1 /**************************************************************************//**
2 * @file cmsis_gcc.h
3 * @brief CMSIS Cortex-M Core Function/Instruction Header File
4 * @version V4.30
5 * @date 20. October 2015
6 ******************************************************************************/
7 /* Copyright (c) 2009 - 2015 ARM LIMITED
8
9 All rights reserved.
10 Redistribution and use in source and binary forms, with or without
11 modification, are permitted provided that the following conditions are met:
12 - Redistributions of source code must retain the above copyright
13 notice, this list of conditions and the following disclaimer.
14 - Redistributions in binary form must reproduce the above copyright
15 notice, this list of conditions and the following disclaimer in the
16 documentation and/or other materials provided with the distribution.
17 - Neither the name of ARM nor the names of its contributors may be used
18 to endorse or promote products derived from this software without
19 specific prior written permission.
20 *
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32 ---------------------------------------------------------------------------*/
33
34
35 #ifndef __CMSIS_GCC_H
36 #define __CMSIS_GCC_H
37
38 /* ignore some GCC warnings */
39 #if defined ( __GNUC__ )
40 #pragma GCC diagnostic push
41 #pragma GCC diagnostic ignored "-Wsign-conversion"
42 #pragma GCC diagnostic ignored "-Wconversion"
43 #pragma GCC diagnostic ignored "-Wunused-parameter"
44 #endif
45
46
47 /* ########################### Core Function Access ########################### */
48 /** \ingroup CMSIS_Core_FunctionInterface
49 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
50 @{
51 */
52
53 /**
54 \brief Enable IRQ Interrupts
55 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
56 Can only be executed in Privileged modes.
57 */
__enable_irq(void)58 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
59 {
60 __ASM volatile ("cpsie i" : : : "memory");
61 }
62
63
64 /**
65 \brief Disable IRQ Interrupts
66 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
67 Can only be executed in Privileged modes.
68 */
__disable_irq(void)69 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
70 {
71 __ASM volatile ("cpsid i" : : : "memory");
72 }
73
74
75 /**
76 \brief Get Control Register
77 \details Returns the content of the Control Register.
78 \return Control Register value
79 */
__get_CONTROL(void)80 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
81 {
82 uint32_t result;
83
84 __ASM volatile ("MRS %0, control" : "=r" (result) );
85 return(result);
86 }
87
88
89 /**
90 \brief Set Control Register
91 \details Writes the given value to the Control Register.
92 \param [in] control Control Register value to set
93 */
__set_CONTROL(uint32_t control)94 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
95 {
96 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
97 }
98
99
100 /**
101 \brief Get IPSR Register
102 \details Returns the content of the IPSR Register.
103 \return IPSR Register value
104 */
__get_IPSR(void)105 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
106 {
107 uint32_t result;
108
109 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
110 return(result);
111 }
112
113
114 /**
115 \brief Get APSR Register
116 \details Returns the content of the APSR Register.
117 \return APSR Register value
118 */
__get_APSR(void)119 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
120 {
121 uint32_t result;
122
123 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
124 return(result);
125 }
126
127
128 /**
129 \brief Get xPSR Register
130 \details Returns the content of the xPSR Register.
131
132 \return xPSR Register value
133 */
__get_xPSR(void)134 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
135 {
136 uint32_t result;
137
138 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
139 return(result);
140 }
141
142
143 /**
144 \brief Get Process Stack Pointer
145 \details Returns the current value of the Process Stack Pointer (PSP).
146 \return PSP Register value
147 */
__get_PSP(void)148 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
149 {
150 register uint32_t result;
151
152 __ASM volatile ("MRS %0, psp\n" : "=r" (result) );
153 return(result);
154 }
155
156
157 /**
158 \brief Set Process Stack Pointer
159 \details Assigns the given value to the Process Stack Pointer (PSP).
160 \param [in] topOfProcStack Process Stack Pointer value to set
161 */
__set_PSP(uint32_t topOfProcStack)162 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
163 {
164 __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
165 }
166
167
168 /**
169 \brief Get Main Stack Pointer
170 \details Returns the current value of the Main Stack Pointer (MSP).
171 \return MSP Register value
172 */
__get_MSP(void)173 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
174 {
175 register uint32_t result;
176
177 __ASM volatile ("MRS %0, msp\n" : "=r" (result) );
178 return(result);
179 }
180
181
182 /**
183 \brief Set Main Stack Pointer
184 \details Assigns the given value to the Main Stack Pointer (MSP).
185
186 \param [in] topOfMainStack Main Stack Pointer value to set
187 */
__set_MSP(uint32_t topOfMainStack)188 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
189 {
190 __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
191 }
192
193
194 /**
195 \brief Get Priority Mask
196 \details Returns the current state of the priority mask bit from the Priority Mask Register.
197 \return Priority Mask value
198 */
__get_PRIMASK(void)199 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
200 {
201 uint32_t result;
202
203 __ASM volatile ("MRS %0, primask" : "=r" (result) );
204 return(result);
205 }
206
207
208 /**
209 \brief Set Priority Mask
210 \details Assigns the given value to the Priority Mask Register.
211 \param [in] priMask Priority Mask
212 */
__set_PRIMASK(uint32_t priMask)213 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
214 {
215 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
216 }
217
218
219 #if (__CORTEX_M >= 0x03U)
220
221 /**
222 \brief Enable FIQ
223 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
224 Can only be executed in Privileged modes.
225 */
__enable_fault_irq(void)226 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
227 {
228 __ASM volatile ("cpsie f" : : : "memory");
229 }
230
231
232 /**
233 \brief Disable FIQ
234 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
235 Can only be executed in Privileged modes.
236 */
__disable_fault_irq(void)237 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
238 {
239 __ASM volatile ("cpsid f" : : : "memory");
240 }
241
242
243 /**
244 \brief Get Base Priority
245 \details Returns the current value of the Base Priority register.
246 \return Base Priority register value
247 */
__get_BASEPRI(void)248 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
249 {
250 uint32_t result;
251
252 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
253 return(result);
254 }
255
256
257 /**
258 \brief Set Base Priority
259 \details Assigns the given value to the Base Priority register.
260 \param [in] basePri Base Priority value to set
261 */
__set_BASEPRI(uint32_t value)262 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
263 {
264 __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
265 }
266
267
268 /**
269 \brief Set Base Priority with condition
270 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
271 or the new value increases the BASEPRI priority level.
272 \param [in] basePri Base Priority value to set
273 */
__set_BASEPRI_MAX(uint32_t value)274 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
275 {
276 __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
277 }
278
279
280 /**
281 \brief Get Fault Mask
282 \details Returns the current value of the Fault Mask register.
283 \return Fault Mask register value
284 */
__get_FAULTMASK(void)285 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
286 {
287 uint32_t result;
288
289 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
290 return(result);
291 }
292
293
294 /**
295 \brief Set Fault Mask
296 \details Assigns the given value to the Fault Mask register.
297 \param [in] faultMask Fault Mask value to set
298 */
__set_FAULTMASK(uint32_t faultMask)299 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
300 {
301 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
302 }
303
304 #endif /* (__CORTEX_M >= 0x03U) */
305
306
307 #if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)
308
309 /**
310 \brief Get FPSCR
311 \details Returns the current value of the Floating Point Status/Control register.
312 \return Floating Point Status/Control register value
313 */
__get_FPSCR(void)314 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
315 {
316 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
317 uint32_t result;
318
319 /* Empty asm statement works as a scheduling barrier */
320 __ASM volatile ("");
321 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
322 __ASM volatile ("");
323 return(result);
324 #else
325 return(0);
326 #endif
327 }
328
329
330 /**
331 \brief Set FPSCR
332 \details Assigns the given value to the Floating Point Status/Control register.
333 \param [in] fpscr Floating Point Status/Control value to set
334 */
__set_FPSCR(uint32_t fpscr)335 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
336 {
337 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
338 /* Empty asm statement works as a scheduling barrier */
339 __ASM volatile ("");
340 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
341 __ASM volatile ("");
342 #endif
343 }
344
345 #endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */
346
347
348
349 /*@} end of CMSIS_Core_RegAccFunctions */
350
351
352 /* ########################## Core Instruction Access ######################### */
353 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
354 Access to dedicated instructions
355 @{
356 */
357
358 /* Define macros for porting to both thumb1 and thumb2.
359 * For thumb1, use low register (r0-r7), specified by constraint "l"
360 * Otherwise, use general registers, specified by constraint "r" */
361 #if defined (__thumb__) && !defined (__thumb2__)
362 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
363 #define __CMSIS_GCC_USE_REG(r) "l" (r)
364 #else
365 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
366 #define __CMSIS_GCC_USE_REG(r) "r" (r)
367 #endif
368
369 /**
370 \brief No Operation
371 \details No Operation does nothing. This instruction can be used for code alignment purposes.
372 */
__NOP(void)373 __attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
374 {
375 __ASM volatile ("nop");
376 }
377
378
379 /**
380 \brief Wait For Interrupt
381 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
382 */
__WFI(void)383 __attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
384 {
385 __ASM volatile ("wfi");
386 }
387
388
389 /**
390 \brief Wait For Event
391 \details Wait For Event is a hint instruction that permits the processor to enter
392 a low-power state until one of a number of events occurs.
393 */
__WFE(void)394 __attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
395 {
396 __ASM volatile ("wfe");
397 }
398
399
400 /**
401 \brief Send Event
402 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
403 */
__SEV(void)404 __attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
405 {
406 __ASM volatile ("sev");
407 }
408
409
410 /**
411 \brief Instruction Synchronization Barrier
412 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
413 so that all instructions following the ISB are fetched from cache or memory,
414 after the instruction has been completed.
415 */
__ISB(void)416 __attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
417 {
418 __ASM volatile ("isb 0xF":::"memory");
419 }
420
421
422 /**
423 \brief Data Synchronization Barrier
424 \details Acts as a special kind of Data Memory Barrier.
425 It completes when all explicit memory accesses before this instruction complete.
426 */
__DSB(void)427 __attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
428 {
429 __ASM volatile ("dsb 0xF":::"memory");
430 }
431
432
433 /**
434 \brief Data Memory Barrier
435 \details Ensures the apparent order of the explicit memory operations before
436 and after the instruction, without ensuring their completion.
437 */
__DMB(void)438 __attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
439 {
440 __ASM volatile ("dmb 0xF":::"memory");
441 }
442
443
444 /**
445 \brief Reverse byte order (32 bit)
446 \details Reverses the byte order in integer value.
447 \param [in] value Value to reverse
448 \return Reversed value
449 */
__REV(uint32_t value)450 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
451 {
452 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
453 return __builtin_bswap32(value);
454 #else
455 uint32_t result;
456
457 __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
458 return(result);
459 #endif
460 }
461
462
463 /**
464 \brief Reverse byte order (16 bit)
465 \details Reverses the byte order in two unsigned short values.
466 \param [in] value Value to reverse
467 \return Reversed value
468 */
__REV16(uint32_t value)469 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
470 {
471 uint32_t result;
472
473 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
474 return(result);
475 }
476
477
478 /**
479 \brief Reverse byte order in signed short value
480 \details Reverses the byte order in a signed short value with sign extension to integer.
481 \param [in] value Value to reverse
482 \return Reversed value
483 */
__REVSH(int32_t value)484 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
485 {
486 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
487 return (short)__builtin_bswap16(value);
488 #else
489 int32_t result;
490
491 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
492 return(result);
493 #endif
494 }
495
496
497 /**
498 \brief Rotate Right in unsigned value (32 bit)
499 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
500 \param [in] value Value to rotate
501 \param [in] value Number of Bits to rotate
502 \return Rotated value
503 */
__ROR(uint32_t op1,uint32_t op2)504 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
505 {
506 return (op1 >> op2) | (op1 << (32U - op2));
507 }
508
509
510 /**
511 \brief Breakpoint
512 \details Causes the processor to enter Debug state.
513 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
514 \param [in] value is ignored by the processor.
515 If required, a debugger can use it to store additional information about the breakpoint.
516 */
517 #define __BKPT(value) __ASM volatile ("bkpt "#value)
518
519
520 /**
521 \brief Reverse bit order of value
522 \details Reverses the bit order of the given value.
523 \param [in] value Value to reverse
524 \return Reversed value
525 */
__RBIT(uint32_t value)526 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
527 {
528 uint32_t result;
529
530 #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
531 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
532 #else
533 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
534
535 result = value; /* r will be reversed bits of v; first get LSB of v */
536 for (value >>= 1U; value; value >>= 1U)
537 {
538 result <<= 1U;
539 result |= value & 1U;
540 s--;
541 }
542 result <<= s; /* shift when v's highest bits are zero */
543 #endif
544 return(result);
545 }
546
547
548 /**
549 \brief Count leading zeros
550 \details Counts the number of leading zeros of a data value.
551 \param [in] value Value to count the leading zeros
552 \return number of leading zeros in value
553 */
554 #define __CLZ __builtin_clz
555
556
557 #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
558
559 /**
560 \brief LDR Exclusive (8 bit)
561 \details Executes a exclusive LDR instruction for 8 bit value.
562 \param [in] ptr Pointer to data
563 \return value of type uint8_t at (*ptr)
564 */
__LDREXB(volatile uint8_t * addr)565 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
566 {
567 uint32_t result;
568
569 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
570 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
571 #else
572 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
573 accepted by assembler. So has to use following less efficient pattern.
574 */
575 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
576 #endif
577 return ((uint8_t) result); /* Add explicit type cast here */
578 }
579
580
581 /**
582 \brief LDR Exclusive (16 bit)
583 \details Executes a exclusive LDR instruction for 16 bit values.
584 \param [in] ptr Pointer to data
585 \return value of type uint16_t at (*ptr)
586 */
__LDREXH(volatile uint16_t * addr)587 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
588 {
589 uint32_t result;
590
591 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
592 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
593 #else
594 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
595 accepted by assembler. So has to use following less efficient pattern.
596 */
597 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
598 #endif
599 return ((uint16_t) result); /* Add explicit type cast here */
600 }
601
602
603 /**
604 \brief LDR Exclusive (32 bit)
605 \details Executes a exclusive LDR instruction for 32 bit values.
606 \param [in] ptr Pointer to data
607 \return value of type uint32_t at (*ptr)
608 */
__LDREXW(volatile uint32_t * addr)609 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
610 {
611 uint32_t result;
612
613 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
614 return(result);
615 }
616
617
618 /**
619 \brief STR Exclusive (8 bit)
620 \details Executes a exclusive STR instruction for 8 bit values.
621 \param [in] value Value to store
622 \param [in] ptr Pointer to location
623 \return 0 Function succeeded
624 \return 1 Function failed
625 */
__STREXB(uint8_t value,volatile uint8_t * addr)626 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
627 {
628 uint32_t result;
629
630 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
631 return(result);
632 }
633
634
635 /**
636 \brief STR Exclusive (16 bit)
637 \details Executes a exclusive STR instruction for 16 bit values.
638 \param [in] value Value to store
639 \param [in] ptr Pointer to location
640 \return 0 Function succeeded
641 \return 1 Function failed
642 */
__STREXH(uint16_t value,volatile uint16_t * addr)643 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
644 {
645 uint32_t result;
646
647 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
648 return(result);
649 }
650
651
652 /**
653 \brief STR Exclusive (32 bit)
654 \details Executes a exclusive STR instruction for 32 bit values.
655 \param [in] value Value to store
656 \param [in] ptr Pointer to location
657 \return 0 Function succeeded
658 \return 1 Function failed
659 */
__STREXW(uint32_t value,volatile uint32_t * addr)660 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
661 {
662 uint32_t result;
663
664 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
665 return(result);
666 }
667
668
669 /**
670 \brief Remove the exclusive lock
671 \details Removes the exclusive lock which is created by LDREX.
672 */
__CLREX(void)673 __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
674 {
675 __ASM volatile ("clrex" ::: "memory");
676 }
677
678
679 /**
680 \brief Signed Saturate
681 \details Saturates a signed value.
682 \param [in] value Value to be saturated
683 \param [in] sat Bit position to saturate to (1..32)
684 \return Saturated value
685 */
686 #define __SSAT(ARG1,ARG2) \
687 ({ \
688 uint32_t __RES, __ARG1 = (ARG1); \
689 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
690 __RES; \
691 })
692
693
694 /**
695 \brief Unsigned Saturate
696 \details Saturates an unsigned value.
697 \param [in] value Value to be saturated
698 \param [in] sat Bit position to saturate to (0..31)
699 \return Saturated value
700 */
701 #define __USAT(ARG1,ARG2) \
702 ({ \
703 uint32_t __RES, __ARG1 = (ARG1); \
704 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
705 __RES; \
706 })
707
708
709 /**
710 \brief Rotate Right with Extend (32 bit)
711 \details Moves each bit of a bitstring right by one bit.
712 The carry input is shifted in at the left end of the bitstring.
713 \param [in] value Value to rotate
714 \return Rotated value
715 */
__RRX(uint32_t value)716 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
717 {
718 uint32_t result;
719
720 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
721 return(result);
722 }
723
724
725 /**
726 \brief LDRT Unprivileged (8 bit)
727 \details Executes a Unprivileged LDRT instruction for 8 bit value.
728 \param [in] ptr Pointer to data
729 \return value of type uint8_t at (*ptr)
730 */
__LDRBT(volatile uint8_t * addr)731 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
732 {
733 uint32_t result;
734
735 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
736 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
737 #else
738 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
739 accepted by assembler. So has to use following less efficient pattern.
740 */
741 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
742 #endif
743 return ((uint8_t) result); /* Add explicit type cast here */
744 }
745
746
747 /**
748 \brief LDRT Unprivileged (16 bit)
749 \details Executes a Unprivileged LDRT instruction for 16 bit values.
750 \param [in] ptr Pointer to data
751 \return value of type uint16_t at (*ptr)
752 */
__LDRHT(volatile uint16_t * addr)753 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
754 {
755 uint32_t result;
756
757 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
758 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
759 #else
760 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
761 accepted by assembler. So has to use following less efficient pattern.
762 */
763 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
764 #endif
765 return ((uint16_t) result); /* Add explicit type cast here */
766 }
767
768
769 /**
770 \brief LDRT Unprivileged (32 bit)
771 \details Executes a Unprivileged LDRT instruction for 32 bit values.
772 \param [in] ptr Pointer to data
773 \return value of type uint32_t at (*ptr)
774 */
__LDRT(volatile uint32_t * addr)775 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
776 {
777 uint32_t result;
778
779 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
780 return(result);
781 }
782
783
784 /**
785 \brief STRT Unprivileged (8 bit)
786 \details Executes a Unprivileged STRT instruction for 8 bit values.
787 \param [in] value Value to store
788 \param [in] ptr Pointer to location
789 */
__STRBT(uint8_t value,volatile uint8_t * addr)790 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
791 {
792 __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
793 }
794
795
796 /**
797 \brief STRT Unprivileged (16 bit)
798 \details Executes a Unprivileged STRT instruction for 16 bit values.
799 \param [in] value Value to store
800 \param [in] ptr Pointer to location
801 */
__STRHT(uint16_t value,volatile uint16_t * addr)802 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
803 {
804 __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
805 }
806
807
808 /**
809 \brief STRT Unprivileged (32 bit)
810 \details Executes a Unprivileged STRT instruction for 32 bit values.
811 \param [in] value Value to store
812 \param [in] ptr Pointer to location
813 */
__STRT(uint32_t value,volatile uint32_t * addr)814 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
815 {
816 __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
817 }
818
819 #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */
820
821 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
822
823
824 /* ################### Compiler specific Intrinsics ########################### */
825 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
826 Access to dedicated SIMD instructions
827 @{
828 */
829
830 #if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */
831
__SADD8(uint32_t op1,uint32_t op2)832 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
833 {
834 uint32_t result;
835
836 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
837 return(result);
838 }
839
__QADD8(uint32_t op1,uint32_t op2)840 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
841 {
842 uint32_t result;
843
844 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
845 return(result);
846 }
847
__SHADD8(uint32_t op1,uint32_t op2)848 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
849 {
850 uint32_t result;
851
852 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
853 return(result);
854 }
855
__UADD8(uint32_t op1,uint32_t op2)856 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
857 {
858 uint32_t result;
859
860 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
861 return(result);
862 }
863
__UQADD8(uint32_t op1,uint32_t op2)864 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
865 {
866 uint32_t result;
867
868 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
869 return(result);
870 }
871
__UHADD8(uint32_t op1,uint32_t op2)872 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
873 {
874 uint32_t result;
875
876 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
877 return(result);
878 }
879
880
__SSUB8(uint32_t op1,uint32_t op2)881 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
882 {
883 uint32_t result;
884
885 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
886 return(result);
887 }
888
__QSUB8(uint32_t op1,uint32_t op2)889 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
890 {
891 uint32_t result;
892
893 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
894 return(result);
895 }
896
__SHSUB8(uint32_t op1,uint32_t op2)897 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
898 {
899 uint32_t result;
900
901 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
902 return(result);
903 }
904
__USUB8(uint32_t op1,uint32_t op2)905 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
906 {
907 uint32_t result;
908
909 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
910 return(result);
911 }
912
__UQSUB8(uint32_t op1,uint32_t op2)913 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
914 {
915 uint32_t result;
916
917 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
918 return(result);
919 }
920
__UHSUB8(uint32_t op1,uint32_t op2)921 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
922 {
923 uint32_t result;
924
925 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
926 return(result);
927 }
928
929
__SADD16(uint32_t op1,uint32_t op2)930 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
931 {
932 uint32_t result;
933
934 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
935 return(result);
936 }
937
__QADD16(uint32_t op1,uint32_t op2)938 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
939 {
940 uint32_t result;
941
942 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
943 return(result);
944 }
945
__SHADD16(uint32_t op1,uint32_t op2)946 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
947 {
948 uint32_t result;
949
950 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
951 return(result);
952 }
953
__UADD16(uint32_t op1,uint32_t op2)954 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
955 {
956 uint32_t result;
957
958 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
959 return(result);
960 }
961
__UQADD16(uint32_t op1,uint32_t op2)962 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
963 {
964 uint32_t result;
965
966 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
967 return(result);
968 }
969
__UHADD16(uint32_t op1,uint32_t op2)970 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
971 {
972 uint32_t result;
973
974 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
975 return(result);
976 }
977
__SSUB16(uint32_t op1,uint32_t op2)978 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
979 {
980 uint32_t result;
981
982 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
983 return(result);
984 }
985
__QSUB16(uint32_t op1,uint32_t op2)986 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
987 {
988 uint32_t result;
989
990 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
991 return(result);
992 }
993
__SHSUB16(uint32_t op1,uint32_t op2)994 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
995 {
996 uint32_t result;
997
998 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
999 return(result);
1000 }
1001
__USUB16(uint32_t op1,uint32_t op2)1002 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1003 {
1004 uint32_t result;
1005
1006 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1007 return(result);
1008 }
1009
__UQSUB16(uint32_t op1,uint32_t op2)1010 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1011 {
1012 uint32_t result;
1013
1014 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1015 return(result);
1016 }
1017
__UHSUB16(uint32_t op1,uint32_t op2)1018 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1019 {
1020 uint32_t result;
1021
1022 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1023 return(result);
1024 }
1025
__SASX(uint32_t op1,uint32_t op2)1026 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1027 {
1028 uint32_t result;
1029
1030 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1031 return(result);
1032 }
1033
__QASX(uint32_t op1,uint32_t op2)1034 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1035 {
1036 uint32_t result;
1037
1038 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1039 return(result);
1040 }
1041
__SHASX(uint32_t op1,uint32_t op2)1042 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1043 {
1044 uint32_t result;
1045
1046 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1047 return(result);
1048 }
1049
__UASX(uint32_t op1,uint32_t op2)1050 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1051 {
1052 uint32_t result;
1053
1054 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1055 return(result);
1056 }
1057
__UQASX(uint32_t op1,uint32_t op2)1058 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1059 {
1060 uint32_t result;
1061
1062 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1063 return(result);
1064 }
1065
__UHASX(uint32_t op1,uint32_t op2)1066 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1067 {
1068 uint32_t result;
1069
1070 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1071 return(result);
1072 }
1073
__SSAX(uint32_t op1,uint32_t op2)1074 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1075 {
1076 uint32_t result;
1077
1078 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1079 return(result);
1080 }
1081
__QSAX(uint32_t op1,uint32_t op2)1082 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1083 {
1084 uint32_t result;
1085
1086 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1087 return(result);
1088 }
1089
__SHSAX(uint32_t op1,uint32_t op2)1090 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1091 {
1092 uint32_t result;
1093
1094 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1095 return(result);
1096 }
1097
__USAX(uint32_t op1,uint32_t op2)1098 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1099 {
1100 uint32_t result;
1101
1102 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1103 return(result);
1104 }
1105
__UQSAX(uint32_t op1,uint32_t op2)1106 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1107 {
1108 uint32_t result;
1109
1110 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1111 return(result);
1112 }
1113
__UHSAX(uint32_t op1,uint32_t op2)1114 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1115 {
1116 uint32_t result;
1117
1118 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1119 return(result);
1120 }
1121
__USAD8(uint32_t op1,uint32_t op2)1122 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1123 {
1124 uint32_t result;
1125
1126 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1127 return(result);
1128 }
1129
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1130 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1131 {
1132 uint32_t result;
1133
1134 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1135 return(result);
1136 }
1137
1138 #define __SSAT16(ARG1,ARG2) \
1139 ({ \
1140 int32_t __RES, __ARG1 = (ARG1); \
1141 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1142 __RES; \
1143 })
1144
1145 #define __USAT16(ARG1,ARG2) \
1146 ({ \
1147 uint32_t __RES, __ARG1 = (ARG1); \
1148 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1149 __RES; \
1150 })
1151
__UXTB16(uint32_t op1)1152 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1153 {
1154 uint32_t result;
1155
1156 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1157 return(result);
1158 }
1159
__UXTAB16(uint32_t op1,uint32_t op2)1160 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1161 {
1162 uint32_t result;
1163
1164 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1165 return(result);
1166 }
1167
__SXTB16(uint32_t op1)1168 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1169 {
1170 uint32_t result;
1171
1172 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1173 return(result);
1174 }
1175
__SXTAB16(uint32_t op1,uint32_t op2)1176 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1177 {
1178 uint32_t result;
1179
1180 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1181 return(result);
1182 }
1183
__SMUAD(uint32_t op1,uint32_t op2)1184 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1185 {
1186 uint32_t result;
1187
1188 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1189 return(result);
1190 }
1191
__SMUADX(uint32_t op1,uint32_t op2)1192 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1193 {
1194 uint32_t result;
1195
1196 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1197 return(result);
1198 }
1199
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1200 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1201 {
1202 uint32_t result;
1203
1204 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1205 return(result);
1206 }
1207
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1208 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1209 {
1210 uint32_t result;
1211
1212 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1213 return(result);
1214 }
1215
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1216 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1217 {
1218 union llreg_u{
1219 uint32_t w32[2];
1220 uint64_t w64;
1221 } llr;
1222 llr.w64 = acc;
1223
1224 #ifndef __ARMEB__ /* Little endian */
1225 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1226 #else /* Big endian */
1227 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1228 #endif
1229
1230 return(llr.w64);
1231 }
1232
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1233 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1234 {
1235 union llreg_u{
1236 uint32_t w32[2];
1237 uint64_t w64;
1238 } llr;
1239 llr.w64 = acc;
1240
1241 #ifndef __ARMEB__ /* Little endian */
1242 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1243 #else /* Big endian */
1244 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1245 #endif
1246
1247 return(llr.w64);
1248 }
1249
__SMUSD(uint32_t op1,uint32_t op2)1250 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1251 {
1252 uint32_t result;
1253
1254 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1255 return(result);
1256 }
1257
__SMUSDX(uint32_t op1,uint32_t op2)1258 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1259 {
1260 uint32_t result;
1261
1262 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1263 return(result);
1264 }
1265
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1266 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1267 {
1268 uint32_t result;
1269
1270 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1271 return(result);
1272 }
1273
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1274 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1275 {
1276 uint32_t result;
1277
1278 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1279 return(result);
1280 }
1281
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1282 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1283 {
1284 union llreg_u{
1285 uint32_t w32[2];
1286 uint64_t w64;
1287 } llr;
1288 llr.w64 = acc;
1289
1290 #ifndef __ARMEB__ /* Little endian */
1291 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1292 #else /* Big endian */
1293 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1294 #endif
1295
1296 return(llr.w64);
1297 }
1298
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1299 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1300 {
1301 union llreg_u{
1302 uint32_t w32[2];
1303 uint64_t w64;
1304 } llr;
1305 llr.w64 = acc;
1306
1307 #ifndef __ARMEB__ /* Little endian */
1308 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1309 #else /* Big endian */
1310 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1311 #endif
1312
1313 return(llr.w64);
1314 }
1315
__SEL(uint32_t op1,uint32_t op2)1316 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1317 {
1318 uint32_t result;
1319
1320 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1321 return(result);
1322 }
1323
__QADD(int32_t op1,int32_t op2)1324 __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
1325 {
1326 int32_t result;
1327
1328 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1329 return(result);
1330 }
1331
__QSUB(int32_t op1,int32_t op2)1332 __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
1333 {
1334 int32_t result;
1335
1336 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1337 return(result);
1338 }
1339
1340 #define __PKHBT(ARG1,ARG2,ARG3) \
1341 ({ \
1342 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1343 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1344 __RES; \
1345 })
1346
1347 #define __PKHTB(ARG1,ARG2,ARG3) \
1348 ({ \
1349 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1350 if (ARG3 == 0) \
1351 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1352 else \
1353 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1354 __RES; \
1355 })
1356
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1357 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1358 {
1359 int32_t result;
1360
1361 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1362 return(result);
1363 }
1364
1365 #endif /* (__CORTEX_M >= 0x04) */
1366 /*@} end of group CMSIS_SIMD_intrinsics */
1367
1368
1369 #if defined ( __GNUC__ )
1370 #pragma GCC diagnostic pop
1371 #endif
1372
1373 #endif /* __CMSIS_GCC_H */
1374