• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Karol Herbst <kherbst@redhat.com>
23  */
24 
25 #include "compiler/nir/nir.h"
26 
27 #include "util/u_debug.h"
28 
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_from_common.h"
31 #include "codegen/nv50_ir_lowering_helper.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "tgsi/tgsi_from_mesa.h"
34 
35 #if __cplusplus >= 201103L
36 #include <unordered_map>
37 #else
38 #include <tr1/unordered_map>
39 #endif
40 #include <cstring>
41 #include <list>
42 #include <vector>
43 
44 namespace {
45 
46 #if __cplusplus >= 201103L
47 using std::hash;
48 using std::unordered_map;
49 #else
50 using std::tr1::hash;
51 using std::tr1::unordered_map;
52 #endif
53 
54 using namespace nv50_ir;
55 
56 int
type_size(const struct glsl_type * type,bool bindless)57 type_size(const struct glsl_type *type, bool bindless)
58 {
59    return glsl_count_attribute_slots(type, false);
60 }
61 
62 static void
function_temp_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)63 function_temp_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
64 {
65    assert(glsl_type_is_vector_or_scalar(type));
66 
67    unsigned comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
68    unsigned length = glsl_get_vector_elements(type);
69 
70    *size = comp_size * length;
71    *align = 0x10;
72 }
73 
74 class Converter : public ConverterCommon
75 {
76 public:
77    Converter(Program *, nir_shader *, nv50_ir_prog_info *, nv50_ir_prog_info_out *);
78 
79    bool run();
80 private:
81    typedef std::vector<LValue*> LValues;
82    typedef unordered_map<unsigned, LValues> NirDefMap;
83    typedef unordered_map<unsigned, nir_load_const_instr*> ImmediateMap;
84    typedef unordered_map<unsigned, BasicBlock*> NirBlockMap;
85 
86    CacheMode convert(enum gl_access_qualifier);
87    TexTarget convert(glsl_sampler_dim, bool isArray, bool isShadow);
88    LValues& convert(nir_alu_dest *);
89    BasicBlock* convert(nir_block *);
90    LValues& convert(nir_dest *);
91    SVSemantic convert(nir_intrinsic_op);
92    Value* convert(nir_load_const_instr*, uint8_t);
93    LValues& convert(nir_register *);
94    LValues& convert(nir_ssa_def *);
95 
96    Value* getSrc(nir_alu_src *, uint8_t component = 0);
97    Value* getSrc(nir_register *, uint8_t);
98    Value* getSrc(nir_src *, uint8_t, bool indirect = false);
99    Value* getSrc(nir_ssa_def *, uint8_t);
100 
101    // returned value is the constant part of the given source (either the
102    // nir_src or the selected source component of an intrinsic). Even though
103    // this is mostly an optimization to be able to skip indirects in a few
104    // cases, sometimes we require immediate values or set some fileds on
105    // instructions (e.g. tex) in order for codegen to consume those.
106    // If the found value has not a constant part, the Value gets returned
107    // through the Value parameter.
108    uint32_t getIndirect(nir_src *, uint8_t, Value *&);
109    // isScalar indicates that the addressing is scalar, vec4 addressing is
110    // assumed otherwise
111    uint32_t getIndirect(nir_intrinsic_instr *, uint8_t s, uint8_t c, Value *&,
112                         bool isScalar = false);
113 
114    uint32_t getSlotAddress(nir_intrinsic_instr *, uint8_t idx, uint8_t slot);
115 
116    void setInterpolate(nv50_ir_varying *,
117                        uint8_t,
118                        bool centroid,
119                        unsigned semantics);
120 
121    Instruction *loadFrom(DataFile, uint8_t, DataType, Value *def, uint32_t base,
122                          uint8_t c, Value *indirect0 = NULL,
123                          Value *indirect1 = NULL, bool patch = false);
124    void storeTo(nir_intrinsic_instr *, DataFile, operation, DataType,
125                 Value *src, uint8_t idx, uint8_t c, Value *indirect0 = NULL,
126                 Value *indirect1 = NULL);
127 
128    bool isFloatType(nir_alu_type);
129    bool isSignedType(nir_alu_type);
130    bool isResultFloat(nir_op);
131    bool isResultSigned(nir_op);
132 
133    DataType getDType(nir_alu_instr *);
134    DataType getDType(nir_intrinsic_instr *);
135    DataType getDType(nir_intrinsic_instr *, bool isSigned);
136    DataType getDType(nir_op, uint8_t);
137 
138    DataFile getFile(nir_intrinsic_op);
139 
140    std::vector<DataType> getSTypes(nir_alu_instr *);
141    DataType getSType(nir_src &, bool isFloat, bool isSigned);
142 
143    operation getOperation(nir_intrinsic_op);
144    operation getOperation(nir_op);
145    operation getOperation(nir_texop);
146    operation preOperationNeeded(nir_op);
147 
148    int getSubOp(nir_intrinsic_op);
149    int getSubOp(nir_op);
150 
151    CondCode getCondCode(nir_op);
152 
153    bool assignSlots();
154    bool parseNIR();
155 
156    bool visit(nir_alu_instr *);
157    bool visit(nir_block *);
158    bool visit(nir_cf_node *);
159    bool visit(nir_function *);
160    bool visit(nir_if *);
161    bool visit(nir_instr *);
162    bool visit(nir_intrinsic_instr *);
163    bool visit(nir_jump_instr *);
164    bool visit(nir_load_const_instr*);
165    bool visit(nir_loop *);
166    bool visit(nir_ssa_undef_instr *);
167    bool visit(nir_tex_instr *);
168 
169    // tex stuff
170    Value* applyProjection(Value *src, Value *proj);
171    unsigned int getNIRArgCount(TexInstruction::Target&);
172 
173    nir_shader *nir;
174 
175    NirDefMap ssaDefs;
176    NirDefMap regDefs;
177    ImmediateMap immediates;
178    NirBlockMap blocks;
179    unsigned int curLoopDepth;
180    unsigned int curIfDepth;
181 
182    BasicBlock *exit;
183    Value *zero;
184    Instruction *immInsertPos;
185 
186    int clipVertexOutput;
187 
188    union {
189       struct {
190          Value *position;
191       } fp;
192    };
193 };
194 
Converter(Program * prog,nir_shader * nir,nv50_ir_prog_info * info,nv50_ir_prog_info_out * info_out)195 Converter::Converter(Program *prog, nir_shader *nir, nv50_ir_prog_info *info,
196                      nv50_ir_prog_info_out *info_out)
197    : ConverterCommon(prog, info, info_out),
198      nir(nir),
199      curLoopDepth(0),
200      curIfDepth(0),
201      exit(NULL),
202      immInsertPos(NULL),
203      clipVertexOutput(-1)
204 {
205    zero = mkImm((uint32_t)0);
206 }
207 
208 BasicBlock *
convert(nir_block * block)209 Converter::convert(nir_block *block)
210 {
211    NirBlockMap::iterator it = blocks.find(block->index);
212    if (it != blocks.end())
213       return it->second;
214 
215    BasicBlock *bb = new BasicBlock(func);
216    blocks[block->index] = bb;
217    return bb;
218 }
219 
220 bool
isFloatType(nir_alu_type type)221 Converter::isFloatType(nir_alu_type type)
222 {
223    return nir_alu_type_get_base_type(type) == nir_type_float;
224 }
225 
226 bool
isSignedType(nir_alu_type type)227 Converter::isSignedType(nir_alu_type type)
228 {
229    return nir_alu_type_get_base_type(type) == nir_type_int;
230 }
231 
232 bool
isResultFloat(nir_op op)233 Converter::isResultFloat(nir_op op)
234 {
235    const nir_op_info &info = nir_op_infos[op];
236    if (info.output_type != nir_type_invalid)
237       return isFloatType(info.output_type);
238 
239    ERROR("isResultFloat not implemented for %s\n", nir_op_infos[op].name);
240    assert(false);
241    return true;
242 }
243 
244 bool
isResultSigned(nir_op op)245 Converter::isResultSigned(nir_op op)
246 {
247    switch (op) {
248    // there is no umul and we get wrong results if we treat all muls as signed
249    case nir_op_imul:
250    case nir_op_inot:
251       return false;
252    default:
253       const nir_op_info &info = nir_op_infos[op];
254       if (info.output_type != nir_type_invalid)
255          return isSignedType(info.output_type);
256       ERROR("isResultSigned not implemented for %s\n", nir_op_infos[op].name);
257       assert(false);
258       return true;
259    }
260 }
261 
262 DataType
getDType(nir_alu_instr * insn)263 Converter::getDType(nir_alu_instr *insn)
264 {
265    if (insn->dest.dest.is_ssa)
266       return getDType(insn->op, insn->dest.dest.ssa.bit_size);
267    else
268       return getDType(insn->op, insn->dest.dest.reg.reg->bit_size);
269 }
270 
271 DataType
getDType(nir_intrinsic_instr * insn)272 Converter::getDType(nir_intrinsic_instr *insn)
273 {
274    bool isSigned;
275    switch (insn->intrinsic) {
276    case nir_intrinsic_shared_atomic_imax:
277    case nir_intrinsic_shared_atomic_imin:
278    case nir_intrinsic_ssbo_atomic_imax:
279    case nir_intrinsic_ssbo_atomic_imin:
280       isSigned = true;
281       break;
282    default:
283       isSigned = false;
284       break;
285    }
286 
287    return getDType(insn, isSigned);
288 }
289 
290 DataType
getDType(nir_intrinsic_instr * insn,bool isSigned)291 Converter::getDType(nir_intrinsic_instr *insn, bool isSigned)
292 {
293    if (insn->dest.is_ssa)
294       return typeOfSize(insn->dest.ssa.bit_size / 8, false, isSigned);
295    else
296       return typeOfSize(insn->dest.reg.reg->bit_size / 8, false, isSigned);
297 }
298 
299 DataType
getDType(nir_op op,uint8_t bitSize)300 Converter::getDType(nir_op op, uint8_t bitSize)
301 {
302    DataType ty = typeOfSize(bitSize / 8, isResultFloat(op), isResultSigned(op));
303    if (ty == TYPE_NONE) {
304       ERROR("couldn't get Type for op %s with bitSize %u\n", nir_op_infos[op].name, bitSize);
305       assert(false);
306    }
307    return ty;
308 }
309 
310 std::vector<DataType>
getSTypes(nir_alu_instr * insn)311 Converter::getSTypes(nir_alu_instr *insn)
312 {
313    const nir_op_info &info = nir_op_infos[insn->op];
314    std::vector<DataType> res(info.num_inputs);
315 
316    for (uint8_t i = 0; i < info.num_inputs; ++i) {
317       if (info.input_types[i] != nir_type_invalid) {
318          res[i] = getSType(insn->src[i].src, isFloatType(info.input_types[i]), isSignedType(info.input_types[i]));
319       } else {
320          ERROR("getSType not implemented for %s idx %u\n", info.name, i);
321          assert(false);
322          res[i] = TYPE_NONE;
323          break;
324       }
325    }
326 
327    return res;
328 }
329 
330 DataType
getSType(nir_src & src,bool isFloat,bool isSigned)331 Converter::getSType(nir_src &src, bool isFloat, bool isSigned)
332 {
333    uint8_t bitSize;
334    if (src.is_ssa)
335       bitSize = src.ssa->bit_size;
336    else
337       bitSize = src.reg.reg->bit_size;
338 
339    DataType ty = typeOfSize(bitSize / 8, isFloat, isSigned);
340    if (ty == TYPE_NONE) {
341       const char *str;
342       if (isFloat)
343          str = "float";
344       else if (isSigned)
345          str = "int";
346       else
347          str = "uint";
348       ERROR("couldn't get Type for %s with bitSize %u\n", str, bitSize);
349       assert(false);
350    }
351    return ty;
352 }
353 
354 DataFile
getFile(nir_intrinsic_op op)355 Converter::getFile(nir_intrinsic_op op)
356 {
357    switch (op) {
358    case nir_intrinsic_load_global:
359    case nir_intrinsic_store_global:
360    case nir_intrinsic_load_global_constant:
361       return FILE_MEMORY_GLOBAL;
362    case nir_intrinsic_load_scratch:
363    case nir_intrinsic_store_scratch:
364       return FILE_MEMORY_LOCAL;
365    case nir_intrinsic_load_shared:
366    case nir_intrinsic_store_shared:
367       return FILE_MEMORY_SHARED;
368    case nir_intrinsic_load_kernel_input:
369       return FILE_SHADER_INPUT;
370    default:
371       ERROR("couldn't get DateFile for op %s\n", nir_intrinsic_infos[op].name);
372       assert(false);
373    }
374    return FILE_NULL;
375 }
376 
377 operation
getOperation(nir_op op)378 Converter::getOperation(nir_op op)
379 {
380    switch (op) {
381    // basic ops with float and int variants
382    case nir_op_fabs:
383    case nir_op_iabs:
384       return OP_ABS;
385    case nir_op_fadd:
386    case nir_op_iadd:
387       return OP_ADD;
388    case nir_op_iand:
389       return OP_AND;
390    case nir_op_ifind_msb:
391    case nir_op_ufind_msb:
392       return OP_BFIND;
393    case nir_op_fceil:
394       return OP_CEIL;
395    case nir_op_fcos:
396       return OP_COS;
397    case nir_op_f2f32:
398    case nir_op_f2f64:
399    case nir_op_f2i32:
400    case nir_op_f2i64:
401    case nir_op_f2u32:
402    case nir_op_f2u64:
403    case nir_op_i2f32:
404    case nir_op_i2f64:
405    case nir_op_i2i32:
406    case nir_op_i2i64:
407    case nir_op_u2f32:
408    case nir_op_u2f64:
409    case nir_op_u2u32:
410    case nir_op_u2u64:
411       return OP_CVT;
412    case nir_op_fddx:
413    case nir_op_fddx_coarse:
414    case nir_op_fddx_fine:
415       return OP_DFDX;
416    case nir_op_fddy:
417    case nir_op_fddy_coarse:
418    case nir_op_fddy_fine:
419       return OP_DFDY;
420    case nir_op_fdiv:
421    case nir_op_idiv:
422    case nir_op_udiv:
423       return OP_DIV;
424    case nir_op_fexp2:
425       return OP_EX2;
426    case nir_op_ffloor:
427       return OP_FLOOR;
428    case nir_op_ffma:
429       return OP_FMA;
430    case nir_op_flog2:
431       return OP_LG2;
432    case nir_op_fmax:
433    case nir_op_imax:
434    case nir_op_umax:
435       return OP_MAX;
436    case nir_op_pack_64_2x32_split:
437       return OP_MERGE;
438    case nir_op_fmin:
439    case nir_op_imin:
440    case nir_op_umin:
441       return OP_MIN;
442    case nir_op_fmod:
443    case nir_op_imod:
444    case nir_op_umod:
445    case nir_op_frem:
446    case nir_op_irem:
447       return OP_MOD;
448    case nir_op_fmul:
449    case nir_op_imul:
450    case nir_op_imul_high:
451    case nir_op_umul_high:
452       return OP_MUL;
453    case nir_op_fneg:
454    case nir_op_ineg:
455       return OP_NEG;
456    case nir_op_inot:
457       return OP_NOT;
458    case nir_op_ior:
459       return OP_OR;
460    case nir_op_fpow:
461       return OP_POW;
462    case nir_op_frcp:
463       return OP_RCP;
464    case nir_op_frsq:
465       return OP_RSQ;
466    case nir_op_fsat:
467       return OP_SAT;
468    case nir_op_feq32:
469    case nir_op_ieq32:
470    case nir_op_fge32:
471    case nir_op_ige32:
472    case nir_op_uge32:
473    case nir_op_flt32:
474    case nir_op_ilt32:
475    case nir_op_ult32:
476    case nir_op_fneu32:
477    case nir_op_ine32:
478       return OP_SET;
479    case nir_op_ishl:
480       return OP_SHL;
481    case nir_op_ishr:
482    case nir_op_ushr:
483       return OP_SHR;
484    case nir_op_fsin:
485       return OP_SIN;
486    case nir_op_fsqrt:
487       return OP_SQRT;
488    case nir_op_ftrunc:
489       return OP_TRUNC;
490    case nir_op_ixor:
491       return OP_XOR;
492    default:
493       ERROR("couldn't get operation for op %s\n", nir_op_infos[op].name);
494       assert(false);
495       return OP_NOP;
496    }
497 }
498 
499 operation
getOperation(nir_texop op)500 Converter::getOperation(nir_texop op)
501 {
502    switch (op) {
503    case nir_texop_tex:
504       return OP_TEX;
505    case nir_texop_lod:
506       return OP_TXLQ;
507    case nir_texop_txb:
508       return OP_TXB;
509    case nir_texop_txd:
510       return OP_TXD;
511    case nir_texop_txf:
512    case nir_texop_txf_ms:
513       return OP_TXF;
514    case nir_texop_tg4:
515       return OP_TXG;
516    case nir_texop_txl:
517       return OP_TXL;
518    case nir_texop_query_levels:
519    case nir_texop_texture_samples:
520    case nir_texop_txs:
521       return OP_TXQ;
522    default:
523       ERROR("couldn't get operation for nir_texop %u\n", op);
524       assert(false);
525       return OP_NOP;
526    }
527 }
528 
529 operation
getOperation(nir_intrinsic_op op)530 Converter::getOperation(nir_intrinsic_op op)
531 {
532    switch (op) {
533    case nir_intrinsic_emit_vertex:
534       return OP_EMIT;
535    case nir_intrinsic_end_primitive:
536       return OP_RESTART;
537    case nir_intrinsic_bindless_image_atomic_add:
538    case nir_intrinsic_image_atomic_add:
539    case nir_intrinsic_bindless_image_atomic_and:
540    case nir_intrinsic_image_atomic_and:
541    case nir_intrinsic_bindless_image_atomic_comp_swap:
542    case nir_intrinsic_image_atomic_comp_swap:
543    case nir_intrinsic_bindless_image_atomic_exchange:
544    case nir_intrinsic_image_atomic_exchange:
545    case nir_intrinsic_bindless_image_atomic_imax:
546    case nir_intrinsic_image_atomic_imax:
547    case nir_intrinsic_bindless_image_atomic_umax:
548    case nir_intrinsic_image_atomic_umax:
549    case nir_intrinsic_bindless_image_atomic_imin:
550    case nir_intrinsic_image_atomic_imin:
551    case nir_intrinsic_bindless_image_atomic_umin:
552    case nir_intrinsic_image_atomic_umin:
553    case nir_intrinsic_bindless_image_atomic_or:
554    case nir_intrinsic_image_atomic_or:
555    case nir_intrinsic_bindless_image_atomic_xor:
556    case nir_intrinsic_image_atomic_xor:
557    case nir_intrinsic_bindless_image_atomic_inc_wrap:
558    case nir_intrinsic_image_atomic_inc_wrap:
559    case nir_intrinsic_bindless_image_atomic_dec_wrap:
560    case nir_intrinsic_image_atomic_dec_wrap:
561       return OP_SUREDP;
562    case nir_intrinsic_bindless_image_load:
563    case nir_intrinsic_image_load:
564       return OP_SULDP;
565    case nir_intrinsic_bindless_image_samples:
566    case nir_intrinsic_image_samples:
567    case nir_intrinsic_bindless_image_size:
568    case nir_intrinsic_image_size:
569       return OP_SUQ;
570    case nir_intrinsic_bindless_image_store:
571    case nir_intrinsic_image_store:
572       return OP_SUSTP;
573    default:
574       ERROR("couldn't get operation for nir_intrinsic_op %u\n", op);
575       assert(false);
576       return OP_NOP;
577    }
578 }
579 
580 operation
preOperationNeeded(nir_op op)581 Converter::preOperationNeeded(nir_op op)
582 {
583    switch (op) {
584    case nir_op_fcos:
585    case nir_op_fsin:
586       return OP_PRESIN;
587    default:
588       return OP_NOP;
589    }
590 }
591 
592 int
getSubOp(nir_op op)593 Converter::getSubOp(nir_op op)
594 {
595    switch (op) {
596    case nir_op_imul_high:
597    case nir_op_umul_high:
598       return NV50_IR_SUBOP_MUL_HIGH;
599    case nir_op_ishl:
600    case nir_op_ishr:
601    case nir_op_ushr:
602       return NV50_IR_SUBOP_SHIFT_WRAP;
603    default:
604       return 0;
605    }
606 }
607 
608 int
getSubOp(nir_intrinsic_op op)609 Converter::getSubOp(nir_intrinsic_op op)
610 {
611    switch (op) {
612    case nir_intrinsic_bindless_image_atomic_add:
613    case nir_intrinsic_global_atomic_add:
614    case nir_intrinsic_image_atomic_add:
615    case nir_intrinsic_shared_atomic_add:
616    case nir_intrinsic_ssbo_atomic_add:
617       return  NV50_IR_SUBOP_ATOM_ADD;
618    case nir_intrinsic_bindless_image_atomic_and:
619    case nir_intrinsic_global_atomic_and:
620    case nir_intrinsic_image_atomic_and:
621    case nir_intrinsic_shared_atomic_and:
622    case nir_intrinsic_ssbo_atomic_and:
623       return  NV50_IR_SUBOP_ATOM_AND;
624    case nir_intrinsic_bindless_image_atomic_comp_swap:
625    case nir_intrinsic_global_atomic_comp_swap:
626    case nir_intrinsic_image_atomic_comp_swap:
627    case nir_intrinsic_shared_atomic_comp_swap:
628    case nir_intrinsic_ssbo_atomic_comp_swap:
629       return  NV50_IR_SUBOP_ATOM_CAS;
630    case nir_intrinsic_bindless_image_atomic_exchange:
631    case nir_intrinsic_global_atomic_exchange:
632    case nir_intrinsic_image_atomic_exchange:
633    case nir_intrinsic_shared_atomic_exchange:
634    case nir_intrinsic_ssbo_atomic_exchange:
635       return  NV50_IR_SUBOP_ATOM_EXCH;
636    case nir_intrinsic_bindless_image_atomic_or:
637    case nir_intrinsic_global_atomic_or:
638    case nir_intrinsic_image_atomic_or:
639    case nir_intrinsic_shared_atomic_or:
640    case nir_intrinsic_ssbo_atomic_or:
641       return  NV50_IR_SUBOP_ATOM_OR;
642    case nir_intrinsic_bindless_image_atomic_imax:
643    case nir_intrinsic_bindless_image_atomic_umax:
644    case nir_intrinsic_global_atomic_imax:
645    case nir_intrinsic_global_atomic_umax:
646    case nir_intrinsic_image_atomic_imax:
647    case nir_intrinsic_image_atomic_umax:
648    case nir_intrinsic_shared_atomic_imax:
649    case nir_intrinsic_shared_atomic_umax:
650    case nir_intrinsic_ssbo_atomic_imax:
651    case nir_intrinsic_ssbo_atomic_umax:
652       return  NV50_IR_SUBOP_ATOM_MAX;
653    case nir_intrinsic_bindless_image_atomic_imin:
654    case nir_intrinsic_bindless_image_atomic_umin:
655    case nir_intrinsic_global_atomic_imin:
656    case nir_intrinsic_global_atomic_umin:
657    case nir_intrinsic_image_atomic_imin:
658    case nir_intrinsic_image_atomic_umin:
659    case nir_intrinsic_shared_atomic_imin:
660    case nir_intrinsic_shared_atomic_umin:
661    case nir_intrinsic_ssbo_atomic_imin:
662    case nir_intrinsic_ssbo_atomic_umin:
663       return  NV50_IR_SUBOP_ATOM_MIN;
664    case nir_intrinsic_bindless_image_atomic_xor:
665    case nir_intrinsic_global_atomic_xor:
666    case nir_intrinsic_image_atomic_xor:
667    case nir_intrinsic_shared_atomic_xor:
668    case nir_intrinsic_ssbo_atomic_xor:
669       return  NV50_IR_SUBOP_ATOM_XOR;
670    case nir_intrinsic_bindless_image_atomic_inc_wrap:
671    case nir_intrinsic_image_atomic_inc_wrap:
672       return NV50_IR_SUBOP_ATOM_INC;
673    case nir_intrinsic_bindless_image_atomic_dec_wrap:
674    case nir_intrinsic_image_atomic_dec_wrap:
675       return NV50_IR_SUBOP_ATOM_DEC;
676 
677    case nir_intrinsic_group_memory_barrier:
678    case nir_intrinsic_memory_barrier:
679    case nir_intrinsic_memory_barrier_buffer:
680    case nir_intrinsic_memory_barrier_image:
681       return NV50_IR_SUBOP_MEMBAR(M, GL);
682    case nir_intrinsic_memory_barrier_shared:
683       return NV50_IR_SUBOP_MEMBAR(M, CTA);
684 
685    case nir_intrinsic_vote_all:
686       return NV50_IR_SUBOP_VOTE_ALL;
687    case nir_intrinsic_vote_any:
688       return NV50_IR_SUBOP_VOTE_ANY;
689    case nir_intrinsic_vote_ieq:
690       return NV50_IR_SUBOP_VOTE_UNI;
691    default:
692       return 0;
693    }
694 }
695 
696 CondCode
getCondCode(nir_op op)697 Converter::getCondCode(nir_op op)
698 {
699    switch (op) {
700    case nir_op_feq32:
701    case nir_op_ieq32:
702       return CC_EQ;
703    case nir_op_fge32:
704    case nir_op_ige32:
705    case nir_op_uge32:
706       return CC_GE;
707    case nir_op_flt32:
708    case nir_op_ilt32:
709    case nir_op_ult32:
710       return CC_LT;
711    case nir_op_fneu32:
712       return CC_NEU;
713    case nir_op_ine32:
714       return CC_NE;
715    default:
716       ERROR("couldn't get CondCode for op %s\n", nir_op_infos[op].name);
717       assert(false);
718       return CC_FL;
719    }
720 }
721 
722 Converter::LValues&
convert(nir_alu_dest * dest)723 Converter::convert(nir_alu_dest *dest)
724 {
725    return convert(&dest->dest);
726 }
727 
728 Converter::LValues&
convert(nir_dest * dest)729 Converter::convert(nir_dest *dest)
730 {
731    if (dest->is_ssa)
732       return convert(&dest->ssa);
733    if (dest->reg.indirect) {
734       ERROR("no support for indirects.");
735       assert(false);
736    }
737    return convert(dest->reg.reg);
738 }
739 
740 Converter::LValues&
convert(nir_register * reg)741 Converter::convert(nir_register *reg)
742 {
743    assert(!reg->num_array_elems);
744 
745    NirDefMap::iterator it = regDefs.find(reg->index);
746    if (it != regDefs.end())
747       return it->second;
748 
749    LValues newDef(reg->num_components);
750    for (uint8_t i = 0; i < reg->num_components; i++)
751       newDef[i] = getScratch(std::max(4, reg->bit_size / 8));
752    return regDefs[reg->index] = newDef;
753 }
754 
755 Converter::LValues&
convert(nir_ssa_def * def)756 Converter::convert(nir_ssa_def *def)
757 {
758    NirDefMap::iterator it = ssaDefs.find(def->index);
759    if (it != ssaDefs.end())
760       return it->second;
761 
762    LValues newDef(def->num_components);
763    for (uint8_t i = 0; i < def->num_components; i++)
764       newDef[i] = getSSA(std::max(4, def->bit_size / 8));
765    return ssaDefs[def->index] = newDef;
766 }
767 
768 Value*
getSrc(nir_alu_src * src,uint8_t component)769 Converter::getSrc(nir_alu_src *src, uint8_t component)
770 {
771    if (src->abs || src->negate) {
772       ERROR("modifiers currently not supported on nir_alu_src\n");
773       assert(false);
774    }
775    return getSrc(&src->src, src->swizzle[component]);
776 }
777 
778 Value*
getSrc(nir_register * reg,uint8_t idx)779 Converter::getSrc(nir_register *reg, uint8_t idx)
780 {
781    NirDefMap::iterator it = regDefs.find(reg->index);
782    if (it == regDefs.end())
783       return convert(reg)[idx];
784    return it->second[idx];
785 }
786 
787 Value*
getSrc(nir_src * src,uint8_t idx,bool indirect)788 Converter::getSrc(nir_src *src, uint8_t idx, bool indirect)
789 {
790    if (src->is_ssa)
791       return getSrc(src->ssa, idx);
792 
793    if (src->reg.indirect) {
794       if (indirect)
795          return getSrc(src->reg.indirect, idx);
796       ERROR("no support for indirects.");
797       assert(false);
798       return NULL;
799    }
800 
801    return getSrc(src->reg.reg, idx);
802 }
803 
804 Value*
getSrc(nir_ssa_def * src,uint8_t idx)805 Converter::getSrc(nir_ssa_def *src, uint8_t idx)
806 {
807    ImmediateMap::iterator iit = immediates.find(src->index);
808    if (iit != immediates.end())
809       return convert((*iit).second, idx);
810 
811    NirDefMap::iterator it = ssaDefs.find(src->index);
812    if (it == ssaDefs.end()) {
813       ERROR("SSA value %u not found\n", src->index);
814       assert(false);
815       return NULL;
816    }
817    return it->second[idx];
818 }
819 
820 uint32_t
getIndirect(nir_src * src,uint8_t idx,Value * & indirect)821 Converter::getIndirect(nir_src *src, uint8_t idx, Value *&indirect)
822 {
823    nir_const_value *offset = nir_src_as_const_value(*src);
824 
825    if (offset) {
826       indirect = NULL;
827       return offset[0].u32;
828    }
829 
830    indirect = getSrc(src, idx, true);
831    return 0;
832 }
833 
834 uint32_t
getIndirect(nir_intrinsic_instr * insn,uint8_t s,uint8_t c,Value * & indirect,bool isScalar)835 Converter::getIndirect(nir_intrinsic_instr *insn, uint8_t s, uint8_t c, Value *&indirect, bool isScalar)
836 {
837    int32_t idx = nir_intrinsic_base(insn) + getIndirect(&insn->src[s], c, indirect);
838    if (indirect && !isScalar)
839       indirect = mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), indirect, loadImm(NULL, 4));
840    return idx;
841 }
842 
843 static void
vert_attrib_to_tgsi_semantic(gl_vert_attrib slot,unsigned * name,unsigned * index)844 vert_attrib_to_tgsi_semantic(gl_vert_attrib slot, unsigned *name, unsigned *index)
845 {
846    assert(name && index);
847 
848    if (slot >= VERT_ATTRIB_MAX) {
849       ERROR("invalid varying slot %u\n", slot);
850       assert(false);
851       return;
852    }
853 
854    if (slot >= VERT_ATTRIB_GENERIC0 &&
855        slot < VERT_ATTRIB_GENERIC0 + VERT_ATTRIB_GENERIC_MAX) {
856       *name = TGSI_SEMANTIC_GENERIC;
857       *index = slot - VERT_ATTRIB_GENERIC0;
858       return;
859    }
860 
861    if (slot >= VERT_ATTRIB_TEX0 &&
862        slot < VERT_ATTRIB_TEX0 + VERT_ATTRIB_TEX_MAX) {
863       *name = TGSI_SEMANTIC_TEXCOORD;
864       *index = slot - VERT_ATTRIB_TEX0;
865       return;
866    }
867 
868    switch (slot) {
869    case VERT_ATTRIB_COLOR0:
870       *name = TGSI_SEMANTIC_COLOR;
871       *index = 0;
872       break;
873    case VERT_ATTRIB_COLOR1:
874       *name = TGSI_SEMANTIC_COLOR;
875       *index = 1;
876       break;
877    case VERT_ATTRIB_EDGEFLAG:
878       *name = TGSI_SEMANTIC_EDGEFLAG;
879       *index = 0;
880       break;
881    case VERT_ATTRIB_FOG:
882       *name = TGSI_SEMANTIC_FOG;
883       *index = 0;
884       break;
885    case VERT_ATTRIB_NORMAL:
886       *name = TGSI_SEMANTIC_NORMAL;
887       *index = 0;
888       break;
889    case VERT_ATTRIB_POS:
890       *name = TGSI_SEMANTIC_POSITION;
891       *index = 0;
892       break;
893    case VERT_ATTRIB_POINT_SIZE:
894       *name = TGSI_SEMANTIC_PSIZE;
895       *index = 0;
896       break;
897    default:
898       ERROR("unknown vert attrib slot %u\n", slot);
899       assert(false);
900       break;
901    }
902 }
903 
904 void
setInterpolate(nv50_ir_varying * var,uint8_t mode,bool centroid,unsigned semantic)905 Converter::setInterpolate(nv50_ir_varying *var,
906                           uint8_t mode,
907                           bool centroid,
908                           unsigned semantic)
909 {
910    switch (mode) {
911    case INTERP_MODE_FLAT:
912       var->flat = 1;
913       break;
914    case INTERP_MODE_NONE:
915       if (semantic == TGSI_SEMANTIC_COLOR)
916          var->sc = 1;
917       else if (semantic == TGSI_SEMANTIC_POSITION)
918          var->linear = 1;
919       break;
920    case INTERP_MODE_NOPERSPECTIVE:
921       var->linear = 1;
922       break;
923    case INTERP_MODE_SMOOTH:
924       break;
925    }
926    var->centroid = centroid;
927 }
928 
929 static uint16_t
calcSlots(const glsl_type * type,Program::Type stage,const shader_info & info,bool input,const nir_variable * var)930 calcSlots(const glsl_type *type, Program::Type stage, const shader_info &info,
931           bool input, const nir_variable *var)
932 {
933    if (!type->is_array())
934       return type->count_attribute_slots(false);
935 
936    uint16_t slots;
937    switch (stage) {
938    case Program::TYPE_GEOMETRY:
939       slots = type->count_attribute_slots(false);
940       if (input)
941          slots /= info.gs.vertices_in;
942       break;
943    case Program::TYPE_TESSELLATION_CONTROL:
944    case Program::TYPE_TESSELLATION_EVAL:
945       // remove first dimension
946       if (var->data.patch || (!input && stage == Program::TYPE_TESSELLATION_EVAL))
947          slots = type->count_attribute_slots(false);
948       else
949          slots = type->fields.array->count_attribute_slots(false);
950       break;
951    default:
952       slots = type->count_attribute_slots(false);
953       break;
954    }
955 
956    return slots;
957 }
958 
959 static uint8_t
getMaskForType(const glsl_type * type,uint8_t slot)960 getMaskForType(const glsl_type *type, uint8_t slot) {
961    uint16_t comp = type->without_array()->components();
962    comp = comp ? comp : 4;
963 
964    if (glsl_base_type_is_64bit(type->without_array()->base_type)) {
965       comp *= 2;
966       if (comp > 4) {
967          if (slot % 2)
968             comp -= 4;
969          else
970             comp = 4;
971       }
972    }
973 
974    return (1 << comp) - 1;
975 }
976 
assignSlots()977 bool Converter::assignSlots() {
978    unsigned name;
979    unsigned index;
980 
981    info->io.viewportId = -1;
982    info_out->numInputs = 0;
983    info_out->numOutputs = 0;
984    info_out->numSysVals = 0;
985 
986    uint8_t i;
987    BITSET_FOREACH_SET(i, nir->info.system_values_read, SYSTEM_VALUE_MAX) {
988       info_out->sv[info_out->numSysVals].sn = tgsi_get_sysval_semantic(i);
989       info_out->sv[info_out->numSysVals].si = 0;
990       info_out->sv[info_out->numSysVals].input = 0; // TODO inferSysValDirection(sn);
991 
992       switch (i) {
993       case SYSTEM_VALUE_INSTANCE_ID:
994          info_out->io.instanceId = info_out->numSysVals;
995          break;
996       case SYSTEM_VALUE_TESS_LEVEL_INNER:
997       case SYSTEM_VALUE_TESS_LEVEL_OUTER:
998          info_out->sv[info_out->numSysVals].patch = 1;
999          break;
1000       case SYSTEM_VALUE_VERTEX_ID:
1001          info_out->io.vertexId = info_out->numSysVals;
1002          break;
1003       default:
1004          break;
1005       }
1006 
1007       info_out->numSysVals += 1;
1008    }
1009 
1010    if (prog->getType() == Program::TYPE_COMPUTE)
1011       return true;
1012 
1013    nir_foreach_shader_in_variable(var, nir) {
1014       const glsl_type *type = var->type;
1015       int slot = var->data.location;
1016       uint16_t slots = calcSlots(type, prog->getType(), nir->info, true, var);
1017       uint32_t vary = var->data.driver_location;
1018 
1019       assert(vary + slots <= PIPE_MAX_SHADER_INPUTS);
1020 
1021       switch(prog->getType()) {
1022       case Program::TYPE_FRAGMENT:
1023          tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
1024                                       &name, &index);
1025          for (uint16_t i = 0; i < slots; ++i) {
1026             setInterpolate(&info_out->in[vary + i], var->data.interpolation,
1027                            var->data.centroid | var->data.sample, name);
1028          }
1029          break;
1030       case Program::TYPE_GEOMETRY:
1031          tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
1032                                       &name, &index);
1033          break;
1034       case Program::TYPE_TESSELLATION_CONTROL:
1035       case Program::TYPE_TESSELLATION_EVAL:
1036          tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
1037                                       &name, &index);
1038          if (var->data.patch && name == TGSI_SEMANTIC_PATCH)
1039             info_out->numPatchConstants = MAX2(info_out->numPatchConstants, index + slots);
1040          break;
1041       case Program::TYPE_VERTEX:
1042          if (slot >= VERT_ATTRIB_GENERIC0)
1043             slot = VERT_ATTRIB_GENERIC0 + vary;
1044          vert_attrib_to_tgsi_semantic((gl_vert_attrib)slot, &name, &index);
1045          switch (name) {
1046          case TGSI_SEMANTIC_EDGEFLAG:
1047             info_out->io.edgeFlagIn = vary;
1048             break;
1049          default:
1050             break;
1051          }
1052          break;
1053       default:
1054          ERROR("unknown shader type %u in assignSlots\n", prog->getType());
1055          return false;
1056       }
1057 
1058       for (uint16_t i = 0u; i < slots; ++i, ++vary) {
1059          nv50_ir_varying *v = &info_out->in[vary];
1060 
1061          v->patch = var->data.patch;
1062          v->sn = name;
1063          v->si = index + i;
1064          v->mask |= getMaskForType(type, i) << var->data.location_frac;
1065       }
1066       info_out->numInputs = std::max<uint8_t>(info_out->numInputs, vary);
1067    }
1068 
1069    nir_foreach_shader_out_variable(var, nir) {
1070       const glsl_type *type = var->type;
1071       int slot = var->data.location;
1072       uint16_t slots = calcSlots(type, prog->getType(), nir->info, false, var);
1073       uint32_t vary = var->data.driver_location;
1074 
1075       assert(vary < PIPE_MAX_SHADER_OUTPUTS);
1076 
1077       switch(prog->getType()) {
1078       case Program::TYPE_FRAGMENT:
1079          tgsi_get_gl_frag_result_semantic((gl_frag_result)slot, &name, &index);
1080          switch (name) {
1081          case TGSI_SEMANTIC_COLOR:
1082             if (!var->data.fb_fetch_output)
1083                info_out->prop.fp.numColourResults++;
1084             if (var->data.location == FRAG_RESULT_COLOR &&
1085                 nir->info.outputs_written & BITFIELD64_BIT(var->data.location))
1086             info_out->prop.fp.separateFragData = true;
1087             // sometimes we get FRAG_RESULT_DATAX with data.index 0
1088             // sometimes we get FRAG_RESULT_DATA0 with data.index X
1089             index = index == 0 ? var->data.index : index;
1090             break;
1091          case TGSI_SEMANTIC_POSITION:
1092             info_out->io.fragDepth = vary;
1093             info_out->prop.fp.writesDepth = true;
1094             break;
1095          case TGSI_SEMANTIC_SAMPLEMASK:
1096             info_out->io.sampleMask = vary;
1097             break;
1098          default:
1099             break;
1100          }
1101          break;
1102       case Program::TYPE_GEOMETRY:
1103       case Program::TYPE_TESSELLATION_CONTROL:
1104       case Program::TYPE_TESSELLATION_EVAL:
1105       case Program::TYPE_VERTEX:
1106          tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
1107                                       &name, &index);
1108 
1109          if (var->data.patch && name != TGSI_SEMANTIC_TESSINNER &&
1110              name != TGSI_SEMANTIC_TESSOUTER)
1111             info_out->numPatchConstants = MAX2(info_out->numPatchConstants, index + slots);
1112 
1113          switch (name) {
1114          case TGSI_SEMANTIC_CLIPDIST:
1115             info_out->io.genUserClip = -1;
1116             break;
1117          case TGSI_SEMANTIC_CLIPVERTEX:
1118             clipVertexOutput = vary;
1119             break;
1120          case TGSI_SEMANTIC_EDGEFLAG:
1121             info_out->io.edgeFlagOut = vary;
1122             break;
1123          case TGSI_SEMANTIC_POSITION:
1124             if (clipVertexOutput < 0)
1125                clipVertexOutput = vary;
1126             break;
1127          default:
1128             break;
1129          }
1130          break;
1131       default:
1132          ERROR("unknown shader type %u in assignSlots\n", prog->getType());
1133          return false;
1134       }
1135 
1136       for (uint16_t i = 0u; i < slots; ++i, ++vary) {
1137          nv50_ir_varying *v = &info_out->out[vary];
1138          v->patch = var->data.patch;
1139          v->sn = name;
1140          v->si = index + i;
1141          v->mask |= getMaskForType(type, i) << var->data.location_frac;
1142 
1143          if (nir->info.outputs_read & 1ull << slot)
1144             v->oread = 1;
1145       }
1146       info_out->numOutputs = std::max<uint8_t>(info_out->numOutputs, vary);
1147    }
1148 
1149    if (info_out->io.genUserClip > 0) {
1150       info_out->io.clipDistances = info_out->io.genUserClip;
1151 
1152       const unsigned int nOut = (info_out->io.genUserClip + 3) / 4;
1153 
1154       for (unsigned int n = 0; n < nOut; ++n) {
1155          unsigned int i = info_out->numOutputs++;
1156          info_out->out[i].id = i;
1157          info_out->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
1158          info_out->out[i].si = n;
1159          info_out->out[i].mask = ((1 << info_out->io.clipDistances) - 1) >> (n * 4);
1160       }
1161    }
1162 
1163    return info->assignSlots(info_out) == 0;
1164 }
1165 
1166 uint32_t
getSlotAddress(nir_intrinsic_instr * insn,uint8_t idx,uint8_t slot)1167 Converter::getSlotAddress(nir_intrinsic_instr *insn, uint8_t idx, uint8_t slot)
1168 {
1169    DataType ty;
1170    int offset = nir_intrinsic_component(insn);
1171    bool input;
1172 
1173    if (nir_intrinsic_infos[insn->intrinsic].has_dest)
1174       ty = getDType(insn);
1175    else
1176       ty = getSType(insn->src[0], false, false);
1177 
1178    switch (insn->intrinsic) {
1179    case nir_intrinsic_load_input:
1180    case nir_intrinsic_load_interpolated_input:
1181    case nir_intrinsic_load_per_vertex_input:
1182       input = true;
1183       break;
1184    case nir_intrinsic_load_output:
1185    case nir_intrinsic_load_per_vertex_output:
1186    case nir_intrinsic_store_output:
1187    case nir_intrinsic_store_per_vertex_output:
1188       input = false;
1189       break;
1190    default:
1191       ERROR("unknown intrinsic in getSlotAddress %s",
1192             nir_intrinsic_infos[insn->intrinsic].name);
1193       input = false;
1194       assert(false);
1195       break;
1196    }
1197 
1198    if (typeSizeof(ty) == 8) {
1199       slot *= 2;
1200       slot += offset;
1201       if (slot >= 4) {
1202          idx += 1;
1203          slot -= 4;
1204       }
1205    } else {
1206       slot += offset;
1207    }
1208 
1209    assert(slot < 4);
1210    assert(!input || idx < PIPE_MAX_SHADER_INPUTS);
1211    assert(input || idx < PIPE_MAX_SHADER_OUTPUTS);
1212 
1213    const nv50_ir_varying *vary = input ? info_out->in : info_out->out;
1214    return vary[idx].slot[slot] * 4;
1215 }
1216 
1217 Instruction *
loadFrom(DataFile file,uint8_t i,DataType ty,Value * def,uint32_t base,uint8_t c,Value * indirect0,Value * indirect1,bool patch)1218 Converter::loadFrom(DataFile file, uint8_t i, DataType ty, Value *def,
1219                     uint32_t base, uint8_t c, Value *indirect0,
1220                     Value *indirect1, bool patch)
1221 {
1222    unsigned int tySize = typeSizeof(ty);
1223 
1224    if (tySize == 8 &&
1225        (file == FILE_MEMORY_CONST || file == FILE_MEMORY_BUFFER || indirect0)) {
1226       Value *lo = getSSA();
1227       Value *hi = getSSA();
1228 
1229       Instruction *loi =
1230          mkLoad(TYPE_U32, lo,
1231                 mkSymbol(file, i, TYPE_U32, base + c * tySize),
1232                 indirect0);
1233       loi->setIndirect(0, 1, indirect1);
1234       loi->perPatch = patch;
1235 
1236       Instruction *hii =
1237          mkLoad(TYPE_U32, hi,
1238                 mkSymbol(file, i, TYPE_U32, base + c * tySize + 4),
1239                 indirect0);
1240       hii->setIndirect(0, 1, indirect1);
1241       hii->perPatch = patch;
1242 
1243       return mkOp2(OP_MERGE, ty, def, lo, hi);
1244    } else {
1245       Instruction *ld =
1246          mkLoad(ty, def, mkSymbol(file, i, ty, base + c * tySize), indirect0);
1247       ld->setIndirect(0, 1, indirect1);
1248       ld->perPatch = patch;
1249       return ld;
1250    }
1251 }
1252 
1253 void
storeTo(nir_intrinsic_instr * insn,DataFile file,operation op,DataType ty,Value * src,uint8_t idx,uint8_t c,Value * indirect0,Value * indirect1)1254 Converter::storeTo(nir_intrinsic_instr *insn, DataFile file, operation op,
1255                    DataType ty, Value *src, uint8_t idx, uint8_t c,
1256                    Value *indirect0, Value *indirect1)
1257 {
1258    uint8_t size = typeSizeof(ty);
1259    uint32_t address = getSlotAddress(insn, idx, c);
1260 
1261    if (size == 8 && indirect0) {
1262       Value *split[2];
1263       mkSplit(split, 4, src);
1264 
1265       if (op == OP_EXPORT) {
1266          split[0] = mkMov(getSSA(), split[0], ty)->getDef(0);
1267          split[1] = mkMov(getSSA(), split[1], ty)->getDef(0);
1268       }
1269 
1270       mkStore(op, TYPE_U32, mkSymbol(file, 0, TYPE_U32, address), indirect0,
1271               split[0])->perPatch = info_out->out[idx].patch;
1272       mkStore(op, TYPE_U32, mkSymbol(file, 0, TYPE_U32, address + 4), indirect0,
1273               split[1])->perPatch = info_out->out[idx].patch;
1274    } else {
1275       if (op == OP_EXPORT)
1276          src = mkMov(getSSA(size), src, ty)->getDef(0);
1277       mkStore(op, ty, mkSymbol(file, 0, ty, address), indirect0,
1278               src)->perPatch = info_out->out[idx].patch;
1279    }
1280 }
1281 
1282 bool
parseNIR()1283 Converter::parseNIR()
1284 {
1285    info_out->bin.tlsSpace = nir->scratch_size;
1286    info_out->io.clipDistances = nir->info.clip_distance_array_size;
1287    info_out->io.cullDistances = nir->info.cull_distance_array_size;
1288    info_out->io.layer_viewport_relative = nir->info.layer_viewport_relative;
1289 
1290    switch(prog->getType()) {
1291    case Program::TYPE_COMPUTE:
1292       info->prop.cp.numThreads[0] = nir->info.cs.local_size[0];
1293       info->prop.cp.numThreads[1] = nir->info.cs.local_size[1];
1294       info->prop.cp.numThreads[2] = nir->info.cs.local_size[2];
1295       info_out->bin.smemSize += nir->info.cs.shared_size;
1296       break;
1297    case Program::TYPE_FRAGMENT:
1298       info_out->prop.fp.earlyFragTests = nir->info.fs.early_fragment_tests;
1299       prog->persampleInvocation =
1300          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) ||
1301          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS);
1302       info_out->prop.fp.postDepthCoverage = nir->info.fs.post_depth_coverage;
1303       info_out->prop.fp.readsSampleLocations =
1304          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS);
1305       info_out->prop.fp.usesDiscard = nir->info.fs.uses_discard || nir->info.fs.uses_demote;
1306       info_out->prop.fp.usesSampleMaskIn =
1307          !BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
1308       break;
1309    case Program::TYPE_GEOMETRY:
1310       info_out->prop.gp.instanceCount = nir->info.gs.invocations;
1311       info_out->prop.gp.maxVertices = nir->info.gs.vertices_out;
1312       info_out->prop.gp.outputPrim = nir->info.gs.output_primitive;
1313       break;
1314    case Program::TYPE_TESSELLATION_CONTROL:
1315    case Program::TYPE_TESSELLATION_EVAL:
1316       if (nir->info.tess.primitive_mode == GL_ISOLINES)
1317          info_out->prop.tp.domain = GL_LINES;
1318       else
1319          info_out->prop.tp.domain = nir->info.tess.primitive_mode;
1320       info_out->prop.tp.outputPatchSize = nir->info.tess.tcs_vertices_out;
1321       info_out->prop.tp.outputPrim =
1322          nir->info.tess.point_mode ? PIPE_PRIM_POINTS : PIPE_PRIM_TRIANGLES;
1323       info_out->prop.tp.partitioning = (nir->info.tess.spacing + 1) % 3;
1324       info_out->prop.tp.winding = !nir->info.tess.ccw;
1325       break;
1326    case Program::TYPE_VERTEX:
1327       info_out->prop.vp.usesDrawParameters =
1328          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_VERTEX) ||
1329          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
1330          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
1331       break;
1332    default:
1333       break;
1334    }
1335 
1336    return true;
1337 }
1338 
1339 bool
visit(nir_function * function)1340 Converter::visit(nir_function *function)
1341 {
1342    assert(function->impl);
1343 
1344    // usually the blocks will set everything up, but main is special
1345    BasicBlock *entry = new BasicBlock(prog->main);
1346    exit = new BasicBlock(prog->main);
1347    blocks[nir_start_block(function->impl)->index] = entry;
1348    prog->main->setEntry(entry);
1349    prog->main->setExit(exit);
1350 
1351    setPosition(entry, true);
1352 
1353    if (info_out->io.genUserClip > 0) {
1354       for (int c = 0; c < 4; ++c)
1355          clipVtx[c] = getScratch();
1356    }
1357 
1358    switch (prog->getType()) {
1359    case Program::TYPE_TESSELLATION_CONTROL:
1360       outBase = mkOp2v(
1361          OP_SUB, TYPE_U32, getSSA(),
1362          mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
1363          mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
1364       break;
1365    case Program::TYPE_FRAGMENT: {
1366       Symbol *sv = mkSysVal(SV_POSITION, 3);
1367       fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
1368       fp.position = mkOp1v(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
1369       break;
1370    }
1371    default:
1372       break;
1373    }
1374 
1375    nir_index_ssa_defs(function->impl);
1376    foreach_list_typed(nir_cf_node, node, node, &function->impl->body) {
1377       if (!visit(node))
1378          return false;
1379    }
1380 
1381    bb->cfg.attach(&exit->cfg, Graph::Edge::TREE);
1382    setPosition(exit, true);
1383 
1384    if ((prog->getType() == Program::TYPE_VERTEX ||
1385         prog->getType() == Program::TYPE_TESSELLATION_EVAL)
1386        && info_out->io.genUserClip > 0)
1387       handleUserClipPlanes();
1388 
1389    // TODO: for non main function this needs to be a OP_RETURN
1390    mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
1391    return true;
1392 }
1393 
1394 bool
visit(nir_cf_node * node)1395 Converter::visit(nir_cf_node *node)
1396 {
1397    switch (node->type) {
1398    case nir_cf_node_block:
1399       return visit(nir_cf_node_as_block(node));
1400    case nir_cf_node_if:
1401       return visit(nir_cf_node_as_if(node));
1402    case nir_cf_node_loop:
1403       return visit(nir_cf_node_as_loop(node));
1404    default:
1405       ERROR("unknown nir_cf_node type %u\n", node->type);
1406       return false;
1407    }
1408 }
1409 
1410 bool
visit(nir_block * block)1411 Converter::visit(nir_block *block)
1412 {
1413    if (!block->predecessors->entries && block->instr_list.is_empty())
1414       return true;
1415 
1416    BasicBlock *bb = convert(block);
1417 
1418    setPosition(bb, true);
1419    nir_foreach_instr(insn, block) {
1420       if (!visit(insn))
1421          return false;
1422    }
1423    return true;
1424 }
1425 
1426 bool
visit(nir_if * nif)1427 Converter::visit(nir_if *nif)
1428 {
1429    curIfDepth++;
1430 
1431    DataType sType = getSType(nif->condition, false, false);
1432    Value *src = getSrc(&nif->condition, 0);
1433 
1434    nir_block *lastThen = nir_if_last_then_block(nif);
1435    nir_block *lastElse = nir_if_last_else_block(nif);
1436 
1437    BasicBlock *headBB = bb;
1438    BasicBlock *ifBB = convert(nir_if_first_then_block(nif));
1439    BasicBlock *elseBB = convert(nir_if_first_else_block(nif));
1440 
1441    bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
1442    bb->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
1443 
1444    bool insertJoins = lastThen->successors[0] == lastElse->successors[0];
1445    mkFlow(OP_BRA, elseBB, CC_EQ, src)->setType(sType);
1446 
1447    foreach_list_typed(nir_cf_node, node, node, &nif->then_list) {
1448       if (!visit(node))
1449          return false;
1450    }
1451 
1452    setPosition(convert(lastThen), true);
1453    if (!bb->isTerminated()) {
1454       BasicBlock *tailBB = convert(lastThen->successors[0]);
1455       mkFlow(OP_BRA, tailBB, CC_ALWAYS, NULL);
1456       bb->cfg.attach(&tailBB->cfg, Graph::Edge::FORWARD);
1457    } else {
1458       insertJoins = insertJoins && bb->getExit()->op == OP_BRA;
1459    }
1460 
1461    foreach_list_typed(nir_cf_node, node, node, &nif->else_list) {
1462       if (!visit(node))
1463          return false;
1464    }
1465 
1466    setPosition(convert(lastElse), true);
1467    if (!bb->isTerminated()) {
1468       BasicBlock *tailBB = convert(lastElse->successors[0]);
1469       mkFlow(OP_BRA, tailBB, CC_ALWAYS, NULL);
1470       bb->cfg.attach(&tailBB->cfg, Graph::Edge::FORWARD);
1471    } else {
1472       insertJoins = insertJoins && bb->getExit()->op == OP_BRA;
1473    }
1474 
1475    /* only insert joins for the most outer if */
1476    if (--curIfDepth)
1477       insertJoins = false;
1478 
1479    /* we made sure that all threads would converge at the same block */
1480    if (insertJoins) {
1481       BasicBlock *conv = convert(lastThen->successors[0]);
1482       setPosition(headBB->getExit(), false);
1483       headBB->joinAt = mkFlow(OP_JOINAT, conv, CC_ALWAYS, NULL);
1484       setPosition(conv, false);
1485       mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1486    }
1487 
1488    return true;
1489 }
1490 
1491 // TODO: add convergency
1492 bool
visit(nir_loop * loop)1493 Converter::visit(nir_loop *loop)
1494 {
1495    curLoopDepth += 1;
1496    func->loopNestingBound = std::max(func->loopNestingBound, curLoopDepth);
1497 
1498    BasicBlock *loopBB = convert(nir_loop_first_block(loop));
1499    BasicBlock *tailBB = convert(nir_cf_node_as_block(nir_cf_node_next(&loop->cf_node)));
1500 
1501    bb->cfg.attach(&loopBB->cfg, Graph::Edge::TREE);
1502 
1503    mkFlow(OP_PREBREAK, tailBB, CC_ALWAYS, NULL);
1504    setPosition(loopBB, false);
1505    mkFlow(OP_PRECONT, loopBB, CC_ALWAYS, NULL);
1506 
1507    foreach_list_typed(nir_cf_node, node, node, &loop->body) {
1508       if (!visit(node))
1509          return false;
1510    }
1511 
1512    if (!bb->isTerminated()) {
1513       mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
1514       bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
1515    }
1516 
1517    if (tailBB->cfg.incidentCount() == 0)
1518       loopBB->cfg.attach(&tailBB->cfg, Graph::Edge::TREE);
1519 
1520    curLoopDepth -= 1;
1521 
1522    return true;
1523 }
1524 
1525 bool
visit(nir_instr * insn)1526 Converter::visit(nir_instr *insn)
1527 {
1528    // we need an insertion point for on the fly generated immediate loads
1529    immInsertPos = bb->getExit();
1530    switch (insn->type) {
1531    case nir_instr_type_alu:
1532       return visit(nir_instr_as_alu(insn));
1533    case nir_instr_type_intrinsic:
1534       return visit(nir_instr_as_intrinsic(insn));
1535    case nir_instr_type_jump:
1536       return visit(nir_instr_as_jump(insn));
1537    case nir_instr_type_load_const:
1538       return visit(nir_instr_as_load_const(insn));
1539    case nir_instr_type_ssa_undef:
1540       return visit(nir_instr_as_ssa_undef(insn));
1541    case nir_instr_type_tex:
1542       return visit(nir_instr_as_tex(insn));
1543    default:
1544       ERROR("unknown nir_instr type %u\n", insn->type);
1545       return false;
1546    }
1547    return true;
1548 }
1549 
1550 SVSemantic
convert(nir_intrinsic_op intr)1551 Converter::convert(nir_intrinsic_op intr)
1552 {
1553    switch (intr) {
1554    case nir_intrinsic_load_base_vertex:
1555       return SV_BASEVERTEX;
1556    case nir_intrinsic_load_base_instance:
1557       return SV_BASEINSTANCE;
1558    case nir_intrinsic_load_draw_id:
1559       return SV_DRAWID;
1560    case nir_intrinsic_load_front_face:
1561       return SV_FACE;
1562    case nir_intrinsic_is_helper_invocation:
1563    case nir_intrinsic_load_helper_invocation:
1564       return SV_THREAD_KILL;
1565    case nir_intrinsic_load_instance_id:
1566       return SV_INSTANCE_ID;
1567    case nir_intrinsic_load_invocation_id:
1568       return SV_INVOCATION_ID;
1569    case nir_intrinsic_load_local_group_size:
1570       return SV_NTID;
1571    case nir_intrinsic_load_local_invocation_id:
1572       return SV_TID;
1573    case nir_intrinsic_load_num_work_groups:
1574       return SV_NCTAID;
1575    case nir_intrinsic_load_patch_vertices_in:
1576       return SV_VERTEX_COUNT;
1577    case nir_intrinsic_load_primitive_id:
1578       return SV_PRIMITIVE_ID;
1579    case nir_intrinsic_load_sample_id:
1580       return SV_SAMPLE_INDEX;
1581    case nir_intrinsic_load_sample_mask_in:
1582       return SV_SAMPLE_MASK;
1583    case nir_intrinsic_load_sample_pos:
1584       return SV_SAMPLE_POS;
1585    case nir_intrinsic_load_subgroup_eq_mask:
1586       return SV_LANEMASK_EQ;
1587    case nir_intrinsic_load_subgroup_ge_mask:
1588       return SV_LANEMASK_GE;
1589    case nir_intrinsic_load_subgroup_gt_mask:
1590       return SV_LANEMASK_GT;
1591    case nir_intrinsic_load_subgroup_le_mask:
1592       return SV_LANEMASK_LE;
1593    case nir_intrinsic_load_subgroup_lt_mask:
1594       return SV_LANEMASK_LT;
1595    case nir_intrinsic_load_subgroup_invocation:
1596       return SV_LANEID;
1597    case nir_intrinsic_load_tess_coord:
1598       return SV_TESS_COORD;
1599    case nir_intrinsic_load_tess_level_inner:
1600       return SV_TESS_INNER;
1601    case nir_intrinsic_load_tess_level_outer:
1602       return SV_TESS_OUTER;
1603    case nir_intrinsic_load_vertex_id:
1604       return SV_VERTEX_ID;
1605    case nir_intrinsic_load_work_group_id:
1606       return SV_CTAID;
1607    case nir_intrinsic_load_work_dim:
1608       return SV_WORK_DIM;
1609    default:
1610       ERROR("unknown SVSemantic for nir_intrinsic_op %s\n",
1611             nir_intrinsic_infos[intr].name);
1612       assert(false);
1613       return SV_LAST;
1614    }
1615 }
1616 
1617 bool
visit(nir_intrinsic_instr * insn)1618 Converter::visit(nir_intrinsic_instr *insn)
1619 {
1620    nir_intrinsic_op op = insn->intrinsic;
1621    const nir_intrinsic_info &opInfo = nir_intrinsic_infos[op];
1622    unsigned dest_components = nir_intrinsic_dest_components(insn);
1623 
1624    switch (op) {
1625    case nir_intrinsic_load_uniform: {
1626       LValues &newDefs = convert(&insn->dest);
1627       const DataType dType = getDType(insn);
1628       Value *indirect;
1629       uint32_t coffset = getIndirect(insn, 0, 0, indirect);
1630       for (uint8_t i = 0; i < dest_components; ++i) {
1631          loadFrom(FILE_MEMORY_CONST, 0, dType, newDefs[i], 16 * coffset, i, indirect);
1632       }
1633       break;
1634    }
1635    case nir_intrinsic_store_output:
1636    case nir_intrinsic_store_per_vertex_output: {
1637       Value *indirect;
1638       DataType dType = getSType(insn->src[0], false, false);
1639       uint32_t idx = getIndirect(insn, op == nir_intrinsic_store_output ? 1 : 2, 0, indirect);
1640 
1641       for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
1642          if (!((1u << i) & nir_intrinsic_write_mask(insn)))
1643             continue;
1644 
1645          uint8_t offset = 0;
1646          Value *src = getSrc(&insn->src[0], i);
1647          switch (prog->getType()) {
1648          case Program::TYPE_FRAGMENT: {
1649             if (info_out->out[idx].sn == TGSI_SEMANTIC_POSITION) {
1650                // TGSI uses a different interface than NIR, TGSI stores that
1651                // value in the z component, NIR in X
1652                offset += 2;
1653                src = mkOp1v(OP_SAT, TYPE_F32, getScratch(), src);
1654             }
1655             break;
1656          }
1657          case Program::TYPE_GEOMETRY:
1658          case Program::TYPE_TESSELLATION_EVAL:
1659          case Program::TYPE_VERTEX: {
1660             if (info_out->io.genUserClip > 0 && idx == (uint32_t)clipVertexOutput) {
1661                mkMov(clipVtx[i], src);
1662                src = clipVtx[i];
1663             }
1664             break;
1665          }
1666          default:
1667             break;
1668          }
1669 
1670          storeTo(insn, FILE_SHADER_OUTPUT, OP_EXPORT, dType, src, idx, i + offset, indirect);
1671       }
1672       break;
1673    }
1674    case nir_intrinsic_load_input:
1675    case nir_intrinsic_load_interpolated_input:
1676    case nir_intrinsic_load_output: {
1677       LValues &newDefs = convert(&insn->dest);
1678 
1679       // FBFetch
1680       if (prog->getType() == Program::TYPE_FRAGMENT &&
1681           op == nir_intrinsic_load_output) {
1682          std::vector<Value*> defs, srcs;
1683          uint8_t mask = 0;
1684 
1685          srcs.push_back(getSSA());
1686          srcs.push_back(getSSA());
1687          Value *x = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 0));
1688          Value *y = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 1));
1689          mkCvt(OP_CVT, TYPE_U32, srcs[0], TYPE_F32, x)->rnd = ROUND_Z;
1690          mkCvt(OP_CVT, TYPE_U32, srcs[1], TYPE_F32, y)->rnd = ROUND_Z;
1691 
1692          srcs.push_back(mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LAYER, 0)));
1693          srcs.push_back(mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_SAMPLE_INDEX, 0)));
1694 
1695          for (uint8_t i = 0u; i < dest_components; ++i) {
1696             defs.push_back(newDefs[i]);
1697             mask |= 1 << i;
1698          }
1699 
1700          TexInstruction *texi = mkTex(OP_TXF, TEX_TARGET_2D_MS_ARRAY, 0, 0, defs, srcs);
1701          texi->tex.levelZero = 1;
1702          texi->tex.mask = mask;
1703          texi->tex.useOffsets = 0;
1704          texi->tex.r = 0xffff;
1705          texi->tex.s = 0xffff;
1706 
1707          info_out->prop.fp.readsFramebuffer = true;
1708          break;
1709       }
1710 
1711       const DataType dType = getDType(insn);
1712       Value *indirect;
1713       bool input = op != nir_intrinsic_load_output;
1714       operation nvirOp;
1715       uint32_t mode = 0;
1716 
1717       uint32_t idx = getIndirect(insn, op == nir_intrinsic_load_interpolated_input ? 1 : 0, 0, indirect);
1718       nv50_ir_varying& vary = input ? info_out->in[idx] : info_out->out[idx];
1719 
1720       // see load_barycentric_* handling
1721       if (prog->getType() == Program::TYPE_FRAGMENT) {
1722          if (op == nir_intrinsic_load_interpolated_input) {
1723             ImmediateValue immMode;
1724             if (getSrc(&insn->src[0], 1)->getUniqueInsn()->src(0).getImmediate(immMode))
1725                mode = immMode.reg.data.u32;
1726          }
1727          if (mode == NV50_IR_INTERP_DEFAULT)
1728             mode |= translateInterpMode(&vary, nvirOp);
1729          else {
1730             if (vary.linear) {
1731                nvirOp = OP_LINTERP;
1732                mode |= NV50_IR_INTERP_LINEAR;
1733             } else {
1734                nvirOp = OP_PINTERP;
1735                mode |= NV50_IR_INTERP_PERSPECTIVE;
1736             }
1737          }
1738       }
1739 
1740       for (uint8_t i = 0u; i < dest_components; ++i) {
1741          uint32_t address = getSlotAddress(insn, idx, i);
1742          Symbol *sym = mkSymbol(input ? FILE_SHADER_INPUT : FILE_SHADER_OUTPUT, 0, dType, address);
1743          if (prog->getType() == Program::TYPE_FRAGMENT) {
1744             int s = 1;
1745             if (typeSizeof(dType) == 8) {
1746                Value *lo = getSSA();
1747                Value *hi = getSSA();
1748                Instruction *interp;
1749 
1750                interp = mkOp1(nvirOp, TYPE_U32, lo, sym);
1751                if (nvirOp == OP_PINTERP)
1752                   interp->setSrc(s++, fp.position);
1753                if (mode & NV50_IR_INTERP_OFFSET)
1754                   interp->setSrc(s++, getSrc(&insn->src[0], 0));
1755                interp->setInterpolate(mode);
1756                interp->setIndirect(0, 0, indirect);
1757 
1758                Symbol *sym1 = mkSymbol(input ? FILE_SHADER_INPUT : FILE_SHADER_OUTPUT, 0, dType, address + 4);
1759                interp = mkOp1(nvirOp, TYPE_U32, hi, sym1);
1760                if (nvirOp == OP_PINTERP)
1761                   interp->setSrc(s++, fp.position);
1762                if (mode & NV50_IR_INTERP_OFFSET)
1763                   interp->setSrc(s++, getSrc(&insn->src[0], 0));
1764                interp->setInterpolate(mode);
1765                interp->setIndirect(0, 0, indirect);
1766 
1767                mkOp2(OP_MERGE, dType, newDefs[i], lo, hi);
1768             } else {
1769                Instruction *interp = mkOp1(nvirOp, dType, newDefs[i], sym);
1770                if (nvirOp == OP_PINTERP)
1771                   interp->setSrc(s++, fp.position);
1772                if (mode & NV50_IR_INTERP_OFFSET)
1773                   interp->setSrc(s++, getSrc(&insn->src[0], 0));
1774                interp->setInterpolate(mode);
1775                interp->setIndirect(0, 0, indirect);
1776             }
1777          } else {
1778             mkLoad(dType, newDefs[i], sym, indirect)->perPatch = vary.patch;
1779          }
1780       }
1781       break;
1782    }
1783    case nir_intrinsic_load_barycentric_at_offset:
1784    case nir_intrinsic_load_barycentric_at_sample:
1785    case nir_intrinsic_load_barycentric_centroid:
1786    case nir_intrinsic_load_barycentric_pixel:
1787    case nir_intrinsic_load_barycentric_sample: {
1788       LValues &newDefs = convert(&insn->dest);
1789       uint32_t mode;
1790 
1791       if (op == nir_intrinsic_load_barycentric_centroid ||
1792           op == nir_intrinsic_load_barycentric_sample) {
1793          mode = NV50_IR_INTERP_CENTROID;
1794       } else if (op == nir_intrinsic_load_barycentric_at_offset) {
1795          Value *offs[2];
1796          for (uint8_t c = 0; c < 2; c++) {
1797             offs[c] = getScratch();
1798             mkOp2(OP_MIN, TYPE_F32, offs[c], getSrc(&insn->src[0], c), loadImm(NULL, 0.4375f));
1799             mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
1800             mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
1801             mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
1802          }
1803          mkOp3v(OP_INSBF, TYPE_U32, newDefs[0], offs[1], mkImm(0x1010), offs[0]);
1804 
1805          mode = NV50_IR_INTERP_OFFSET;
1806       } else if (op == nir_intrinsic_load_barycentric_pixel) {
1807          mode = NV50_IR_INTERP_DEFAULT;
1808       } else if (op == nir_intrinsic_load_barycentric_at_sample) {
1809          info_out->prop.fp.readsSampleLocations = true;
1810          mkOp1(OP_PIXLD, TYPE_U32, newDefs[0], getSrc(&insn->src[0], 0))->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
1811          mode = NV50_IR_INTERP_OFFSET;
1812       } else {
1813          unreachable("all intrinsics already handled above");
1814       }
1815 
1816       loadImm(newDefs[1], mode);
1817       break;
1818    }
1819    case nir_intrinsic_demote:
1820    case nir_intrinsic_discard:
1821       mkOp(OP_DISCARD, TYPE_NONE, NULL);
1822       break;
1823    case nir_intrinsic_demote_if:
1824    case nir_intrinsic_discard_if: {
1825       Value *pred = getSSA(1, FILE_PREDICATE);
1826       if (insn->num_components > 1) {
1827          ERROR("nir_intrinsic_discard_if only with 1 component supported!\n");
1828          assert(false);
1829          return false;
1830       }
1831       mkCmp(OP_SET, CC_NE, TYPE_U8, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1832       mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, pred);
1833       break;
1834    }
1835    case nir_intrinsic_load_base_vertex:
1836    case nir_intrinsic_load_base_instance:
1837    case nir_intrinsic_load_draw_id:
1838    case nir_intrinsic_load_front_face:
1839    case nir_intrinsic_is_helper_invocation:
1840    case nir_intrinsic_load_helper_invocation:
1841    case nir_intrinsic_load_instance_id:
1842    case nir_intrinsic_load_invocation_id:
1843    case nir_intrinsic_load_local_group_size:
1844    case nir_intrinsic_load_local_invocation_id:
1845    case nir_intrinsic_load_num_work_groups:
1846    case nir_intrinsic_load_patch_vertices_in:
1847    case nir_intrinsic_load_primitive_id:
1848    case nir_intrinsic_load_sample_id:
1849    case nir_intrinsic_load_sample_mask_in:
1850    case nir_intrinsic_load_sample_pos:
1851    case nir_intrinsic_load_subgroup_eq_mask:
1852    case nir_intrinsic_load_subgroup_ge_mask:
1853    case nir_intrinsic_load_subgroup_gt_mask:
1854    case nir_intrinsic_load_subgroup_le_mask:
1855    case nir_intrinsic_load_subgroup_lt_mask:
1856    case nir_intrinsic_load_subgroup_invocation:
1857    case nir_intrinsic_load_tess_coord:
1858    case nir_intrinsic_load_tess_level_inner:
1859    case nir_intrinsic_load_tess_level_outer:
1860    case nir_intrinsic_load_vertex_id:
1861    case nir_intrinsic_load_work_group_id:
1862    case nir_intrinsic_load_work_dim: {
1863       const DataType dType = getDType(insn);
1864       SVSemantic sv = convert(op);
1865       LValues &newDefs = convert(&insn->dest);
1866 
1867       for (uint8_t i = 0u; i < nir_intrinsic_dest_components(insn); ++i) {
1868          Value *def;
1869          if (typeSizeof(dType) == 8)
1870             def = getSSA();
1871          else
1872             def = newDefs[i];
1873 
1874          if (sv == SV_TID && info->prop.cp.numThreads[i] == 1) {
1875             loadImm(def, 0u);
1876          } else {
1877             Symbol *sym = mkSysVal(sv, i);
1878             Instruction *rdsv = mkOp1(OP_RDSV, TYPE_U32, def, sym);
1879             if (sv == SV_TESS_OUTER || sv == SV_TESS_INNER)
1880                rdsv->perPatch = 1;
1881          }
1882 
1883          if (typeSizeof(dType) == 8)
1884             mkOp2(OP_MERGE, dType, newDefs[i], def, loadImm(getSSA(), 0u));
1885       }
1886       break;
1887    }
1888    // constants
1889    case nir_intrinsic_load_subgroup_size: {
1890       LValues &newDefs = convert(&insn->dest);
1891       loadImm(newDefs[0], 32u);
1892       break;
1893    }
1894    case nir_intrinsic_vote_all:
1895    case nir_intrinsic_vote_any:
1896    case nir_intrinsic_vote_ieq: {
1897       LValues &newDefs = convert(&insn->dest);
1898       Value *pred = getScratch(1, FILE_PREDICATE);
1899       mkCmp(OP_SET, CC_NE, TYPE_U32, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1900       mkOp1(OP_VOTE, TYPE_U32, pred, pred)->subOp = getSubOp(op);
1901       mkCvt(OP_CVT, TYPE_U32, newDefs[0], TYPE_U8, pred);
1902       break;
1903    }
1904    case nir_intrinsic_ballot: {
1905       LValues &newDefs = convert(&insn->dest);
1906       Value *pred = getSSA(1, FILE_PREDICATE);
1907       mkCmp(OP_SET, CC_NE, TYPE_U32, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1908       mkOp1(OP_VOTE, TYPE_U32, newDefs[0], pred)->subOp = NV50_IR_SUBOP_VOTE_ANY;
1909       break;
1910    }
1911    case nir_intrinsic_read_first_invocation:
1912    case nir_intrinsic_read_invocation: {
1913       LValues &newDefs = convert(&insn->dest);
1914       const DataType dType = getDType(insn);
1915       Value *tmp = getScratch();
1916 
1917       if (op == nir_intrinsic_read_first_invocation) {
1918          mkOp1(OP_VOTE, TYPE_U32, tmp, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY;
1919          mkOp1(OP_BREV, TYPE_U32, tmp, tmp);
1920          mkOp1(OP_BFIND, TYPE_U32, tmp, tmp)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
1921       } else
1922          tmp = getSrc(&insn->src[1], 0);
1923 
1924       for (uint8_t i = 0; i < dest_components; ++i) {
1925          mkOp3(OP_SHFL, dType, newDefs[i], getSrc(&insn->src[0], i), tmp, mkImm(0x1f))
1926             ->subOp = NV50_IR_SUBOP_SHFL_IDX;
1927       }
1928       break;
1929    }
1930    case nir_intrinsic_load_per_vertex_input: {
1931       const DataType dType = getDType(insn);
1932       LValues &newDefs = convert(&insn->dest);
1933       Value *indirectVertex;
1934       Value *indirectOffset;
1935       uint32_t baseVertex = getIndirect(&insn->src[0], 0, indirectVertex);
1936       uint32_t idx = getIndirect(insn, 1, 0, indirectOffset);
1937 
1938       Value *vtxBase = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1939                               mkImm(baseVertex), indirectVertex);
1940       for (uint8_t i = 0u; i < dest_components; ++i) {
1941          uint32_t address = getSlotAddress(insn, idx, i);
1942          loadFrom(FILE_SHADER_INPUT, 0, dType, newDefs[i], address, 0,
1943                   indirectOffset, vtxBase, info_out->in[idx].patch);
1944       }
1945       break;
1946    }
1947    case nir_intrinsic_load_per_vertex_output: {
1948       const DataType dType = getDType(insn);
1949       LValues &newDefs = convert(&insn->dest);
1950       Value *indirectVertex;
1951       Value *indirectOffset;
1952       uint32_t baseVertex = getIndirect(&insn->src[0], 0, indirectVertex);
1953       uint32_t idx = getIndirect(insn, 1, 0, indirectOffset);
1954       Value *vtxBase = NULL;
1955 
1956       if (indirectVertex)
1957          vtxBase = indirectVertex;
1958       else
1959          vtxBase = loadImm(NULL, baseVertex);
1960 
1961       vtxBase = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, FILE_ADDRESS), outBase, vtxBase);
1962 
1963       for (uint8_t i = 0u; i < dest_components; ++i) {
1964          uint32_t address = getSlotAddress(insn, idx, i);
1965          loadFrom(FILE_SHADER_OUTPUT, 0, dType, newDefs[i], address, 0,
1966                   indirectOffset, vtxBase, info_out->in[idx].patch);
1967       }
1968       break;
1969    }
1970    case nir_intrinsic_emit_vertex: {
1971       if (info_out->io.genUserClip > 0)
1972          handleUserClipPlanes();
1973       uint32_t idx = nir_intrinsic_stream_id(insn);
1974       mkOp1(getOperation(op), TYPE_U32, NULL, mkImm(idx))->fixed = 1;
1975       break;
1976    }
1977    case nir_intrinsic_end_primitive: {
1978       uint32_t idx = nir_intrinsic_stream_id(insn);
1979       if (idx)
1980          break;
1981       mkOp1(getOperation(op), TYPE_U32, NULL, mkImm(idx))->fixed = 1;
1982       break;
1983    }
1984    case nir_intrinsic_load_ubo: {
1985       const DataType dType = getDType(insn);
1986       LValues &newDefs = convert(&insn->dest);
1987       Value *indirectIndex;
1988       Value *indirectOffset;
1989       uint32_t index = getIndirect(&insn->src[0], 0, indirectIndex) + 1;
1990       uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
1991 
1992       for (uint8_t i = 0u; i < dest_components; ++i) {
1993          loadFrom(FILE_MEMORY_CONST, index, dType, newDefs[i], offset, i,
1994                   indirectOffset, indirectIndex);
1995       }
1996       break;
1997    }
1998    case nir_intrinsic_get_ssbo_size: {
1999       LValues &newDefs = convert(&insn->dest);
2000       const DataType dType = getDType(insn);
2001       Value *indirectBuffer;
2002       uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
2003 
2004       Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, dType, 0);
2005       mkOp1(OP_BUFQ, dType, newDefs[0], sym)->setIndirect(0, 0, indirectBuffer);
2006       break;
2007    }
2008    case nir_intrinsic_store_ssbo: {
2009       DataType sType = getSType(insn->src[0], false, false);
2010       Value *indirectBuffer;
2011       Value *indirectOffset;
2012       uint32_t buffer = getIndirect(&insn->src[1], 0, indirectBuffer);
2013       uint32_t offset = getIndirect(&insn->src[2], 0, indirectOffset);
2014 
2015       for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
2016          if (!((1u << i) & nir_intrinsic_write_mask(insn)))
2017             continue;
2018          Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, sType,
2019                                 offset + i * typeSizeof(sType));
2020          mkStore(OP_STORE, sType, sym, indirectOffset, getSrc(&insn->src[0], i))
2021             ->setIndirect(0, 1, indirectBuffer);
2022       }
2023       info_out->io.globalAccess |= 0x2;
2024       break;
2025    }
2026    case nir_intrinsic_load_ssbo: {
2027       const DataType dType = getDType(insn);
2028       LValues &newDefs = convert(&insn->dest);
2029       Value *indirectBuffer;
2030       Value *indirectOffset;
2031       uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
2032       uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2033 
2034       for (uint8_t i = 0u; i < dest_components; ++i)
2035          loadFrom(FILE_MEMORY_BUFFER, buffer, dType, newDefs[i], offset, i,
2036                   indirectOffset, indirectBuffer);
2037 
2038       info_out->io.globalAccess |= 0x1;
2039       break;
2040    }
2041    case nir_intrinsic_shared_atomic_add:
2042    case nir_intrinsic_shared_atomic_and:
2043    case nir_intrinsic_shared_atomic_comp_swap:
2044    case nir_intrinsic_shared_atomic_exchange:
2045    case nir_intrinsic_shared_atomic_or:
2046    case nir_intrinsic_shared_atomic_imax:
2047    case nir_intrinsic_shared_atomic_imin:
2048    case nir_intrinsic_shared_atomic_umax:
2049    case nir_intrinsic_shared_atomic_umin:
2050    case nir_intrinsic_shared_atomic_xor: {
2051       const DataType dType = getDType(insn);
2052       LValues &newDefs = convert(&insn->dest);
2053       Value *indirectOffset;
2054       uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2055       Symbol *sym = mkSymbol(FILE_MEMORY_SHARED, 0, dType, offset);
2056       Instruction *atom = mkOp2(OP_ATOM, dType, newDefs[0], sym, getSrc(&insn->src[1], 0));
2057       if (op == nir_intrinsic_shared_atomic_comp_swap)
2058          atom->setSrc(2, getSrc(&insn->src[2], 0));
2059       atom->setIndirect(0, 0, indirectOffset);
2060       atom->subOp = getSubOp(op);
2061       break;
2062    }
2063    case nir_intrinsic_ssbo_atomic_add:
2064    case nir_intrinsic_ssbo_atomic_and:
2065    case nir_intrinsic_ssbo_atomic_comp_swap:
2066    case nir_intrinsic_ssbo_atomic_exchange:
2067    case nir_intrinsic_ssbo_atomic_or:
2068    case nir_intrinsic_ssbo_atomic_imax:
2069    case nir_intrinsic_ssbo_atomic_imin:
2070    case nir_intrinsic_ssbo_atomic_umax:
2071    case nir_intrinsic_ssbo_atomic_umin:
2072    case nir_intrinsic_ssbo_atomic_xor: {
2073       const DataType dType = getDType(insn);
2074       LValues &newDefs = convert(&insn->dest);
2075       Value *indirectBuffer;
2076       Value *indirectOffset;
2077       uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
2078       uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2079 
2080       Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, dType, offset);
2081       Instruction *atom = mkOp2(OP_ATOM, dType, newDefs[0], sym,
2082                                 getSrc(&insn->src[2], 0));
2083       if (op == nir_intrinsic_ssbo_atomic_comp_swap)
2084          atom->setSrc(2, getSrc(&insn->src[3], 0));
2085       atom->setIndirect(0, 0, indirectOffset);
2086       atom->setIndirect(0, 1, indirectBuffer);
2087       atom->subOp = getSubOp(op);
2088 
2089       info_out->io.globalAccess |= 0x2;
2090       break;
2091    }
2092    case nir_intrinsic_global_atomic_add:
2093    case nir_intrinsic_global_atomic_and:
2094    case nir_intrinsic_global_atomic_comp_swap:
2095    case nir_intrinsic_global_atomic_exchange:
2096    case nir_intrinsic_global_atomic_or:
2097    case nir_intrinsic_global_atomic_imax:
2098    case nir_intrinsic_global_atomic_imin:
2099    case nir_intrinsic_global_atomic_umax:
2100    case nir_intrinsic_global_atomic_umin:
2101    case nir_intrinsic_global_atomic_xor: {
2102       const DataType dType = getDType(insn);
2103       LValues &newDefs = convert(&insn->dest);
2104       Value *address;
2105       uint32_t offset = getIndirect(&insn->src[0], 0, address);
2106 
2107       Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, dType, offset);
2108       Instruction *atom =
2109          mkOp2(OP_ATOM, dType, newDefs[0], sym, getSrc(&insn->src[1], 0));
2110       if (op == nir_intrinsic_global_atomic_comp_swap)
2111          atom->setSrc(2, getSrc(&insn->src[2], 0));
2112       atom->setIndirect(0, 0, address);
2113       atom->subOp = getSubOp(op);
2114 
2115       info_out->io.globalAccess |= 0x2;
2116       break;
2117    }
2118    case nir_intrinsic_bindless_image_atomic_add:
2119    case nir_intrinsic_bindless_image_atomic_and:
2120    case nir_intrinsic_bindless_image_atomic_comp_swap:
2121    case nir_intrinsic_bindless_image_atomic_exchange:
2122    case nir_intrinsic_bindless_image_atomic_imax:
2123    case nir_intrinsic_bindless_image_atomic_umax:
2124    case nir_intrinsic_bindless_image_atomic_imin:
2125    case nir_intrinsic_bindless_image_atomic_umin:
2126    case nir_intrinsic_bindless_image_atomic_or:
2127    case nir_intrinsic_bindless_image_atomic_xor:
2128    case nir_intrinsic_bindless_image_atomic_inc_wrap:
2129    case nir_intrinsic_bindless_image_atomic_dec_wrap:
2130    case nir_intrinsic_bindless_image_load:
2131    case nir_intrinsic_bindless_image_samples:
2132    case nir_intrinsic_bindless_image_size:
2133    case nir_intrinsic_bindless_image_store:
2134    case nir_intrinsic_image_atomic_add:
2135    case nir_intrinsic_image_atomic_and:
2136    case nir_intrinsic_image_atomic_comp_swap:
2137    case nir_intrinsic_image_atomic_exchange:
2138    case nir_intrinsic_image_atomic_imax:
2139    case nir_intrinsic_image_atomic_umax:
2140    case nir_intrinsic_image_atomic_imin:
2141    case nir_intrinsic_image_atomic_umin:
2142    case nir_intrinsic_image_atomic_or:
2143    case nir_intrinsic_image_atomic_xor:
2144    case nir_intrinsic_image_atomic_inc_wrap:
2145    case nir_intrinsic_image_atomic_dec_wrap:
2146    case nir_intrinsic_image_load:
2147    case nir_intrinsic_image_samples:
2148    case nir_intrinsic_image_size:
2149    case nir_intrinsic_image_store: {
2150       std::vector<Value*> srcs, defs;
2151       Value *indirect;
2152       DataType ty;
2153 
2154       uint32_t mask = 0;
2155       TexInstruction::Target target =
2156          convert(nir_intrinsic_image_dim(insn), !!nir_intrinsic_image_array(insn), false);
2157       unsigned int argCount = getNIRArgCount(target);
2158       uint16_t location = 0;
2159 
2160       if (opInfo.has_dest) {
2161          LValues &newDefs = convert(&insn->dest);
2162          for (uint8_t i = 0u; i < newDefs.size(); ++i) {
2163             defs.push_back(newDefs[i]);
2164             mask |= 1 << i;
2165          }
2166       }
2167 
2168       int lod_src = -1;
2169       bool bindless = false;
2170       switch (op) {
2171       case nir_intrinsic_bindless_image_atomic_add:
2172       case nir_intrinsic_bindless_image_atomic_and:
2173       case nir_intrinsic_bindless_image_atomic_comp_swap:
2174       case nir_intrinsic_bindless_image_atomic_exchange:
2175       case nir_intrinsic_bindless_image_atomic_imax:
2176       case nir_intrinsic_bindless_image_atomic_umax:
2177       case nir_intrinsic_bindless_image_atomic_imin:
2178       case nir_intrinsic_bindless_image_atomic_umin:
2179       case nir_intrinsic_bindless_image_atomic_or:
2180       case nir_intrinsic_bindless_image_atomic_xor:
2181       case nir_intrinsic_bindless_image_atomic_inc_wrap:
2182       case nir_intrinsic_bindless_image_atomic_dec_wrap:
2183          ty = getDType(insn);
2184          bindless = true;
2185          info_out->io.globalAccess |= 0x2;
2186          mask = 0x1;
2187          break;
2188       case nir_intrinsic_image_atomic_add:
2189       case nir_intrinsic_image_atomic_and:
2190       case nir_intrinsic_image_atomic_comp_swap:
2191       case nir_intrinsic_image_atomic_exchange:
2192       case nir_intrinsic_image_atomic_imax:
2193       case nir_intrinsic_image_atomic_umax:
2194       case nir_intrinsic_image_atomic_imin:
2195       case nir_intrinsic_image_atomic_umin:
2196       case nir_intrinsic_image_atomic_or:
2197       case nir_intrinsic_image_atomic_xor:
2198       case nir_intrinsic_image_atomic_inc_wrap:
2199       case nir_intrinsic_image_atomic_dec_wrap:
2200          ty = getDType(insn);
2201          bindless = false;
2202          info_out->io.globalAccess |= 0x2;
2203          mask = 0x1;
2204          break;
2205       case nir_intrinsic_bindless_image_load:
2206       case nir_intrinsic_image_load:
2207          ty = TYPE_U32;
2208          bindless = op == nir_intrinsic_bindless_image_load;
2209          info_out->io.globalAccess |= 0x1;
2210          lod_src = 4;
2211          break;
2212       case nir_intrinsic_bindless_image_store:
2213       case nir_intrinsic_image_store:
2214          ty = TYPE_U32;
2215          bindless = op == nir_intrinsic_bindless_image_store;
2216          info_out->io.globalAccess |= 0x2;
2217          lod_src = 5;
2218          mask = 0xf;
2219          break;
2220       case nir_intrinsic_bindless_image_samples:
2221          mask = 0x8;
2222          /* fallthrough */
2223       case nir_intrinsic_image_samples:
2224          ty = TYPE_U32;
2225          bindless = op == nir_intrinsic_bindless_image_samples;
2226          mask = 0x8;
2227          break;
2228       case nir_intrinsic_bindless_image_size:
2229       case nir_intrinsic_image_size:
2230          assert(nir_src_as_uint(insn->src[1]) == 0);
2231          ty = TYPE_U32;
2232          bindless = op == nir_intrinsic_bindless_image_size;
2233          break;
2234       default:
2235          unreachable("unhandled image opcode");
2236          break;
2237       }
2238 
2239       if (bindless)
2240          indirect = getSrc(&insn->src[0], 0);
2241       else
2242          location = getIndirect(&insn->src[0], 0, indirect);
2243 
2244       // coords
2245       if (opInfo.num_srcs >= 2)
2246          for (unsigned int i = 0u; i < argCount; ++i)
2247             srcs.push_back(getSrc(&insn->src[1], i));
2248 
2249       // the sampler is just another src added after coords
2250       if (opInfo.num_srcs >= 3 && target.isMS())
2251          srcs.push_back(getSrc(&insn->src[2], 0));
2252 
2253       if (opInfo.num_srcs >= 4 && lod_src != 4) {
2254          unsigned components = opInfo.src_components[3] ? opInfo.src_components[3] : insn->num_components;
2255          for (uint8_t i = 0u; i < components; ++i)
2256             srcs.push_back(getSrc(&insn->src[3], i));
2257       }
2258 
2259       if (opInfo.num_srcs >= 5 && lod_src != 5)
2260          // 1 for aotmic swap
2261          for (uint8_t i = 0u; i < opInfo.src_components[4]; ++i)
2262             srcs.push_back(getSrc(&insn->src[4], i));
2263 
2264       TexInstruction *texi = mkTex(getOperation(op), target.getEnum(), location, 0, defs, srcs);
2265       texi->tex.bindless = bindless;
2266       texi->tex.format = nv50_ir::TexInstruction::translateImgFormat(nir_intrinsic_format(insn));
2267       texi->tex.mask = mask;
2268       texi->cache = convert(nir_intrinsic_access(insn));
2269       texi->setType(ty);
2270       texi->subOp = getSubOp(op);
2271 
2272       if (indirect)
2273          texi->setIndirectR(indirect);
2274 
2275       break;
2276    }
2277    case nir_intrinsic_store_scratch:
2278    case nir_intrinsic_store_shared: {
2279       DataType sType = getSType(insn->src[0], false, false);
2280       Value *indirectOffset;
2281       uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2282 
2283       for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
2284          if (!((1u << i) & nir_intrinsic_write_mask(insn)))
2285             continue;
2286          Symbol *sym = mkSymbol(getFile(op), 0, sType, offset + i * typeSizeof(sType));
2287          mkStore(OP_STORE, sType, sym, indirectOffset, getSrc(&insn->src[0], i));
2288       }
2289       break;
2290    }
2291    case nir_intrinsic_load_kernel_input:
2292    case nir_intrinsic_load_scratch:
2293    case nir_intrinsic_load_shared: {
2294       const DataType dType = getDType(insn);
2295       LValues &newDefs = convert(&insn->dest);
2296       Value *indirectOffset;
2297       uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2298 
2299       for (uint8_t i = 0u; i < dest_components; ++i)
2300          loadFrom(getFile(op), 0, dType, newDefs[i], offset, i, indirectOffset);
2301 
2302       break;
2303    }
2304    case nir_intrinsic_control_barrier: {
2305       // TODO: add flag to shader_info
2306       info_out->numBarriers = 1;
2307       Instruction *bar = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2308       bar->fixed = 1;
2309       bar->subOp = NV50_IR_SUBOP_BAR_SYNC;
2310       break;
2311    }
2312    case nir_intrinsic_group_memory_barrier:
2313    case nir_intrinsic_memory_barrier:
2314    case nir_intrinsic_memory_barrier_buffer:
2315    case nir_intrinsic_memory_barrier_image:
2316    case nir_intrinsic_memory_barrier_shared: {
2317       Instruction *bar = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2318       bar->fixed = 1;
2319       bar->subOp = getSubOp(op);
2320       break;
2321    }
2322    case nir_intrinsic_memory_barrier_tcs_patch:
2323       break;
2324    case nir_intrinsic_shader_clock: {
2325       const DataType dType = getDType(insn);
2326       LValues &newDefs = convert(&insn->dest);
2327 
2328       loadImm(newDefs[0], 0u);
2329       mkOp1(OP_RDSV, dType, newDefs[1], mkSysVal(SV_CLOCK, 0))->fixed = 1;
2330       break;
2331    }
2332    case nir_intrinsic_load_global:
2333    case nir_intrinsic_load_global_constant: {
2334       const DataType dType = getDType(insn);
2335       LValues &newDefs = convert(&insn->dest);
2336       Value *indirectOffset;
2337       uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2338 
2339       for (auto i = 0u; i < dest_components; ++i)
2340          loadFrom(FILE_MEMORY_GLOBAL, 0, dType, newDefs[i], offset, i, indirectOffset);
2341 
2342       info_out->io.globalAccess |= 0x1;
2343       break;
2344    }
2345    case nir_intrinsic_store_global: {
2346       DataType sType = getSType(insn->src[0], false, false);
2347 
2348       for (auto i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
2349          if (!((1u << i) & nir_intrinsic_write_mask(insn)))
2350             continue;
2351          if (typeSizeof(sType) == 8) {
2352             Value *split[2];
2353             mkSplit(split, 4, getSrc(&insn->src[0], i));
2354 
2355             Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, i * typeSizeof(sType));
2356             mkStore(OP_STORE, TYPE_U32, sym, getSrc(&insn->src[1], 0), split[0]);
2357 
2358             sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, i * typeSizeof(sType) + 4);
2359             mkStore(OP_STORE, TYPE_U32, sym, getSrc(&insn->src[1], 0), split[1]);
2360          } else {
2361             Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, sType, i * typeSizeof(sType));
2362             mkStore(OP_STORE, sType, sym, getSrc(&insn->src[1], 0), getSrc(&insn->src[0], i));
2363          }
2364       }
2365 
2366       info_out->io.globalAccess |= 0x2;
2367       break;
2368    }
2369    default:
2370       ERROR("unknown nir_intrinsic_op %s\n", nir_intrinsic_infos[op].name);
2371       return false;
2372    }
2373 
2374    return true;
2375 }
2376 
2377 bool
visit(nir_jump_instr * insn)2378 Converter::visit(nir_jump_instr *insn)
2379 {
2380    switch (insn->type) {
2381    case nir_jump_return:
2382       // TODO: this only works in the main function
2383       mkFlow(OP_BRA, exit, CC_ALWAYS, NULL);
2384       bb->cfg.attach(&exit->cfg, Graph::Edge::CROSS);
2385       break;
2386    case nir_jump_break:
2387    case nir_jump_continue: {
2388       bool isBreak = insn->type == nir_jump_break;
2389       nir_block *block = insn->instr.block;
2390       BasicBlock *target = convert(block->successors[0]);
2391       mkFlow(isBreak ? OP_BREAK : OP_CONT, target, CC_ALWAYS, NULL);
2392       bb->cfg.attach(&target->cfg, isBreak ? Graph::Edge::CROSS : Graph::Edge::BACK);
2393       break;
2394    }
2395    default:
2396       ERROR("unknown nir_jump_type %u\n", insn->type);
2397       return false;
2398    }
2399 
2400    return true;
2401 }
2402 
2403 Value*
convert(nir_load_const_instr * insn,uint8_t idx)2404 Converter::convert(nir_load_const_instr *insn, uint8_t idx)
2405 {
2406    Value *val;
2407 
2408    if (immInsertPos)
2409       setPosition(immInsertPos, true);
2410    else
2411       setPosition(bb, false);
2412 
2413    switch (insn->def.bit_size) {
2414    case 64:
2415       val = loadImm(getSSA(8), insn->value[idx].u64);
2416       break;
2417    case 32:
2418       val = loadImm(getSSA(4), insn->value[idx].u32);
2419       break;
2420    case 16:
2421       val = loadImm(getSSA(2), insn->value[idx].u16);
2422       break;
2423    case 8:
2424       val = loadImm(getSSA(1), insn->value[idx].u8);
2425       break;
2426    default:
2427       unreachable("unhandled bit size!\n");
2428    }
2429    setPosition(bb, true);
2430    return val;
2431 }
2432 
2433 bool
visit(nir_load_const_instr * insn)2434 Converter::visit(nir_load_const_instr *insn)
2435 {
2436    assert(insn->def.bit_size <= 64);
2437    immediates[insn->def.index] = insn;
2438    return true;
2439 }
2440 
2441 #define DEFAULT_CHECKS \
2442       if (insn->dest.dest.ssa.num_components > 1) { \
2443          ERROR("nir_alu_instr only supported with 1 component!\n"); \
2444          return false; \
2445       } \
2446       if (insn->dest.write_mask != 1) { \
2447          ERROR("nir_alu_instr only with write_mask of 1 supported!\n"); \
2448          return false; \
2449       }
2450 bool
visit(nir_alu_instr * insn)2451 Converter::visit(nir_alu_instr *insn)
2452 {
2453    const nir_op op = insn->op;
2454    const nir_op_info &info = nir_op_infos[op];
2455    DataType dType = getDType(insn);
2456    const std::vector<DataType> sTypes = getSTypes(insn);
2457 
2458    Instruction *oldPos = this->bb->getExit();
2459 
2460    switch (op) {
2461    case nir_op_fabs:
2462    case nir_op_iabs:
2463    case nir_op_fadd:
2464    case nir_op_iadd:
2465    case nir_op_iand:
2466    case nir_op_fceil:
2467    case nir_op_fcos:
2468    case nir_op_fddx:
2469    case nir_op_fddx_coarse:
2470    case nir_op_fddx_fine:
2471    case nir_op_fddy:
2472    case nir_op_fddy_coarse:
2473    case nir_op_fddy_fine:
2474    case nir_op_fdiv:
2475    case nir_op_idiv:
2476    case nir_op_udiv:
2477    case nir_op_fexp2:
2478    case nir_op_ffloor:
2479    case nir_op_ffma:
2480    case nir_op_flog2:
2481    case nir_op_fmax:
2482    case nir_op_imax:
2483    case nir_op_umax:
2484    case nir_op_fmin:
2485    case nir_op_imin:
2486    case nir_op_umin:
2487    case nir_op_fmod:
2488    case nir_op_imod:
2489    case nir_op_umod:
2490    case nir_op_fmul:
2491    case nir_op_imul:
2492    case nir_op_imul_high:
2493    case nir_op_umul_high:
2494    case nir_op_fneg:
2495    case nir_op_ineg:
2496    case nir_op_inot:
2497    case nir_op_ior:
2498    case nir_op_pack_64_2x32_split:
2499    case nir_op_fpow:
2500    case nir_op_frcp:
2501    case nir_op_frem:
2502    case nir_op_irem:
2503    case nir_op_frsq:
2504    case nir_op_fsat:
2505    case nir_op_ishr:
2506    case nir_op_ushr:
2507    case nir_op_fsin:
2508    case nir_op_fsqrt:
2509    case nir_op_ftrunc:
2510    case nir_op_ishl:
2511    case nir_op_ixor: {
2512       DEFAULT_CHECKS;
2513       LValues &newDefs = convert(&insn->dest);
2514       operation preOp = preOperationNeeded(op);
2515       if (preOp != OP_NOP) {
2516          assert(info.num_inputs < 2);
2517          Value *tmp = getSSA(typeSizeof(dType));
2518          Instruction *i0 = mkOp(preOp, dType, tmp);
2519          Instruction *i1 = mkOp(getOperation(op), dType, newDefs[0]);
2520          if (info.num_inputs) {
2521             i0->setSrc(0, getSrc(&insn->src[0]));
2522             i1->setSrc(0, tmp);
2523          }
2524          i1->subOp = getSubOp(op);
2525       } else {
2526          Instruction *i = mkOp(getOperation(op), dType, newDefs[0]);
2527          for (unsigned s = 0u; s < info.num_inputs; ++s) {
2528             i->setSrc(s, getSrc(&insn->src[s]));
2529          }
2530          i->subOp = getSubOp(op);
2531       }
2532       break;
2533    }
2534    case nir_op_ifind_msb:
2535    case nir_op_ufind_msb: {
2536       DEFAULT_CHECKS;
2537       LValues &newDefs = convert(&insn->dest);
2538       dType = sTypes[0];
2539       mkOp1(getOperation(op), dType, newDefs[0], getSrc(&insn->src[0]));
2540       break;
2541    }
2542    case nir_op_fround_even: {
2543       DEFAULT_CHECKS;
2544       LValues &newDefs = convert(&insn->dest);
2545       mkCvt(OP_CVT, dType, newDefs[0], dType, getSrc(&insn->src[0]))->rnd = ROUND_NI;
2546       break;
2547    }
2548    // convert instructions
2549    case nir_op_f2f32:
2550    case nir_op_f2i32:
2551    case nir_op_f2u32:
2552    case nir_op_i2f32:
2553    case nir_op_i2i32:
2554    case nir_op_u2f32:
2555    case nir_op_u2u32:
2556    case nir_op_f2f64:
2557    case nir_op_f2i64:
2558    case nir_op_f2u64:
2559    case nir_op_i2f64:
2560    case nir_op_i2i64:
2561    case nir_op_u2f64:
2562    case nir_op_u2u64: {
2563       DEFAULT_CHECKS;
2564       LValues &newDefs = convert(&insn->dest);
2565       Instruction *i = mkOp1(getOperation(op), dType, newDefs[0], getSrc(&insn->src[0]));
2566       if (op == nir_op_f2i32 || op == nir_op_f2i64 || op == nir_op_f2u32 || op == nir_op_f2u64)
2567          i->rnd = ROUND_Z;
2568       i->sType = sTypes[0];
2569       break;
2570    }
2571    // compare instructions
2572    case nir_op_feq32:
2573    case nir_op_ieq32:
2574    case nir_op_fge32:
2575    case nir_op_ige32:
2576    case nir_op_uge32:
2577    case nir_op_flt32:
2578    case nir_op_ilt32:
2579    case nir_op_ult32:
2580    case nir_op_fneu32:
2581    case nir_op_ine32: {
2582       DEFAULT_CHECKS;
2583       LValues &newDefs = convert(&insn->dest);
2584       Instruction *i = mkCmp(getOperation(op),
2585                              getCondCode(op),
2586                              dType,
2587                              newDefs[0],
2588                              dType,
2589                              getSrc(&insn->src[0]),
2590                              getSrc(&insn->src[1]));
2591       if (info.num_inputs == 3)
2592          i->setSrc(2, getSrc(&insn->src[2]));
2593       i->sType = sTypes[0];
2594       break;
2595    }
2596    case nir_op_mov:
2597    case nir_op_vec2:
2598    case nir_op_vec3:
2599    case nir_op_vec4:
2600    case nir_op_vec8:
2601    case nir_op_vec16: {
2602       LValues &newDefs = convert(&insn->dest);
2603       for (LValues::size_type c = 0u; c < newDefs.size(); ++c) {
2604          mkMov(newDefs[c], getSrc(&insn->src[c]), dType);
2605       }
2606       break;
2607    }
2608    // (un)pack
2609    case nir_op_pack_64_2x32: {
2610       LValues &newDefs = convert(&insn->dest);
2611       Instruction *merge = mkOp(OP_MERGE, dType, newDefs[0]);
2612       merge->setSrc(0, getSrc(&insn->src[0], 0));
2613       merge->setSrc(1, getSrc(&insn->src[0], 1));
2614       break;
2615    }
2616    case nir_op_pack_half_2x16_split: {
2617       LValues &newDefs = convert(&insn->dest);
2618       Value *tmpH = getSSA();
2619       Value *tmpL = getSSA();
2620 
2621       mkCvt(OP_CVT, TYPE_F16, tmpL, TYPE_F32, getSrc(&insn->src[0]));
2622       mkCvt(OP_CVT, TYPE_F16, tmpH, TYPE_F32, getSrc(&insn->src[1]));
2623       mkOp3(OP_INSBF, TYPE_U32, newDefs[0], tmpH, mkImm(0x1010), tmpL);
2624       break;
2625    }
2626    case nir_op_unpack_half_2x16_split_x:
2627    case nir_op_unpack_half_2x16_split_y: {
2628       LValues &newDefs = convert(&insn->dest);
2629       Instruction *cvt = mkCvt(OP_CVT, TYPE_F32, newDefs[0], TYPE_F16, getSrc(&insn->src[0]));
2630       if (op == nir_op_unpack_half_2x16_split_y)
2631          cvt->subOp = 1;
2632       break;
2633    }
2634    case nir_op_unpack_64_2x32: {
2635       LValues &newDefs = convert(&insn->dest);
2636       mkOp1(OP_SPLIT, dType, newDefs[0], getSrc(&insn->src[0]))->setDef(1, newDefs[1]);
2637       break;
2638    }
2639    case nir_op_unpack_64_2x32_split_x: {
2640       LValues &newDefs = convert(&insn->dest);
2641       mkOp1(OP_SPLIT, dType, newDefs[0], getSrc(&insn->src[0]))->setDef(1, getSSA());
2642       break;
2643    }
2644    case nir_op_unpack_64_2x32_split_y: {
2645       LValues &newDefs = convert(&insn->dest);
2646       mkOp1(OP_SPLIT, dType, getSSA(), getSrc(&insn->src[0]))->setDef(1, newDefs[0]);
2647       break;
2648    }
2649    // special instructions
2650    case nir_op_fsign:
2651    case nir_op_isign: {
2652       DEFAULT_CHECKS;
2653       DataType iType;
2654       if (::isFloatType(dType))
2655          iType = TYPE_F32;
2656       else
2657          iType = TYPE_S32;
2658 
2659       LValues &newDefs = convert(&insn->dest);
2660       LValue *val0 = getScratch();
2661       LValue *val1 = getScratch();
2662       mkCmp(OP_SET, CC_GT, iType, val0, dType, getSrc(&insn->src[0]), zero);
2663       mkCmp(OP_SET, CC_LT, iType, val1, dType, getSrc(&insn->src[0]), zero);
2664 
2665       if (dType == TYPE_F64) {
2666          mkOp2(OP_SUB, iType, val0, val0, val1);
2667          mkCvt(OP_CVT, TYPE_F64, newDefs[0], iType, val0);
2668       } else if (dType == TYPE_S64 || dType == TYPE_U64) {
2669          mkOp2(OP_SUB, iType, val0, val1, val0);
2670          mkOp2(OP_SHR, iType, val1, val0, loadImm(NULL, 31));
2671          mkOp2(OP_MERGE, dType, newDefs[0], val0, val1);
2672       } else if (::isFloatType(dType))
2673          mkOp2(OP_SUB, iType, newDefs[0], val0, val1);
2674       else
2675          mkOp2(OP_SUB, iType, newDefs[0], val1, val0);
2676       break;
2677    }
2678    case nir_op_fcsel:
2679    case nir_op_b32csel: {
2680       DEFAULT_CHECKS;
2681       LValues &newDefs = convert(&insn->dest);
2682       mkCmp(OP_SLCT, CC_NE, dType, newDefs[0], sTypes[0], getSrc(&insn->src[1]), getSrc(&insn->src[2]), getSrc(&insn->src[0]));
2683       break;
2684    }
2685    case nir_op_ibitfield_extract:
2686    case nir_op_ubitfield_extract: {
2687       DEFAULT_CHECKS;
2688       Value *tmp = getSSA();
2689       LValues &newDefs = convert(&insn->dest);
2690       mkOp3(OP_INSBF, dType, tmp, getSrc(&insn->src[2]), loadImm(NULL, 0x808), getSrc(&insn->src[1]));
2691       mkOp2(OP_EXTBF, dType, newDefs[0], getSrc(&insn->src[0]), tmp);
2692       break;
2693    }
2694    case nir_op_bfm: {
2695       DEFAULT_CHECKS;
2696       LValues &newDefs = convert(&insn->dest);
2697       mkOp2(OP_BMSK, dType, newDefs[0], getSrc(&insn->src[1]), getSrc(&insn->src[0]))->subOp = NV50_IR_SUBOP_BMSK_W;
2698       break;
2699    }
2700    case nir_op_bitfield_insert: {
2701       DEFAULT_CHECKS;
2702       LValues &newDefs = convert(&insn->dest);
2703       LValue *temp = getSSA();
2704       mkOp3(OP_INSBF, TYPE_U32, temp, getSrc(&insn->src[3]), mkImm(0x808), getSrc(&insn->src[2]));
2705       mkOp3(OP_INSBF, dType, newDefs[0], getSrc(&insn->src[1]), temp, getSrc(&insn->src[0]));
2706       break;
2707    }
2708    case nir_op_bit_count: {
2709       DEFAULT_CHECKS;
2710       LValues &newDefs = convert(&insn->dest);
2711       mkOp2(OP_POPCNT, dType, newDefs[0], getSrc(&insn->src[0]), getSrc(&insn->src[0]));
2712       break;
2713    }
2714    case nir_op_bitfield_reverse: {
2715       DEFAULT_CHECKS;
2716       LValues &newDefs = convert(&insn->dest);
2717       mkOp1(OP_BREV, TYPE_U32, newDefs[0], getSrc(&insn->src[0]));
2718       break;
2719    }
2720    case nir_op_find_lsb: {
2721       DEFAULT_CHECKS;
2722       LValues &newDefs = convert(&insn->dest);
2723       Value *tmp = getSSA();
2724       mkOp1(OP_BREV, TYPE_U32, tmp, getSrc(&insn->src[0]));
2725       mkOp1(OP_BFIND, TYPE_U32, newDefs[0], tmp)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2726       break;
2727    }
2728    case nir_op_extract_u8: {
2729       DEFAULT_CHECKS;
2730       LValues &newDefs = convert(&insn->dest);
2731       Value *prmt = getSSA();
2732       mkOp2(OP_OR, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x4440));
2733       mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2734       break;
2735    }
2736    case nir_op_extract_i8: {
2737       DEFAULT_CHECKS;
2738       LValues &newDefs = convert(&insn->dest);
2739       Value *prmt = getSSA();
2740       mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x1111), loadImm(NULL, 0x8880));
2741       mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2742       break;
2743    }
2744    case nir_op_extract_u16: {
2745       DEFAULT_CHECKS;
2746       LValues &newDefs = convert(&insn->dest);
2747       Value *prmt = getSSA();
2748       mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x22), loadImm(NULL, 0x4410));
2749       mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2750       break;
2751    }
2752    case nir_op_extract_i16: {
2753       DEFAULT_CHECKS;
2754       LValues &newDefs = convert(&insn->dest);
2755       Value *prmt = getSSA();
2756       mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x2222), loadImm(NULL, 0x9910));
2757       mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2758       break;
2759    }
2760    case nir_op_urol: {
2761       DEFAULT_CHECKS;
2762       LValues &newDefs = convert(&insn->dest);
2763       mkOp3(OP_SHF, TYPE_U32, newDefs[0], getSrc(&insn->src[0]),
2764             getSrc(&insn->src[1]), getSrc(&insn->src[0]))
2765          ->subOp = NV50_IR_SUBOP_SHF_L |
2766                    NV50_IR_SUBOP_SHF_W |
2767                    NV50_IR_SUBOP_SHF_HI;
2768       break;
2769    }
2770    case nir_op_uror: {
2771       DEFAULT_CHECKS;
2772       LValues &newDefs = convert(&insn->dest);
2773       mkOp3(OP_SHF, TYPE_U32, newDefs[0], getSrc(&insn->src[0]),
2774             getSrc(&insn->src[1]), getSrc(&insn->src[0]))
2775          ->subOp = NV50_IR_SUBOP_SHF_R |
2776                    NV50_IR_SUBOP_SHF_W |
2777                    NV50_IR_SUBOP_SHF_LO;
2778       break;
2779    }
2780    // boolean conversions
2781    case nir_op_b2f32: {
2782       DEFAULT_CHECKS;
2783       LValues &newDefs = convert(&insn->dest);
2784       mkOp2(OP_AND, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), loadImm(NULL, 1.0f));
2785       break;
2786    }
2787    case nir_op_b2f64: {
2788       DEFAULT_CHECKS;
2789       LValues &newDefs = convert(&insn->dest);
2790       Value *tmp = getSSA(4);
2791       mkOp2(OP_AND, TYPE_U32, tmp, getSrc(&insn->src[0]), loadImm(NULL, 0x3ff00000));
2792       mkOp2(OP_MERGE, TYPE_U64, newDefs[0], loadImm(NULL, 0), tmp);
2793       break;
2794    }
2795    case nir_op_f2b32:
2796    case nir_op_i2b32: {
2797       DEFAULT_CHECKS;
2798       LValues &newDefs = convert(&insn->dest);
2799       Value *src1;
2800       if (typeSizeof(sTypes[0]) == 8) {
2801          src1 = loadImm(getSSA(8), 0.0);
2802       } else {
2803          src1 = zero;
2804       }
2805       CondCode cc = op == nir_op_f2b32 ? CC_NEU : CC_NE;
2806       mkCmp(OP_SET, cc, TYPE_U32, newDefs[0], sTypes[0], getSrc(&insn->src[0]), src1);
2807       break;
2808    }
2809    case nir_op_b2i32: {
2810       DEFAULT_CHECKS;
2811       LValues &newDefs = convert(&insn->dest);
2812       mkOp2(OP_AND, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), loadImm(NULL, 1));
2813       break;
2814    }
2815    case nir_op_b2i64: {
2816       DEFAULT_CHECKS;
2817       LValues &newDefs = convert(&insn->dest);
2818       LValue *def = getScratch();
2819       mkOp2(OP_AND, TYPE_U32, def, getSrc(&insn->src[0]), loadImm(NULL, 1));
2820       mkOp2(OP_MERGE, TYPE_S64, newDefs[0], def, loadImm(NULL, 0));
2821       break;
2822    }
2823    default:
2824       ERROR("unknown nir_op %s\n", info.name);
2825       assert(false);
2826       return false;
2827    }
2828 
2829    if (!oldPos) {
2830       oldPos = this->bb->getEntry();
2831       oldPos->precise = insn->exact;
2832    }
2833 
2834    if (unlikely(!oldPos))
2835       return true;
2836 
2837    while (oldPos->next) {
2838       oldPos = oldPos->next;
2839       oldPos->precise = insn->exact;
2840    }
2841    oldPos->saturate = insn->dest.saturate;
2842 
2843    return true;
2844 }
2845 #undef DEFAULT_CHECKS
2846 
2847 bool
visit(nir_ssa_undef_instr * insn)2848 Converter::visit(nir_ssa_undef_instr *insn)
2849 {
2850    LValues &newDefs = convert(&insn->def);
2851    for (uint8_t i = 0u; i < insn->def.num_components; ++i) {
2852       mkOp(OP_NOP, TYPE_NONE, newDefs[i]);
2853    }
2854    return true;
2855 }
2856 
2857 #define CASE_SAMPLER(ty) \
2858    case GLSL_SAMPLER_DIM_ ## ty : \
2859       if (isArray && !isShadow) \
2860          return TEX_TARGET_ ## ty ## _ARRAY; \
2861       else if (!isArray && isShadow) \
2862          return TEX_TARGET_## ty ## _SHADOW; \
2863       else if (isArray && isShadow) \
2864          return TEX_TARGET_## ty ## _ARRAY_SHADOW; \
2865       else \
2866          return TEX_TARGET_ ## ty
2867 
2868 TexTarget
convert(glsl_sampler_dim dim,bool isArray,bool isShadow)2869 Converter::convert(glsl_sampler_dim dim, bool isArray, bool isShadow)
2870 {
2871    switch (dim) {
2872    CASE_SAMPLER(1D);
2873    CASE_SAMPLER(2D);
2874    CASE_SAMPLER(CUBE);
2875    case GLSL_SAMPLER_DIM_3D:
2876       return TEX_TARGET_3D;
2877    case GLSL_SAMPLER_DIM_MS:
2878       if (isArray)
2879          return TEX_TARGET_2D_MS_ARRAY;
2880       return TEX_TARGET_2D_MS;
2881    case GLSL_SAMPLER_DIM_RECT:
2882       if (isShadow)
2883          return TEX_TARGET_RECT_SHADOW;
2884       return TEX_TARGET_RECT;
2885    case GLSL_SAMPLER_DIM_BUF:
2886       return TEX_TARGET_BUFFER;
2887    case GLSL_SAMPLER_DIM_EXTERNAL:
2888       return TEX_TARGET_2D;
2889    default:
2890       ERROR("unknown glsl_sampler_dim %u\n", dim);
2891       assert(false);
2892       return TEX_TARGET_COUNT;
2893    }
2894 }
2895 #undef CASE_SAMPLER
2896 
2897 Value*
applyProjection(Value * src,Value * proj)2898 Converter::applyProjection(Value *src, Value *proj)
2899 {
2900    if (!proj)
2901       return src;
2902    return mkOp2v(OP_MUL, TYPE_F32, getScratch(), src, proj);
2903 }
2904 
2905 unsigned int
getNIRArgCount(TexInstruction::Target & target)2906 Converter::getNIRArgCount(TexInstruction::Target& target)
2907 {
2908    unsigned int result = target.getArgCount();
2909    if (target.isCube() && target.isArray())
2910       result--;
2911    if (target.isMS())
2912       result--;
2913    return result;
2914 }
2915 
2916 CacheMode
convert(enum gl_access_qualifier access)2917 Converter::convert(enum gl_access_qualifier access)
2918 {
2919    if (access & ACCESS_VOLATILE)
2920       return CACHE_CV;
2921    if (access & ACCESS_COHERENT)
2922       return CACHE_CG;
2923    return CACHE_CA;
2924 }
2925 
2926 bool
visit(nir_tex_instr * insn)2927 Converter::visit(nir_tex_instr *insn)
2928 {
2929    switch (insn->op) {
2930    case nir_texop_lod:
2931    case nir_texop_query_levels:
2932    case nir_texop_tex:
2933    case nir_texop_texture_samples:
2934    case nir_texop_tg4:
2935    case nir_texop_txb:
2936    case nir_texop_txd:
2937    case nir_texop_txf:
2938    case nir_texop_txf_ms:
2939    case nir_texop_txl:
2940    case nir_texop_txs: {
2941       LValues &newDefs = convert(&insn->dest);
2942       std::vector<Value*> srcs;
2943       std::vector<Value*> defs;
2944       std::vector<nir_src*> offsets;
2945       uint8_t mask = 0;
2946       bool lz = false;
2947       Value *proj = NULL;
2948       TexInstruction::Target target = convert(insn->sampler_dim, insn->is_array, insn->is_shadow);
2949       operation op = getOperation(insn->op);
2950 
2951       int r, s;
2952       int biasIdx = nir_tex_instr_src_index(insn, nir_tex_src_bias);
2953       int compIdx = nir_tex_instr_src_index(insn, nir_tex_src_comparator);
2954       int coordsIdx = nir_tex_instr_src_index(insn, nir_tex_src_coord);
2955       int ddxIdx = nir_tex_instr_src_index(insn, nir_tex_src_ddx);
2956       int ddyIdx = nir_tex_instr_src_index(insn, nir_tex_src_ddy);
2957       int msIdx = nir_tex_instr_src_index(insn, nir_tex_src_ms_index);
2958       int lodIdx = nir_tex_instr_src_index(insn, nir_tex_src_lod);
2959       int offsetIdx = nir_tex_instr_src_index(insn, nir_tex_src_offset);
2960       int projIdx = nir_tex_instr_src_index(insn, nir_tex_src_projector);
2961       int sampOffIdx = nir_tex_instr_src_index(insn, nir_tex_src_sampler_offset);
2962       int texOffIdx = nir_tex_instr_src_index(insn, nir_tex_src_texture_offset);
2963       int sampHandleIdx = nir_tex_instr_src_index(insn, nir_tex_src_sampler_handle);
2964       int texHandleIdx = nir_tex_instr_src_index(insn, nir_tex_src_texture_handle);
2965 
2966       bool bindless = sampHandleIdx != -1 || texHandleIdx != -1;
2967       assert((sampHandleIdx != -1) == (texHandleIdx != -1));
2968 
2969       if (projIdx != -1)
2970          proj = mkOp1v(OP_RCP, TYPE_F32, getScratch(), getSrc(&insn->src[projIdx].src, 0));
2971 
2972       srcs.resize(insn->coord_components);
2973       for (uint8_t i = 0u; i < insn->coord_components; ++i)
2974          srcs[i] = applyProjection(getSrc(&insn->src[coordsIdx].src, i), proj);
2975 
2976       // sometimes we get less args than target.getArgCount, but codegen expects the latter
2977       if (insn->coord_components) {
2978          uint32_t argCount = target.getArgCount();
2979 
2980          if (target.isMS())
2981             argCount -= 1;
2982 
2983          for (uint32_t i = 0u; i < (argCount - insn->coord_components); ++i)
2984             srcs.push_back(getSSA());
2985       }
2986 
2987       if (insn->op == nir_texop_texture_samples)
2988          srcs.push_back(zero);
2989       else if (!insn->num_srcs)
2990          srcs.push_back(loadImm(NULL, 0));
2991       if (biasIdx != -1)
2992          srcs.push_back(getSrc(&insn->src[biasIdx].src, 0));
2993       if (lodIdx != -1)
2994          srcs.push_back(getSrc(&insn->src[lodIdx].src, 0));
2995       else if (op == OP_TXF)
2996          lz = true;
2997       if (msIdx != -1)
2998          srcs.push_back(getSrc(&insn->src[msIdx].src, 0));
2999       if (offsetIdx != -1)
3000          offsets.push_back(&insn->src[offsetIdx].src);
3001       if (compIdx != -1)
3002          srcs.push_back(applyProjection(getSrc(&insn->src[compIdx].src, 0), proj));
3003       if (texOffIdx != -1) {
3004          srcs.push_back(getSrc(&insn->src[texOffIdx].src, 0));
3005          texOffIdx = srcs.size() - 1;
3006       }
3007       if (sampOffIdx != -1) {
3008          srcs.push_back(getSrc(&insn->src[sampOffIdx].src, 0));
3009          sampOffIdx = srcs.size() - 1;
3010       }
3011       if (bindless) {
3012          // currently we use the lower bits
3013          Value *split[2];
3014          Value *handle = getSrc(&insn->src[sampHandleIdx].src, 0);
3015 
3016          mkSplit(split, 4, handle);
3017 
3018          srcs.push_back(split[0]);
3019          texOffIdx = srcs.size() - 1;
3020       }
3021 
3022       r = bindless ? 0xff : insn->texture_index;
3023       s = bindless ? 0x1f : insn->sampler_index;
3024 
3025       defs.resize(newDefs.size());
3026       for (uint8_t d = 0u; d < newDefs.size(); ++d) {
3027          defs[d] = newDefs[d];
3028          mask |= 1 << d;
3029       }
3030       if (target.isMS() || (op == OP_TEX && prog->getType() != Program::TYPE_FRAGMENT))
3031          lz = true;
3032 
3033       TexInstruction *texi = mkTex(op, target.getEnum(), r, s, defs, srcs);
3034       texi->tex.levelZero = lz;
3035       texi->tex.mask = mask;
3036       texi->tex.bindless = bindless;
3037 
3038       if (texOffIdx != -1)
3039          texi->tex.rIndirectSrc = texOffIdx;
3040       if (sampOffIdx != -1)
3041          texi->tex.sIndirectSrc = sampOffIdx;
3042 
3043       switch (insn->op) {
3044       case nir_texop_tg4:
3045          if (!target.isShadow())
3046             texi->tex.gatherComp = insn->component;
3047          break;
3048       case nir_texop_txs:
3049          texi->tex.query = TXQ_DIMS;
3050          break;
3051       case nir_texop_texture_samples:
3052          texi->tex.mask = 0x4;
3053          texi->tex.query = TXQ_TYPE;
3054          break;
3055       case nir_texop_query_levels:
3056          texi->tex.mask = 0x8;
3057          texi->tex.query = TXQ_DIMS;
3058          break;
3059       default:
3060          break;
3061       }
3062 
3063       texi->tex.useOffsets = offsets.size();
3064       if (texi->tex.useOffsets) {
3065          for (uint8_t s = 0; s < texi->tex.useOffsets; ++s) {
3066             for (uint32_t c = 0u; c < 3; ++c) {
3067                uint8_t s2 = std::min(c, target.getDim() - 1);
3068                texi->offset[s][c].set(getSrc(offsets[s], s2));
3069                texi->offset[s][c].setInsn(texi);
3070             }
3071          }
3072       }
3073 
3074       if (op == OP_TXG && offsetIdx == -1) {
3075          if (nir_tex_instr_has_explicit_tg4_offsets(insn)) {
3076             texi->tex.useOffsets = 4;
3077             setPosition(texi, false);
3078             for (uint8_t i = 0; i < 4; ++i) {
3079                for (uint8_t j = 0; j < 2; ++j) {
3080                   texi->offset[i][j].set(loadImm(NULL, insn->tg4_offsets[i][j]));
3081                   texi->offset[i][j].setInsn(texi);
3082                }
3083             }
3084             setPosition(texi, true);
3085          }
3086       }
3087 
3088       if (ddxIdx != -1 && ddyIdx != -1) {
3089          for (uint8_t c = 0u; c < target.getDim() + target.isCube(); ++c) {
3090             texi->dPdx[c].set(getSrc(&insn->src[ddxIdx].src, c));
3091             texi->dPdy[c].set(getSrc(&insn->src[ddyIdx].src, c));
3092          }
3093       }
3094 
3095       break;
3096    }
3097    default:
3098       ERROR("unknown nir_texop %u\n", insn->op);
3099       return false;
3100    }
3101    return true;
3102 }
3103 
3104 bool
run()3105 Converter::run()
3106 {
3107    bool progress;
3108 
3109    if (prog->dbgFlags & NV50_IR_DEBUG_VERBOSE)
3110       nir_print_shader(nir, stderr);
3111 
3112    struct nir_lower_subgroups_options subgroup_options = {};
3113    subgroup_options.subgroup_size = 32;
3114    subgroup_options.ballot_bit_size = 32;
3115    subgroup_options.lower_elect = true;
3116 
3117    /* prepare for IO lowering */
3118    NIR_PASS_V(nir, nir_opt_deref);
3119    NIR_PASS_V(nir, nir_lower_regs_to_ssa);
3120    NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3121 
3122    /* codegen assumes vec4 alignment for memory */
3123    NIR_PASS_V(nir, nir_lower_vars_to_explicit_types, nir_var_function_temp, function_temp_type_info);
3124    NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_function_temp, nir_address_format_32bit_offset);
3125    NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
3126 
3127    NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
3128               type_size, (nir_lower_io_options)0);
3129 
3130    NIR_PASS_V(nir, nir_lower_subgroups, &subgroup_options);
3131 
3132    NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
3133    NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
3134    NIR_PASS_V(nir, nir_lower_phis_to_scalar);
3135 
3136    /*TODO: improve this lowering/optimisation loop so that we can use
3137     *      nir_opt_idiv_const effectively before this.
3138     */
3139    NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_precise);
3140 
3141    do {
3142       progress = false;
3143       NIR_PASS(progress, nir, nir_copy_prop);
3144       NIR_PASS(progress, nir, nir_opt_remove_phis);
3145       NIR_PASS(progress, nir, nir_opt_trivial_continues);
3146       NIR_PASS(progress, nir, nir_opt_cse);
3147       NIR_PASS(progress, nir, nir_opt_algebraic);
3148       NIR_PASS(progress, nir, nir_opt_constant_folding);
3149       NIR_PASS(progress, nir, nir_copy_prop);
3150       NIR_PASS(progress, nir, nir_opt_dce);
3151       NIR_PASS(progress, nir, nir_opt_dead_cf);
3152    } while (progress);
3153 
3154    NIR_PASS_V(nir, nir_lower_bool_to_int32);
3155    NIR_PASS_V(nir, nir_convert_from_ssa, true);
3156 
3157    // Garbage collect dead instructions
3158    nir_sweep(nir);
3159 
3160    if (!parseNIR()) {
3161       ERROR("Couldn't prase NIR!\n");
3162       return false;
3163    }
3164 
3165    if (!assignSlots()) {
3166       ERROR("Couldn't assign slots!\n");
3167       return false;
3168    }
3169 
3170    if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
3171       nir_print_shader(nir, stderr);
3172 
3173    nir_foreach_function(function, nir) {
3174       if (!visit(function))
3175          return false;
3176    }
3177 
3178    return true;
3179 }
3180 
3181 } // unnamed namespace
3182 
3183 namespace nv50_ir {
3184 
3185 bool
makeFromNIR(struct nv50_ir_prog_info * info,struct nv50_ir_prog_info_out * info_out)3186 Program::makeFromNIR(struct nv50_ir_prog_info *info,
3187                      struct nv50_ir_prog_info_out *info_out)
3188 {
3189    nir_shader *nir = (nir_shader*)info->bin.source;
3190    Converter converter(this, nir, info, info_out);
3191    bool result = converter.run();
3192    if (!result)
3193       return result;
3194    LoweringHelper lowering;
3195    lowering.run(this);
3196    tlsSize = info_out->bin.tlsSpace;
3197    return result;
3198 }
3199 
3200 } // namespace nv50_ir
3201 
3202 static nir_shader_compiler_options
nvir_nir_shader_compiler_options(int chipset)3203 nvir_nir_shader_compiler_options(int chipset)
3204 {
3205    nir_shader_compiler_options op = {};
3206    op.lower_fdiv = (chipset >= NVISA_GV100_CHIPSET);
3207    op.lower_ffma16 = false;
3208    op.lower_ffma32 = false;
3209    op.lower_ffma64 = false;
3210    op.fuse_ffma16 = false; /* nir doesn't track mad vs fma */
3211    op.fuse_ffma32 = false; /* nir doesn't track mad vs fma */
3212    op.fuse_ffma64 = false; /* nir doesn't track mad vs fma */
3213    op.lower_flrp16 = (chipset >= NVISA_GV100_CHIPSET);
3214    op.lower_flrp32 = true;
3215    op.lower_flrp64 = true;
3216    op.lower_fpow = false; // TODO: nir's lowering is broken, or we could use it
3217    op.lower_fsat = false;
3218    op.lower_fsqrt = false; // TODO: only before gm200
3219    op.lower_sincos = false;
3220    op.lower_fmod = true;
3221    op.lower_bitfield_extract = false;
3222    op.lower_bitfield_extract_to_shifts = (chipset >= NVISA_GV100_CHIPSET);
3223    op.lower_bitfield_insert = false;
3224    op.lower_bitfield_insert_to_shifts = (chipset >= NVISA_GV100_CHIPSET);
3225    op.lower_bitfield_insert_to_bitfield_select = false;
3226    op.lower_bitfield_reverse = false;
3227    op.lower_bit_count = false;
3228    op.lower_ifind_msb = false;
3229    op.lower_find_lsb = false;
3230    op.lower_uadd_carry = true; // TODO
3231    op.lower_usub_borrow = true; // TODO
3232    op.lower_mul_high = false;
3233    op.lower_negate = false;
3234    op.lower_sub = true;
3235    op.lower_scmp = true; // TODO: not implemented yet
3236    op.lower_vector_cmp = false;
3237    op.lower_bitops = false;
3238    op.lower_isign = (chipset >= NVISA_GV100_CHIPSET);
3239    op.lower_fsign = (chipset >= NVISA_GV100_CHIPSET);
3240    op.lower_fdph = false;
3241    op.lower_fdot = false;
3242    op.fdot_replicates = false; // TODO
3243    op.lower_ffloor = false; // TODO
3244    op.lower_ffract = true;
3245    op.lower_fceil = false; // TODO
3246    op.lower_ftrunc = false;
3247    op.lower_ldexp = true;
3248    op.lower_pack_half_2x16 = true;
3249    op.lower_pack_unorm_2x16 = true;
3250    op.lower_pack_snorm_2x16 = true;
3251    op.lower_pack_unorm_4x8 = true;
3252    op.lower_pack_snorm_4x8 = true;
3253    op.lower_unpack_half_2x16 = true;
3254    op.lower_unpack_unorm_2x16 = true;
3255    op.lower_unpack_snorm_2x16 = true;
3256    op.lower_unpack_unorm_4x8 = true;
3257    op.lower_unpack_snorm_4x8 = true;
3258    op.lower_pack_split = false;
3259    op.lower_extract_byte = (chipset < NVISA_GM107_CHIPSET);
3260    op.lower_extract_word = (chipset < NVISA_GM107_CHIPSET);
3261    op.lower_all_io_to_temps = false;
3262    op.lower_all_io_to_elements = false;
3263    op.vertex_id_zero_based = false;
3264    op.lower_base_vertex = false;
3265    op.lower_helper_invocation = false;
3266    op.optimize_sample_mask_in = false;
3267    op.lower_cs_local_index_from_id = true;
3268    op.lower_cs_local_id_from_index = false;
3269    op.lower_device_index_to_zero = false; // TODO
3270    op.lower_wpos_pntc = false; // TODO
3271    op.lower_hadd = true; // TODO
3272    op.lower_add_sat = true; // TODO
3273    op.vectorize_io = false;
3274    op.lower_to_scalar = false;
3275    op.unify_interfaces = false;
3276    op.use_interpolated_input_intrinsics = true;
3277    op.lower_mul_2x32_64 = true; // TODO
3278    op.lower_rotate = (chipset < NVISA_GV100_CHIPSET);
3279    op.has_imul24 = false;
3280    op.intel_vec4 = false;
3281    op.max_unroll_iterations = 32;
3282    op.lower_int64_options = (nir_lower_int64_options) (
3283       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul64 : 0) |
3284       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_isign64 : 0) |
3285       nir_lower_divmod64 |
3286       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul_high64 : 0) |
3287       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_mov64 : 0) |
3288       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_icmp64 : 0) |
3289       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_iabs64 : 0) |
3290       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_ineg64 : 0) |
3291       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_logic64 : 0) |
3292       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_minmax64 : 0) |
3293       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_shift64 : 0) |
3294       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul_2x32_64 : 0) |
3295       ((chipset >= NVISA_GM107_CHIPSET) ? nir_lower_extract64 : 0) |
3296       nir_lower_ufind_msb64
3297    );
3298    op.lower_doubles_options = (nir_lower_doubles_options) (
3299       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_drcp : 0) |
3300       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dsqrt : 0) |
3301       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_drsq : 0) |
3302       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dfract : 0) |
3303       nir_lower_dmod |
3304       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dsub : 0) |
3305       ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_ddiv : 0)
3306    );
3307    return op;
3308 }
3309 
3310 static const nir_shader_compiler_options gf100_nir_shader_compiler_options =
3311 nvir_nir_shader_compiler_options(NVISA_GF100_CHIPSET);
3312 static const nir_shader_compiler_options gm107_nir_shader_compiler_options =
3313 nvir_nir_shader_compiler_options(NVISA_GM107_CHIPSET);
3314 static const nir_shader_compiler_options gv100_nir_shader_compiler_options =
3315 nvir_nir_shader_compiler_options(NVISA_GV100_CHIPSET);
3316 
3317 const nir_shader_compiler_options *
nv50_ir_nir_shader_compiler_options(int chipset)3318 nv50_ir_nir_shader_compiler_options(int chipset)
3319 {
3320    if (chipset >= NVISA_GV100_CHIPSET)
3321       return &gv100_nir_shader_compiler_options;
3322    if (chipset >= NVISA_GM107_CHIPSET)
3323       return &gm107_nir_shader_compiler_options;
3324    return &gf100_nir_shader_compiler_options;
3325 }
3326