1 /**************************************************************************//**
2 * @file cmsis_armcc_V6.h
3 * @brief CMSIS Cortex-M Core Function/Instruction Header File
4 * @version V4.30
5 * @date 20. October 2015
6 ******************************************************************************/
7 /* Copyright (c) 2009 - 2015 ARM LIMITED
8
9 All rights reserved.
10 Redistribution and use in source and binary forms, with or without
11 modification, are permitted provided that the following conditions are met:
12 - Redistributions of source code must retain the above copyright
13 notice, this list of conditions and the following disclaimer.
14 - Redistributions in binary form must reproduce the above copyright
15 notice, this list of conditions and the following disclaimer in the
16 documentation and/or other materials provided with the distribution.
17 - Neither the name of ARM nor the names of its contributors may be used
18 to endorse or promote products derived from this software without
19 specific prior written permission.
20 *
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32 ---------------------------------------------------------------------------*/
33
34
35 #ifndef __CMSIS_ARMCC_V6_H
36 #define __CMSIS_ARMCC_V6_H
37
38
39 /* ########################### Core Function Access ########################### */
40 /** \ingroup CMSIS_Core_FunctionInterface
41 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
42 @{
43 */
44
45 /**
46 \brief Enable IRQ Interrupts
47 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
48 Can only be executed in Privileged modes.
49 */
__enable_irq(void)50 __attribute__((always_inline)) __STATIC_INLINE void __enable_irq(void)
51 {
52 __ASM volatile ("cpsie i" : : : "memory");
53 }
54
55
56 /**
57 \brief Disable IRQ Interrupts
58 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
59 Can only be executed in Privileged modes.
60 */
__disable_irq(void)61 __attribute__((always_inline)) __STATIC_INLINE void __disable_irq(void)
62 {
63 __ASM volatile ("cpsid i" : : : "memory");
64 }
65
66
67 /**
68 \brief Get Control Register
69 \details Returns the content of the Control Register.
70 \return Control Register value
71 */
__get_CONTROL(void)72 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
73 {
74 uint32_t result;
75
76 __ASM volatile ("MRS %0, control" : "=r" (result) );
77 return(result);
78 }
79
80
81 #if (__ARM_FEATURE_CMSE == 3U)
82 /**
83 \brief Get Control Register (non-secure)
84 \details Returns the content of the non-secure Control Register when in secure mode.
85 \return non-secure Control Register value
86 */
__TZ_get_CONTROL_NS(void)87 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_CONTROL_NS(void)
88 {
89 uint32_t result;
90
91 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
92 return(result);
93 }
94 #endif
95
96
97 /**
98 \brief Set Control Register
99 \details Writes the given value to the Control Register.
100 \param [in] control Control Register value to set
101 */
__set_CONTROL(uint32_t control)102 __attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
103 {
104 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
105 }
106
107
108 #if (__ARM_FEATURE_CMSE == 3U)
109 /**
110 \brief Set Control Register (non-secure)
111 \details Writes the given value to the non-secure Control Register when in secure state.
112 \param [in] control Control Register value to set
113 */
__TZ_set_CONTROL_NS(uint32_t control)114 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_CONTROL_NS(uint32_t control)
115 {
116 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
117 }
118 #endif
119
120
121 /**
122 \brief Get IPSR Register
123 \details Returns the content of the IPSR Register.
124 \return IPSR Register value
125 */
__get_IPSR(void)126 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
127 {
128 uint32_t result;
129
130 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
131 return(result);
132 }
133
134
135 #if (__ARM_FEATURE_CMSE == 3U)
136 /**
137 \brief Get IPSR Register (non-secure)
138 \details Returns the content of the non-secure IPSR Register when in secure state.
139 \return IPSR Register value
140 */
__TZ_get_IPSR_NS(void)141 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_IPSR_NS(void)
142 {
143 uint32_t result;
144
145 __ASM volatile ("MRS %0, ipsr_ns" : "=r" (result) );
146 return(result);
147 }
148 #endif
149
150
151 /**
152 \brief Get APSR Register
153 \details Returns the content of the APSR Register.
154 \return APSR Register value
155 */
__get_APSR(void)156 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
157 {
158 uint32_t result;
159
160 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
161 return(result);
162 }
163
164
165 #if (__ARM_FEATURE_CMSE == 3U)
166 /**
167 \brief Get APSR Register (non-secure)
168 \details Returns the content of the non-secure APSR Register when in secure state.
169 \return APSR Register value
170 */
__TZ_get_APSR_NS(void)171 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_APSR_NS(void)
172 {
173 uint32_t result;
174
175 __ASM volatile ("MRS %0, apsr_ns" : "=r" (result) );
176 return(result);
177 }
178 #endif
179
180
181 /**
182 \brief Get xPSR Register
183 \details Returns the content of the xPSR Register.
184 \return xPSR Register value
185 */
__get_xPSR(void)186 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
187 {
188 uint32_t result;
189
190 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
191 return(result);
192 }
193
194
195 #if (__ARM_FEATURE_CMSE == 3U)
196 /**
197 \brief Get xPSR Register (non-secure)
198 \details Returns the content of the non-secure xPSR Register when in secure state.
199 \return xPSR Register value
200 */
__TZ_get_xPSR_NS(void)201 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_xPSR_NS(void)
202 {
203 uint32_t result;
204
205 __ASM volatile ("MRS %0, xpsr_ns" : "=r" (result) );
206 return(result);
207 }
208 #endif
209
210
211 /**
212 \brief Get Process Stack Pointer
213 \details Returns the current value of the Process Stack Pointer (PSP).
214 \return PSP Register value
215 */
__get_PSP(void)216 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
217 {
218 register uint32_t result;
219
220 __ASM volatile ("MRS %0, psp" : "=r" (result) );
221 return(result);
222 }
223
224
225 #if (__ARM_FEATURE_CMSE == 3U)
226 /**
227 \brief Get Process Stack Pointer (non-secure)
228 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
229 \return PSP Register value
230 */
__TZ_get_PSP_NS(void)231 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSP_NS(void)
232 {
233 register uint32_t result;
234
235 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
236 return(result);
237 }
238 #endif
239
240
241 /**
242 \brief Set Process Stack Pointer
243 \details Assigns the given value to the Process Stack Pointer (PSP).
244 \param [in] topOfProcStack Process Stack Pointer value to set
245 */
__set_PSP(uint32_t topOfProcStack)246 __attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
247 {
248 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : "sp");
249 }
250
251
252 #if (__ARM_FEATURE_CMSE == 3U)
253 /**
254 \brief Set Process Stack Pointer (non-secure)
255 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
256 \param [in] topOfProcStack Process Stack Pointer value to set
257 */
__TZ_set_PSP_NS(uint32_t topOfProcStack)258 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
259 {
260 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : "sp");
261 }
262 #endif
263
264
265 /**
266 \brief Get Main Stack Pointer
267 \details Returns the current value of the Main Stack Pointer (MSP).
268 \return MSP Register value
269 */
__get_MSP(void)270 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
271 {
272 register uint32_t result;
273
274 __ASM volatile ("MRS %0, msp" : "=r" (result) );
275 return(result);
276 }
277
278
279 #if (__ARM_FEATURE_CMSE == 3U)
280 /**
281 \brief Get Main Stack Pointer (non-secure)
282 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
283 \return MSP Register value
284 */
__TZ_get_MSP_NS(void)285 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSP_NS(void)
286 {
287 register uint32_t result;
288
289 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
290 return(result);
291 }
292 #endif
293
294
295 /**
296 \brief Set Main Stack Pointer
297 \details Assigns the given value to the Main Stack Pointer (MSP).
298 \param [in] topOfMainStack Main Stack Pointer value to set
299 */
__set_MSP(uint32_t topOfMainStack)300 __attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
301 {
302 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : "sp");
303 }
304
305
306 #if (__ARM_FEATURE_CMSE == 3U)
307 /**
308 \brief Set Main Stack Pointer (non-secure)
309 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
310 \param [in] topOfMainStack Main Stack Pointer value to set
311 */
__TZ_set_MSP_NS(uint32_t topOfMainStack)312 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
313 {
314 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : "sp");
315 }
316 #endif
317
318
319 /**
320 \brief Get Priority Mask
321 \details Returns the current state of the priority mask bit from the Priority Mask Register.
322 \return Priority Mask value
323 */
__get_PRIMASK(void)324 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
325 {
326 uint32_t result;
327
328 __ASM volatile ("MRS %0, primask" : "=r" (result) );
329 return(result);
330 }
331
332
333 #if (__ARM_FEATURE_CMSE == 3U)
334 /**
335 \brief Get Priority Mask (non-secure)
336 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
337 \return Priority Mask value
338 */
__TZ_get_PRIMASK_NS(void)339 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PRIMASK_NS(void)
340 {
341 uint32_t result;
342
343 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
344 return(result);
345 }
346 #endif
347
348
349 /**
350 \brief Set Priority Mask
351 \details Assigns the given value to the Priority Mask Register.
352 \param [in] priMask Priority Mask
353 */
__set_PRIMASK(uint32_t priMask)354 __attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
355 {
356 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
357 }
358
359
360 #if (__ARM_FEATURE_CMSE == 3U)
361 /**
362 \brief Set Priority Mask (non-secure)
363 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
364 \param [in] priMask Priority Mask
365 */
__TZ_set_PRIMASK_NS(uint32_t priMask)366 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
367 {
368 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
369 }
370 #endif
371
372
373 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) /* ToDo: ARMCC_V6: check if this is ok for cortex >=3 */
374
375 /**
376 \brief Enable FIQ
377 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
378 Can only be executed in Privileged modes.
379 */
__enable_fault_irq(void)380 __attribute__((always_inline)) __STATIC_INLINE void __enable_fault_irq(void)
381 {
382 __ASM volatile ("cpsie f" : : : "memory");
383 }
384
385
386 /**
387 \brief Disable FIQ
388 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
389 Can only be executed in Privileged modes.
390 */
__disable_fault_irq(void)391 __attribute__((always_inline)) __STATIC_INLINE void __disable_fault_irq(void)
392 {
393 __ASM volatile ("cpsid f" : : : "memory");
394 }
395
396
397 /**
398 \brief Get Base Priority
399 \details Returns the current value of the Base Priority register.
400 \return Base Priority register value
401 */
__get_BASEPRI(void)402 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
403 {
404 uint32_t result;
405
406 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
407 return(result);
408 }
409
410
411 #if (__ARM_FEATURE_CMSE == 3U)
412 /**
413 \brief Get Base Priority (non-secure)
414 \details Returns the current value of the non-secure Base Priority register when in secure state.
415 \return Base Priority register value
416 */
__TZ_get_BASEPRI_NS(void)417 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_BASEPRI_NS(void)
418 {
419 uint32_t result;
420
421 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
422 return(result);
423 }
424 #endif
425
426
427 /**
428 \brief Set Base Priority
429 \details Assigns the given value to the Base Priority register.
430 \param [in] basePri Base Priority value to set
431 */
__set_BASEPRI(uint32_t value)432 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
433 {
434 __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
435 }
436
437
438 #if (__ARM_FEATURE_CMSE == 3U)
439 /**
440 \brief Set Base Priority (non-secure)
441 \details Assigns the given value to the non-secure Base Priority register when in secure state.
442 \param [in] basePri Base Priority value to set
443 */
__TZ_set_BASEPRI_NS(uint32_t value)444 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_NS(uint32_t value)
445 {
446 __ASM volatile ("MSR basepri_ns, %0" : : "r" (value) : "memory");
447 }
448 #endif
449
450
451 /**
452 \brief Set Base Priority with condition
453 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
454 or the new value increases the BASEPRI priority level.
455 \param [in] basePri Base Priority value to set
456 */
__set_BASEPRI_MAX(uint32_t value)457 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
458 {
459 __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
460 }
461
462
463 #if (__ARM_FEATURE_CMSE == 3U)
464 /**
465 \brief Set Base Priority with condition (non_secure)
466 \details Assigns the given value to the non-secure Base Priority register when in secure state only if BASEPRI masking is disabled,
467 or the new value increases the BASEPRI priority level.
468 \param [in] basePri Base Priority value to set
469 */
__TZ_set_BASEPRI_MAX_NS(uint32_t value)470 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_MAX_NS(uint32_t value)
471 {
472 __ASM volatile ("MSR basepri_max_ns, %0" : : "r" (value) : "memory");
473 }
474 #endif
475
476
477 /**
478 \brief Get Fault Mask
479 \details Returns the current value of the Fault Mask register.
480 \return Fault Mask register value
481 */
__get_FAULTMASK(void)482 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
483 {
484 uint32_t result;
485
486 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
487 return(result);
488 }
489
490
491 #if (__ARM_FEATURE_CMSE == 3U)
492 /**
493 \brief Get Fault Mask (non-secure)
494 \details Returns the current value of the non-secure Fault Mask register when in secure state.
495 \return Fault Mask register value
496 */
__TZ_get_FAULTMASK_NS(void)497 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FAULTMASK_NS(void)
498 {
499 uint32_t result;
500
501 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
502 return(result);
503 }
504 #endif
505
506
507 /**
508 \brief Set Fault Mask
509 \details Assigns the given value to the Fault Mask register.
510 \param [in] faultMask Fault Mask value to set
511 */
__set_FAULTMASK(uint32_t faultMask)512 __attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
513 {
514 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
515 }
516
517
518 #if (__ARM_FEATURE_CMSE == 3U)
519 /**
520 \brief Set Fault Mask (non-secure)
521 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
522 \param [in] faultMask Fault Mask value to set
523 */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)524 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
525 {
526 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
527 }
528 #endif
529
530
531 #endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
532
533
534 #if (__ARM_ARCH_8M__ == 1U)
535
536 /**
537 \brief Get Process Stack Pointer Limit
538 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
539 \return PSPLIM Register value
540 */
__get_PSPLIM(void)541 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSPLIM(void)
542 {
543 register uint32_t result;
544
545 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
546 return(result);
547 }
548
549
550 #if (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M') /* ToDo: ARMCC_V6: check predefined macro for mainline */
551 /**
552 \brief Get Process Stack Pointer Limit (non-secure)
553 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
554 \return PSPLIM Register value
555 */
__TZ_get_PSPLIM_NS(void)556 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSPLIM_NS(void)
557 {
558 register uint32_t result;
559
560 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
561 return(result);
562 }
563 #endif
564
565
566 /**
567 \brief Set Process Stack Pointer Limit
568 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
569 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
570 */
__set_PSPLIM(uint32_t ProcStackPtrLimit)571 __attribute__((always_inline)) __STATIC_INLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
572 {
573 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
574 }
575
576
577 #if (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M') /* ToDo: ARMCC_V6: check predefined macro for mainline */
578 /**
579 \brief Set Process Stack Pointer (non-secure)
580 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
581 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
582 */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)583 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
584 {
585 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
586 }
587 #endif
588
589
590 /**
591 \brief Get Main Stack Pointer Limit
592 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
593 \return MSPLIM Register value
594 */
__get_MSPLIM(void)595 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSPLIM(void)
596 {
597 register uint32_t result;
598
599 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
600
601 return(result);
602 }
603
604
605 #if (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M') /* ToDo: ARMCC_V6: check predefined macro for mainline */
606 /**
607 \brief Get Main Stack Pointer Limit (non-secure)
608 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
609 \return MSPLIM Register value
610 */
__TZ_get_MSPLIM_NS(void)611 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSPLIM_NS(void)
612 {
613 register uint32_t result;
614
615 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
616 return(result);
617 }
618 #endif
619
620
621 /**
622 \brief Set Main Stack Pointer Limit
623 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
624 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
625 */
__set_MSPLIM(uint32_t MainStackPtrLimit)626 __attribute__((always_inline)) __STATIC_INLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
627 {
628 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
629 }
630
631
632 #if (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M') /* ToDo: ARMCC_V6: check predefined macro for mainline */
633 /**
634 \brief Set Main Stack Pointer Limit (non-secure)
635 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
636 \param [in] MainStackPtrLimit Main Stack Pointer value to set
637 */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)638 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
639 {
640 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
641 }
642 #endif
643
644 #endif /* (__ARM_ARCH_8M__ == 1U) */
645
646
647 #if ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) /* ToDo: ARMCC_V6: check if this is ok for cortex >=4 */
648
649 /**
650 \brief Get FPSCR
651 \details eturns the current value of the Floating Point Status/Control register.
652 \return Floating Point Status/Control register value
653 */
654 #define __get_FPSCR __builtin_arm_get_fpscr
655 #if 0
656 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
657 {
658 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
659 uint32_t result;
660
661 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
662 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
663 __ASM volatile ("");
664 return(result);
665 #else
666 return(0);
667 #endif
668 }
669 #endif
670
671 #if (__ARM_FEATURE_CMSE == 3U)
672 /**
673 \brief Get FPSCR (non-secure)
674 \details Returns the current value of the non-secure Floating Point Status/Control register when in secure state.
675 \return Floating Point Status/Control register value
676 */
__TZ_get_FPSCR_NS(void)677 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FPSCR_NS(void)
678 {
679 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
680 uint32_t result;
681
682 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
683 __ASM volatile ("VMRS %0, fpscr_ns" : "=r" (result) );
684 __ASM volatile ("");
685 return(result);
686 #else
687 return(0);
688 #endif
689 }
690 #endif
691
692
693 /**
694 \brief Set FPSCR
695 \details Assigns the given value to the Floating Point Status/Control register.
696 \param [in] fpscr Floating Point Status/Control value to set
697 */
698 #define __set_FPSCR __builtin_arm_set_fpscr
699 #if 0
700 __attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
701 {
702 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
703 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
704 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
705 __ASM volatile ("");
706 #endif
707 }
708 #endif
709
710 #if (__ARM_FEATURE_CMSE == 3U)
711 /**
712 \brief Set FPSCR (non-secure)
713 \details Assigns the given value to the non-secure Floating Point Status/Control register when in secure state.
714 \param [in] fpscr Floating Point Status/Control value to set
715 */
__TZ_set_FPSCR_NS(uint32_t fpscr)716 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FPSCR_NS(uint32_t fpscr)
717 {
718 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
719 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
720 __ASM volatile ("VMSR fpscr_ns, %0" : : "r" (fpscr) : "vfpcc");
721 __ASM volatile ("");
722 #endif
723 }
724 #endif
725
726 #endif /* ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
727
728
729
730 /*@} end of CMSIS_Core_RegAccFunctions */
731
732
733 /* ########################## Core Instruction Access ######################### */
734 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
735 Access to dedicated instructions
736 @{
737 */
738
739 /* Define macros for porting to both thumb1 and thumb2.
740 * For thumb1, use low register (r0-r7), specified by constraint "l"
741 * Otherwise, use general registers, specified by constraint "r" */
742 #if defined (__thumb__) && !defined (__thumb2__)
743 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
744 #define __CMSIS_GCC_USE_REG(r) "l" (r)
745 #else
746 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
747 #define __CMSIS_GCC_USE_REG(r) "r" (r)
748 #endif
749
750 /**
751 \brief No Operation
752 \details No Operation does nothing. This instruction can be used for code alignment purposes.
753 */
754 #define __NOP __builtin_arm_nop
755
756 /**
757 \brief Wait For Interrupt
758 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
759 */
760 #define __WFI __builtin_arm_wfi
761
762
763 /**
764 \brief Wait For Event
765 \details Wait For Event is a hint instruction that permits the processor to enter
766 a low-power state until one of a number of events occurs.
767 */
768 #define __WFE __builtin_arm_wfe
769
770
771 /**
772 \brief Send Event
773 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
774 */
775 #define __SEV __builtin_arm_sev
776
777
778 /**
779 \brief Instruction Synchronization Barrier
780 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
781 so that all instructions following the ISB are fetched from cache or memory,
782 after the instruction has been completed.
783 */
784 #define __ISB() __builtin_arm_isb(0xF);
785
786 /**
787 \brief Data Synchronization Barrier
788 \details Acts as a special kind of Data Memory Barrier.
789 It completes when all explicit memory accesses before this instruction complete.
790 */
791 #define __DSB() __builtin_arm_dsb(0xF);
792
793
794 /**
795 \brief Data Memory Barrier
796 \details Ensures the apparent order of the explicit memory operations before
797 and after the instruction, without ensuring their completion.
798 */
799 #define __DMB() __builtin_arm_dmb(0xF);
800
801
802 /**
803 \brief Reverse byte order (32 bit)
804 \details Reverses the byte order in integer value.
805 \param [in] value Value to reverse
806 \return Reversed value
807 */
808 #define __REV __builtin_bswap32
809
810
811 /**
812 \brief Reverse byte order (16 bit)
813 \details Reverses the byte order in two unsigned short values.
814 \param [in] value Value to reverse
815 \return Reversed value
816 */
817 #define __REV16 __builtin_bswap16 /* ToDo: ARMCC_V6: check if __builtin_bswap16 could be used */
818 #if 0
819 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
820 {
821 uint32_t result;
822
823 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
824 return(result);
825 }
826 #endif
827
828
829 /**
830 \brief Reverse byte order in signed short value
831 \details Reverses the byte order in a signed short value with sign extension to integer.
832 \param [in] value Value to reverse
833 \return Reversed value
834 */
835 /* ToDo: ARMCC_V6: check if __builtin_bswap16 could be used */
__REVSH(int32_t value)836 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
837 {
838 int32_t result;
839
840 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
841 return(result);
842 }
843
844
845 /**
846 \brief Rotate Right in unsigned value (32 bit)
847 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
848 \param [in] op1 Value to rotate
849 \param [in] op2 Number of Bits to rotate
850 \return Rotated value
851 */
__ROR(uint32_t op1,uint32_t op2)852 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
853 {
854 return (op1 >> op2) | (op1 << (32U - op2));
855 }
856
857
858 /**
859 \brief Breakpoint
860 \details Causes the processor to enter Debug state.
861 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
862 \param [in] value is ignored by the processor.
863 If required, a debugger can use it to store additional information about the breakpoint.
864 */
865 #define __BKPT(value) __ASM volatile ("bkpt "#value)
866
867
868 /**
869 \brief Reverse bit order of value
870 \details Reverses the bit order of the given value.
871 \param [in] value Value to reverse
872 \return Reversed value
873 */
874 /* ToDo: ARMCC_V6: check if __builtin_arm_rbit is supported */
__RBIT(uint32_t value)875 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
876 {
877 uint32_t result;
878
879 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) /* ToDo: ARMCC_V6: check if this is ok for cortex >=3 */
880 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
881 #else
882 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
883
884 result = value; /* r will be reversed bits of v; first get LSB of v */
885 for (value >>= 1U; value; value >>= 1U)
886 {
887 result <<= 1U;
888 result |= value & 1U;
889 s--;
890 }
891 result <<= s; /* shift when v's highest bits are zero */
892 #endif
893 return(result);
894 }
895
896
897 /**
898 \brief Count leading zeros
899 \details Counts the number of leading zeros of a data value.
900 \param [in] value Value to count the leading zeros
901 \return number of leading zeros in value
902 */
903 #define __CLZ __builtin_clz
904
905
906 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) /* ToDo: ARMCC_V6: check if this is ok for cortex >=3 */
907
908 /**
909 \brief LDR Exclusive (8 bit)
910 \details Executes a exclusive LDR instruction for 8 bit value.
911 \param [in] ptr Pointer to data
912 \return value of type uint8_t at (*ptr)
913 */
914 #define __LDREXB (uint8_t)__builtin_arm_ldrex
915
916
917 /**
918 \brief LDR Exclusive (16 bit)
919 \details Executes a exclusive LDR instruction for 16 bit values.
920 \param [in] ptr Pointer to data
921 \return value of type uint16_t at (*ptr)
922 */
923 #define __LDREXH (uint16_t)__builtin_arm_ldrex
924
925
926 /**
927 \brief LDR Exclusive (32 bit)
928 \details Executes a exclusive LDR instruction for 32 bit values.
929 \param [in] ptr Pointer to data
930 \return value of type uint32_t at (*ptr)
931 */
932 #define __LDREXW (uint32_t)__builtin_arm_ldrex
933
934
935 /**
936 \brief STR Exclusive (8 bit)
937 \details Executes a exclusive STR instruction for 8 bit values.
938 \param [in] value Value to store
939 \param [in] ptr Pointer to location
940 \return 0 Function succeeded
941 \return 1 Function failed
942 */
943 #define __STREXB (uint32_t)__builtin_arm_strex
944
945
946 /**
947 \brief STR Exclusive (16 bit)
948 \details Executes a exclusive STR instruction for 16 bit values.
949 \param [in] value Value to store
950 \param [in] ptr Pointer to location
951 \return 0 Function succeeded
952 \return 1 Function failed
953 */
954 #define __STREXH (uint32_t)__builtin_arm_strex
955
956
957 /**
958 \brief STR Exclusive (32 bit)
959 \details Executes a exclusive STR instruction for 32 bit values.
960 \param [in] value Value to store
961 \param [in] ptr Pointer to location
962 \return 0 Function succeeded
963 \return 1 Function failed
964 */
965 #define __STREXW (uint32_t)__builtin_arm_strex
966
967
968 /**
969 \brief Remove the exclusive lock
970 \details Removes the exclusive lock which is created by LDREX.
971 */
972 #define __CLREX __builtin_arm_clrex
973
974
975 /**
976 \brief Signed Saturate
977 \details Saturates a signed value.
978 \param [in] value Value to be saturated
979 \param [in] sat Bit position to saturate to (1..32)
980 \return Saturated value
981 */
982 /*#define __SSAT __builtin_arm_ssat*/
983 #define __SSAT(ARG1,ARG2) \
984 ({ \
985 int32_t __RES, __ARG1 = (ARG1); \
986 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
987 __RES; \
988 })
989
990
991 /**
992 \brief Unsigned Saturate
993 \details Saturates an unsigned value.
994 \param [in] value Value to be saturated
995 \param [in] sat Bit position to saturate to (0..31)
996 \return Saturated value
997 */
998 #define __USAT __builtin_arm_usat
999 #if 0
1000 #define __USAT(ARG1,ARG2) \
1001 ({ \
1002 uint32_t __RES, __ARG1 = (ARG1); \
1003 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1004 __RES; \
1005 })
1006 #endif
1007
1008
1009 /**
1010 \brief Rotate Right with Extend (32 bit)
1011 \details Moves each bit of a bitstring right by one bit.
1012 The carry input is shifted in at the left end of the bitstring.
1013 \param [in] value Value to rotate
1014 \return Rotated value
1015 */
__RRX(uint32_t value)1016 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
1017 {
1018 uint32_t result;
1019
1020 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1021 return(result);
1022 }
1023
1024
1025 /**
1026 \brief LDRT Unprivileged (8 bit)
1027 \details Executes a Unprivileged LDRT instruction for 8 bit value.
1028 \param [in] ptr Pointer to data
1029 \return value of type uint8_t at (*ptr)
1030 */
__LDRBT(volatile uint8_t * ptr)1031 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1032 {
1033 uint32_t result;
1034
1035 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1036 return ((uint8_t) result); /* Add explicit type cast here */
1037 }
1038
1039
1040 /**
1041 \brief LDRT Unprivileged (16 bit)
1042 \details Executes a Unprivileged LDRT instruction for 16 bit values.
1043 \param [in] ptr Pointer to data
1044 \return value of type uint16_t at (*ptr)
1045 */
__LDRHT(volatile uint16_t * ptr)1046 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1047 {
1048 uint32_t result;
1049
1050 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1051 return ((uint16_t) result); /* Add explicit type cast here */
1052 }
1053
1054
1055 /**
1056 \brief LDRT Unprivileged (32 bit)
1057 \details Executes a Unprivileged LDRT instruction for 32 bit values.
1058 \param [in] ptr Pointer to data
1059 \return value of type uint32_t at (*ptr)
1060 */
__LDRT(volatile uint32_t * ptr)1061 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
1062 {
1063 uint32_t result;
1064
1065 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1066 return(result);
1067 }
1068
1069
1070 /**
1071 \brief STRT Unprivileged (8 bit)
1072 \details Executes a Unprivileged STRT instruction for 8 bit values.
1073 \param [in] value Value to store
1074 \param [in] ptr Pointer to location
1075 */
__STRBT(uint8_t value,volatile uint8_t * ptr)1076 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1077 {
1078 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1079 }
1080
1081
1082 /**
1083 \brief STRT Unprivileged (16 bit)
1084 \details Executes a Unprivileged STRT instruction for 16 bit values.
1085 \param [in] value Value to store
1086 \param [in] ptr Pointer to location
1087 */
__STRHT(uint16_t value,volatile uint16_t * ptr)1088 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1089 {
1090 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1091 }
1092
1093
1094 /**
1095 \brief STRT Unprivileged (32 bit)
1096 \details Executes a Unprivileged STRT instruction for 32 bit values.
1097 \param [in] value Value to store
1098 \param [in] ptr Pointer to location
1099 */
__STRT(uint32_t value,volatile uint32_t * ptr)1100 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1101 {
1102 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1103 }
1104
1105 #endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
1106
1107
1108 #if (__ARM_ARCH_8M__ == 1U)
1109
1110 /**
1111 \brief Load-Acquire (8 bit)
1112 \details Executes a LDAB instruction for 8 bit value.
1113 \param [in] ptr Pointer to data
1114 \return value of type uint8_t at (*ptr)
1115 */
__LDAB(volatile uint8_t * ptr)1116 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDAB(volatile uint8_t *ptr)
1117 {
1118 uint32_t result;
1119
1120 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1121 return ((uint8_t) result);
1122 }
1123
1124
1125 /**
1126 \brief Load-Acquire (16 bit)
1127 \details Executes a LDAH instruction for 16 bit values.
1128 \param [in] ptr Pointer to data
1129 \return value of type uint16_t at (*ptr)
1130 */
__LDAH(volatile uint16_t * ptr)1131 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDAH(volatile uint16_t *ptr)
1132 {
1133 uint32_t result;
1134
1135 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1136 return ((uint16_t) result);
1137 }
1138
1139
1140 /**
1141 \brief Load-Acquire (32 bit)
1142 \details Executes a LDA instruction for 32 bit values.
1143 \param [in] ptr Pointer to data
1144 \return value of type uint32_t at (*ptr)
1145 */
__LDA(volatile uint32_t * ptr)1146 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDA(volatile uint32_t *ptr)
1147 {
1148 uint32_t result;
1149
1150 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1151 return(result);
1152 }
1153
1154
1155 /**
1156 \brief Store-Release (8 bit)
1157 \details Executes a STLB instruction for 8 bit values.
1158 \param [in] value Value to store
1159 \param [in] ptr Pointer to location
1160 */
__STLB(uint8_t value,volatile uint8_t * ptr)1161 __attribute__((always_inline)) __STATIC_INLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1162 {
1163 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1164 }
1165
1166
1167 /**
1168 \brief Store-Release (16 bit)
1169 \details Executes a STLH instruction for 16 bit values.
1170 \param [in] value Value to store
1171 \param [in] ptr Pointer to location
1172 */
__STLH(uint16_t value,volatile uint16_t * ptr)1173 __attribute__((always_inline)) __STATIC_INLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1174 {
1175 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1176 }
1177
1178
1179 /**
1180 \brief Store-Release (32 bit)
1181 \details Executes a STL instruction for 32 bit values.
1182 \param [in] value Value to store
1183 \param [in] ptr Pointer to location
1184 */
__STL(uint32_t value,volatile uint32_t * ptr)1185 __attribute__((always_inline)) __STATIC_INLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1186 {
1187 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1188 }
1189
1190
1191 /**
1192 \brief Load-Acquire Exclusive (8 bit)
1193 \details Executes a LDAB exclusive instruction for 8 bit value.
1194 \param [in] ptr Pointer to data
1195 \return value of type uint8_t at (*ptr)
1196 */
1197 #define __LDAEXB (uint8_t)__builtin_arm_ldaex
1198
1199
1200 /**
1201 \brief Load-Acquire Exclusive (16 bit)
1202 \details Executes a LDAH exclusive instruction for 16 bit values.
1203 \param [in] ptr Pointer to data
1204 \return value of type uint16_t at (*ptr)
1205 */
1206 #define __LDAEXH (uint16_t)__builtin_arm_ldaex
1207
1208
1209 /**
1210 \brief Load-Acquire Exclusive (32 bit)
1211 \details Executes a LDA exclusive instruction for 32 bit values.
1212 \param [in] ptr Pointer to data
1213 \return value of type uint32_t at (*ptr)
1214 */
1215 #define __LDAEX (uint32_t)__builtin_arm_ldaex
1216
1217
1218 /**
1219 \brief Store-Release Exclusive (8 bit)
1220 \details Executes a STLB exclusive instruction for 8 bit values.
1221 \param [in] value Value to store
1222 \param [in] ptr Pointer to location
1223 \return 0 Function succeeded
1224 \return 1 Function failed
1225 */
1226 #define __STLEXB (uint32_t)__builtin_arm_stlex
1227
1228
1229 /**
1230 \brief Store-Release Exclusive (16 bit)
1231 \details Executes a STLH exclusive instruction for 16 bit values.
1232 \param [in] value Value to store
1233 \param [in] ptr Pointer to location
1234 \return 0 Function succeeded
1235 \return 1 Function failed
1236 */
1237 #define __STLEXH (uint32_t)__builtin_arm_stlex
1238
1239
1240 /**
1241 \brief Store-Release Exclusive (32 bit)
1242 \details Executes a STL exclusive instruction for 32 bit values.
1243 \param [in] value Value to store
1244 \param [in] ptr Pointer to location
1245 \return 0 Function succeeded
1246 \return 1 Function failed
1247 */
1248 #define __STLEX (uint32_t)__builtin_arm_stlex
1249
1250 #endif /* (__ARM_ARCH_8M__ == 1U) */
1251
1252 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1253
1254
1255 /* ################### Compiler specific Intrinsics ########################### */
1256 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1257 Access to dedicated SIMD instructions
1258 @{
1259 */
1260
1261 #if (__ARM_FEATURE_DSP == 1U) /* ToDo: ARMCC_V6: This should be ARCH >= ARMv7-M + SIMD */
1262
__SADD8(uint32_t op1,uint32_t op2)1263 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1264 {
1265 uint32_t result;
1266
1267 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1268 return(result);
1269 }
1270
__QADD8(uint32_t op1,uint32_t op2)1271 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1272 {
1273 uint32_t result;
1274
1275 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1276 return(result);
1277 }
1278
__SHADD8(uint32_t op1,uint32_t op2)1279 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1280 {
1281 uint32_t result;
1282
1283 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1284 return(result);
1285 }
1286
__UADD8(uint32_t op1,uint32_t op2)1287 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1288 {
1289 uint32_t result;
1290
1291 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1292 return(result);
1293 }
1294
__UQADD8(uint32_t op1,uint32_t op2)1295 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1296 {
1297 uint32_t result;
1298
1299 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1300 return(result);
1301 }
1302
__UHADD8(uint32_t op1,uint32_t op2)1303 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1304 {
1305 uint32_t result;
1306
1307 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1308 return(result);
1309 }
1310
1311
__SSUB8(uint32_t op1,uint32_t op2)1312 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1313 {
1314 uint32_t result;
1315
1316 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1317 return(result);
1318 }
1319
__QSUB8(uint32_t op1,uint32_t op2)1320 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1321 {
1322 uint32_t result;
1323
1324 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1325 return(result);
1326 }
1327
__SHSUB8(uint32_t op1,uint32_t op2)1328 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1329 {
1330 uint32_t result;
1331
1332 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1333 return(result);
1334 }
1335
__USUB8(uint32_t op1,uint32_t op2)1336 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1337 {
1338 uint32_t result;
1339
1340 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1341 return(result);
1342 }
1343
__UQSUB8(uint32_t op1,uint32_t op2)1344 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1345 {
1346 uint32_t result;
1347
1348 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1349 return(result);
1350 }
1351
__UHSUB8(uint32_t op1,uint32_t op2)1352 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1353 {
1354 uint32_t result;
1355
1356 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1357 return(result);
1358 }
1359
1360
__SADD16(uint32_t op1,uint32_t op2)1361 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1362 {
1363 uint32_t result;
1364
1365 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1366 return(result);
1367 }
1368
__QADD16(uint32_t op1,uint32_t op2)1369 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1370 {
1371 uint32_t result;
1372
1373 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1374 return(result);
1375 }
1376
__SHADD16(uint32_t op1,uint32_t op2)1377 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1378 {
1379 uint32_t result;
1380
1381 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1382 return(result);
1383 }
1384
__UADD16(uint32_t op1,uint32_t op2)1385 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1386 {
1387 uint32_t result;
1388
1389 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1390 return(result);
1391 }
1392
__UQADD16(uint32_t op1,uint32_t op2)1393 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1394 {
1395 uint32_t result;
1396
1397 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1398 return(result);
1399 }
1400
__UHADD16(uint32_t op1,uint32_t op2)1401 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1402 {
1403 uint32_t result;
1404
1405 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1406 return(result);
1407 }
1408
__SSUB16(uint32_t op1,uint32_t op2)1409 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1410 {
1411 uint32_t result;
1412
1413 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1414 return(result);
1415 }
1416
__QSUB16(uint32_t op1,uint32_t op2)1417 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1418 {
1419 uint32_t result;
1420
1421 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1422 return(result);
1423 }
1424
__SHSUB16(uint32_t op1,uint32_t op2)1425 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1426 {
1427 uint32_t result;
1428
1429 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1430 return(result);
1431 }
1432
__USUB16(uint32_t op1,uint32_t op2)1433 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1434 {
1435 uint32_t result;
1436
1437 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1438 return(result);
1439 }
1440
__UQSUB16(uint32_t op1,uint32_t op2)1441 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1442 {
1443 uint32_t result;
1444
1445 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1446 return(result);
1447 }
1448
__UHSUB16(uint32_t op1,uint32_t op2)1449 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1450 {
1451 uint32_t result;
1452
1453 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1454 return(result);
1455 }
1456
__SASX(uint32_t op1,uint32_t op2)1457 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1458 {
1459 uint32_t result;
1460
1461 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1462 return(result);
1463 }
1464
__QASX(uint32_t op1,uint32_t op2)1465 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1466 {
1467 uint32_t result;
1468
1469 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1470 return(result);
1471 }
1472
__SHASX(uint32_t op1,uint32_t op2)1473 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1474 {
1475 uint32_t result;
1476
1477 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1478 return(result);
1479 }
1480
__UASX(uint32_t op1,uint32_t op2)1481 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1482 {
1483 uint32_t result;
1484
1485 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1486 return(result);
1487 }
1488
__UQASX(uint32_t op1,uint32_t op2)1489 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1490 {
1491 uint32_t result;
1492
1493 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1494 return(result);
1495 }
1496
__UHASX(uint32_t op1,uint32_t op2)1497 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1498 {
1499 uint32_t result;
1500
1501 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1502 return(result);
1503 }
1504
__SSAX(uint32_t op1,uint32_t op2)1505 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1506 {
1507 uint32_t result;
1508
1509 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1510 return(result);
1511 }
1512
__QSAX(uint32_t op1,uint32_t op2)1513 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1514 {
1515 uint32_t result;
1516
1517 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1518 return(result);
1519 }
1520
__SHSAX(uint32_t op1,uint32_t op2)1521 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1522 {
1523 uint32_t result;
1524
1525 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1526 return(result);
1527 }
1528
__USAX(uint32_t op1,uint32_t op2)1529 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1530 {
1531 uint32_t result;
1532
1533 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1534 return(result);
1535 }
1536
__UQSAX(uint32_t op1,uint32_t op2)1537 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1538 {
1539 uint32_t result;
1540
1541 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1542 return(result);
1543 }
1544
__UHSAX(uint32_t op1,uint32_t op2)1545 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1546 {
1547 uint32_t result;
1548
1549 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1550 return(result);
1551 }
1552
__USAD8(uint32_t op1,uint32_t op2)1553 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1554 {
1555 uint32_t result;
1556
1557 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1558 return(result);
1559 }
1560
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1561 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1562 {
1563 uint32_t result;
1564
1565 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1566 return(result);
1567 }
1568
1569 #define __SSAT16(ARG1,ARG2) \
1570 ({ \
1571 uint32_t __RES, __ARG1 = (ARG1); \
1572 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1573 __RES; \
1574 })
1575
1576 #define __USAT16(ARG1,ARG2) \
1577 ({ \
1578 uint32_t __RES, __ARG1 = (ARG1); \
1579 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1580 __RES; \
1581 })
1582
__UXTB16(uint32_t op1)1583 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1584 {
1585 uint32_t result;
1586
1587 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1588 return(result);
1589 }
1590
__UXTAB16(uint32_t op1,uint32_t op2)1591 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1592 {
1593 uint32_t result;
1594
1595 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1596 return(result);
1597 }
1598
__SXTB16(uint32_t op1)1599 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1600 {
1601 uint32_t result;
1602
1603 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1604 return(result);
1605 }
1606
__SXTAB16(uint32_t op1,uint32_t op2)1607 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1608 {
1609 uint32_t result;
1610
1611 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612 return(result);
1613 }
1614
__SMUAD(uint32_t op1,uint32_t op2)1615 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1616 {
1617 uint32_t result;
1618
1619 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620 return(result);
1621 }
1622
__SMUADX(uint32_t op1,uint32_t op2)1623 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1624 {
1625 uint32_t result;
1626
1627 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1628 return(result);
1629 }
1630
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1631 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1632 {
1633 uint32_t result;
1634
1635 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1636 return(result);
1637 }
1638
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1639 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1640 {
1641 uint32_t result;
1642
1643 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1644 return(result);
1645 }
1646
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1647 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1648 {
1649 union llreg_u{
1650 uint32_t w32[2];
1651 uint64_t w64;
1652 } llr;
1653 llr.w64 = acc;
1654
1655 #ifndef __ARMEB__ /* Little endian */
1656 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1657 #else /* Big endian */
1658 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1659 #endif
1660
1661 return(llr.w64);
1662 }
1663
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1664 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1665 {
1666 union llreg_u{
1667 uint32_t w32[2];
1668 uint64_t w64;
1669 } llr;
1670 llr.w64 = acc;
1671
1672 #ifndef __ARMEB__ /* Little endian */
1673 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1674 #else /* Big endian */
1675 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1676 #endif
1677
1678 return(llr.w64);
1679 }
1680
__SMUSD(uint32_t op1,uint32_t op2)1681 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1682 {
1683 uint32_t result;
1684
1685 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1686 return(result);
1687 }
1688
__SMUSDX(uint32_t op1,uint32_t op2)1689 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1690 {
1691 uint32_t result;
1692
1693 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1694 return(result);
1695 }
1696
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1697 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1698 {
1699 uint32_t result;
1700
1701 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1702 return(result);
1703 }
1704
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1705 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1706 {
1707 uint32_t result;
1708
1709 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1710 return(result);
1711 }
1712
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1713 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1714 {
1715 union llreg_u{
1716 uint32_t w32[2];
1717 uint64_t w64;
1718 } llr;
1719 llr.w64 = acc;
1720
1721 #ifndef __ARMEB__ /* Little endian */
1722 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1723 #else /* Big endian */
1724 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1725 #endif
1726
1727 return(llr.w64);
1728 }
1729
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1730 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1731 {
1732 union llreg_u{
1733 uint32_t w32[2];
1734 uint64_t w64;
1735 } llr;
1736 llr.w64 = acc;
1737
1738 #ifndef __ARMEB__ /* Little endian */
1739 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1740 #else /* Big endian */
1741 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1742 #endif
1743
1744 return(llr.w64);
1745 }
1746
__SEL(uint32_t op1,uint32_t op2)1747 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1748 {
1749 uint32_t result;
1750
1751 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1752 return(result);
1753 }
1754
__QADD(int32_t op1,int32_t op2)1755 __attribute__((always_inline)) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
1756 {
1757 int32_t result;
1758
1759 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1760 return(result);
1761 }
1762
__QSUB(int32_t op1,int32_t op2)1763 __attribute__((always_inline)) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
1764 {
1765 int32_t result;
1766
1767 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1768 return(result);
1769 }
1770
1771 #define __PKHBT(ARG1,ARG2,ARG3) \
1772 ({ \
1773 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1774 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1775 __RES; \
1776 })
1777
1778 #define __PKHTB(ARG1,ARG2,ARG3) \
1779 ({ \
1780 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1781 if (ARG3 == 0) \
1782 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1783 else \
1784 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1785 __RES; \
1786 })
1787
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1788 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1789 {
1790 int32_t result;
1791
1792 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1793 return(result);
1794 }
1795
1796 #endif /* (__ARM_FEATURE_DSP == 1U) */
1797 /*@} end of group CMSIS_SIMD_intrinsics */
1798
1799
1800 #endif /* __CMSIS_ARMCC_V6_H */
1801