(NewOptionsToMatch[0]);
326 return;
327 }
328
329 if (NewOptionsToMatch.empty()) {
330 MatcherPtr.reset();
331 return;
332 }
333
334 // If our factoring failed (didn't achieve anything) see if we can simplify in
335 // other ways.
336
337 // Check to see if all of the leading entries are now opcode checks. If so,
338 // we can convert this Scope to be a OpcodeSwitch instead.
339 bool AllOpcodeChecks = true, AllTypeChecks = true;
340 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
341 // Check to see if this breaks a series of CheckOpcodeMatchers.
342 if (AllOpcodeChecks &&
343 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
344 #if 0
345 if (i > 3) {
346 errs() << "FAILING OPC #" << i << "\n";
347 NewOptionsToMatch[i]->dump();
348 }
349 #endif
350 AllOpcodeChecks = false;
351 }
352
353 // Check to see if this breaks a series of CheckTypeMatcher's.
354 if (AllTypeChecks) {
355 CheckTypeMatcher *CTM =
356 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
357 Matcher::CheckType));
358 if (!CTM ||
359 // iPTR checks could alias any other case without us knowing, don't
360 // bother with them.
361 CTM->getType() == MVT::iPTR ||
362 // SwitchType only works for result #0.
363 CTM->getResNo() != 0 ||
364 // If the CheckType isn't at the start of the list, see if we can move
365 // it there.
366 !CTM->canMoveBefore(NewOptionsToMatch[i])) {
367 #if 0
368 if (i > 3 && AllTypeChecks) {
369 errs() << "FAILING TYPE #" << i << "\n";
370 NewOptionsToMatch[i]->dump();
371 }
372 #endif
373 AllTypeChecks = false;
374 }
375 }
376 }
377
378 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
379 if (AllOpcodeChecks) {
380 StringSet<> Opcodes;
381 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
382 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
383 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
384 assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
385 "Duplicate opcodes not factored?");
386 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
387 delete COM;
388 }
389
390 MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
391 return;
392 }
393
394 // If all the options are CheckType's, we can form the SwitchType, woot.
395 if (AllTypeChecks) {
396 DenseMap<unsigned, unsigned> TypeEntry;
397 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
398 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
399 CheckTypeMatcher *CTM =
400 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
401 Matcher::CheckType));
402 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
403 MVT::SimpleValueType CTMTy = CTM->getType();
404 delete CTM;
405
406 unsigned &Entry = TypeEntry[CTMTy];
407 if (Entry != 0) {
408 // If we have unfactored duplicate types, then we should factor them.
409 Matcher *PrevMatcher = Cases[Entry-1].second;
410 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
411 SM->setNumChildren(SM->getNumChildren()+1);
412 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
413 continue;
414 }
415
416 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
417 std::unique_ptr<Matcher> Case(new ScopeMatcher(Entries));
418 FactorNodes(Case);
419 Cases[Entry-1].second = Case.release();
420 continue;
421 }
422
423 Entry = Cases.size()+1;
424 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
425 }
426
427 if (Cases.size() != 1) {
428 MatcherPtr.reset(new SwitchTypeMatcher(Cases));
429 } else {
430 // If we factored and ended up with one case, create it now.
431 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
432 MatcherPtr->setNext(Cases[0].second);
433 }
434 return;
435 }
436
437
438 // Reassemble the Scope node with the adjusted children.
439 Scope->setNumChildren(NewOptionsToMatch.size());
440 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
441 Scope->resetChild(i, NewOptionsToMatch[i]);
442 }
443
444 void
OptimizeMatcher(std::unique_ptr<Matcher> & MatcherPtr,const CodeGenDAGPatterns & CGP)445 llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
446 const CodeGenDAGPatterns &CGP) {
447 ContractNodes(MatcherPtr, CGP);
448 FactorNodes(MatcherPtr);
449 }
450