• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Double-precision e^x function.
3  *
4  * Copyright (c) 2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "libm.h"
11 #include "exp_data.h"
12 
13 #define N (1 << EXP_TABLE_BITS)
14 #define InvLn2N __exp_data.invln2N
15 #define NegLn2hiN __exp_data.negln2hiN
16 #define NegLn2loN __exp_data.negln2loN
17 #define Shift __exp_data.shift
18 #define T __exp_data.tab
19 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
20 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
21 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
22 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
23 
24 /* Handle cases that may overflow or underflow when computing the result that
25    is scale*(1+TMP) without intermediate rounding.  The bit representation of
26    scale is in SBITS, however it has a computed exponent that may have
27    overflown into the sign bit so that needs to be adjusted before using it as
28    a double.  (int32_t)KI is the k used in the argument reduction and exponent
29    adjustment of scale, positive k here means the result may overflow and
30    negative k means the result may underflow.  */
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)31 static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
32 {
33 	double_t scale, y;
34 
35 	if ((ki & 0x80000000) == 0) {
36 		/* k > 0, the exponent of scale might have overflowed by <= 460.  */
37 		sbits -= 1009ull << 52;
38 		scale = asdouble(sbits);
39 		y = 0x1p1009 * (scale + scale * tmp);
40 		return eval_as_double(y);
41 	}
42 	/* k < 0, need special care in the subnormal range.  */
43 	sbits += 1022ull << 52;
44 	scale = asdouble(sbits);
45 	y = scale + scale * tmp;
46 	if (y < 1.0) {
47 		/* Round y to the right precision before scaling it into the subnormal
48 		 range to avoid double rounding that can cause 0.5+E/2 ulp error where
49 		 E is the worst-case ulp error outside the subnormal range.  So this
50 		 is only useful if the goal is better than 1 ulp worst-case error.  */
51 		double_t hi, lo;
52 		lo = scale - y + scale * tmp;
53 		hi = 1.0 + y;
54 		lo = 1.0 - hi + y + lo;
55 		y = eval_as_double(hi + lo) - 1.0;
56 		/* Avoid -0.0 with downward rounding.  */
57 		if (WANT_ROUNDING && y == 0.0)
58 			y = 0.0;
59 		/* The underflow exception needs to be signaled explicitly.  */
60 		fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
61 	}
62 	y = 0x1p-1022 * y;
63 	return eval_as_double(y);
64 }
65 
66 /* Top 12 bits of a double (sign and exponent bits).  */
top12(double x)67 static inline uint32_t top12(double x)
68 {
69 	return asuint64(x) >> 52;
70 }
71 
exp(double x)72 double exp(double x)
73 {
74 	uint32_t abstop;
75 	uint64_t ki, idx, top, sbits;
76 	double_t kd, z, r, r2, scale, tail, tmp;
77 
78 	abstop = top12(x) & 0x7ff;
79 	if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
80 		if (abstop - top12(0x1p-54) >= 0x80000000)
81 			/* Avoid spurious underflow for tiny x.  */
82 			/* Note: 0 is common input.  */
83 			return WANT_ROUNDING ? 1.0 + x : 1.0;
84 		if (abstop >= top12(1024.0)) {
85 			if (asuint64(x) == asuint64(-INFINITY))
86 				return 0.0;
87 			if (abstop >= top12(INFINITY))
88 				return 1.0 + x;
89 			if (asuint64(x) >> 63)
90 				return __math_uflow(0);
91 			else
92 				return __math_oflow(0);
93 		}
94 		/* Large x is special cased below.  */
95 		abstop = 0;
96 	}
97 
98 	/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
99 	/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
100 	z = InvLn2N * x;
101 #if TOINT_INTRINSICS
102 	kd = roundtoint(z);
103 	ki = converttoint(z);
104 #elif EXP_USE_TOINT_NARROW
105 	/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
106 	kd = eval_as_double(z + Shift);
107 	ki = asuint64(kd) >> 16;
108 	kd = (double_t)(int32_t)ki;
109 #else
110 	/* z - kd is in [-1, 1] in non-nearest rounding modes.  */
111 	kd = eval_as_double(z + Shift);
112 	ki = asuint64(kd);
113 	kd -= Shift;
114 #endif
115 	r = x + kd * NegLn2hiN + kd * NegLn2loN;
116 	/* 2^(k/N) ~= scale * (1 + tail).  */
117 	idx = 2 * (ki % N);
118 	top = ki << (52 - EXP_TABLE_BITS);
119 	tail = asdouble(T[idx]);
120 	/* This is only a valid scale when -1023*N < k < 1024*N.  */
121 	sbits = T[idx + 1] + top;
122 	/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
123 	/* Evaluation is optimized assuming superscalar pipelined execution.  */
124 	r2 = r * r;
125 	/* Without fma the worst case error is 0.25/N ulp larger.  */
126 	/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
127 	tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
128 	if (predict_false(abstop == 0))
129 		return specialcase(tmp, sbits, ki);
130 	scale = asdouble(sbits);
131 	/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
132 	   is no spurious underflow here even without fma.  */
133 	return eval_as_double(scale + scale * tmp);
134 }
135