• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #define _GNU_SOURCE
17 #include "libm.h"
18 
19 static float pzerof(float), qzerof(float);
20 
21 static const float
22 invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
23 tpi       = 6.3661974669e-01; /* 0x3f22f983 */
24 
common(uint32_t ix,float x,int y0)25 static float common(uint32_t ix, float x, int y0)
26 {
27 	float z,s,c,ss,cc;
28 	/*
29 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
30 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
31 	 */
32 	s = sinf(x);
33 	c = cosf(x);
34 	if (y0)
35 		c = -c;
36 	cc = s+c;
37 	if (ix < 0x7f000000) {
38 		ss = s-c;
39 		z = -cosf(2*x);
40 		if (s*c < 0)
41 			cc = z/ss;
42 		else
43 			ss = z/cc;
44 		if (ix < 0x58800000) {
45 			if (y0)
46 				ss = -ss;
47 			cc = pzerof(x)*cc-qzerof(x)*ss;
48 		}
49 	}
50 	return invsqrtpi*cc/sqrtf(x);
51 }
52 
53 /* R0/S0 on [0, 2.00] */
54 static const float
55 R02 =  1.5625000000e-02, /* 0x3c800000 */
56 R03 = -1.8997929874e-04, /* 0xb947352e */
57 R04 =  1.8295404516e-06, /* 0x35f58e88 */
58 R05 = -4.6183270541e-09, /* 0xb19eaf3c */
59 S01 =  1.5619102865e-02, /* 0x3c7fe744 */
60 S02 =  1.1692678527e-04, /* 0x38f53697 */
61 S03 =  5.1354652442e-07, /* 0x3509daa6 */
62 S04 =  1.1661400734e-09; /* 0x30a045e8 */
63 
j0f(float x)64 float j0f(float x)
65 {
66 	float z,r,s;
67 	uint32_t ix;
68 
69 	GET_FLOAT_WORD(ix, x);
70 	ix &= 0x7fffffff;
71 	if (ix >= 0x7f800000)
72 		return 1/(x*x);
73 	x = fabsf(x);
74 
75 	if (ix >= 0x40000000) {  /* |x| >= 2 */
76 		/* large ulp error near zeros */
77 		return common(ix, x, 0);
78 	}
79 	if (ix >= 0x3a000000) {  /* |x| >= 2**-11 */
80 		/* up to 4ulp error near 2 */
81 		z = x*x;
82 		r = z*(R02+z*(R03+z*(R04+z*R05)));
83 		s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
84 		return (1+x/2)*(1-x/2) + z*(r/s);
85 	}
86 	if (ix >= 0x21800000)  /* |x| >= 2**-60 */
87 		x = 0.25f*x*x;
88 	return 1 - x;
89 }
90 
91 static const float
92 u00  = -7.3804296553e-02, /* 0xbd9726b5 */
93 u01  =  1.7666645348e-01, /* 0x3e34e80d */
94 u02  = -1.3818567619e-02, /* 0xbc626746 */
95 u03  =  3.4745343146e-04, /* 0x39b62a69 */
96 u04  = -3.8140706238e-06, /* 0xb67ff53c */
97 u05  =  1.9559013964e-08, /* 0x32a802ba */
98 u06  = -3.9820518410e-11, /* 0xae2f21eb */
99 v01  =  1.2730483897e-02, /* 0x3c509385 */
100 v02  =  7.6006865129e-05, /* 0x389f65e0 */
101 v03  =  2.5915085189e-07, /* 0x348b216c */
102 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
103 
y0f(float x)104 float y0f(float x)
105 {
106 	float z,u,v;
107 	uint32_t ix;
108 
109 	GET_FLOAT_WORD(ix, x);
110 	if ((ix & 0x7fffffff) == 0)
111 		return -1/0.0f;
112 	if (ix>>31)
113 		return 0/0.0f;
114 	if (ix >= 0x7f800000)
115 		return 1/x;
116 	if (ix >= 0x40000000) {  /* |x| >= 2.0 */
117 		/* large ulp error near zeros */
118 		return common(ix,x,1);
119 	}
120 	if (ix >= 0x39000000) {  /* x >= 2**-13 */
121 		/* large ulp error at x ~= 0.89 */
122 		z = x*x;
123 		u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
124 		v = 1+z*(v01+z*(v02+z*(v03+z*v04)));
125 		return u/v + tpi*(j0f(x)*logf(x));
126 	}
127 	return u00 + tpi*logf(x);
128 }
129 
130 /* The asymptotic expansions of pzero is
131  *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
132  * For x >= 2, We approximate pzero by
133  *      pzero(x) = 1 + (R/S)
134  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
135  *        S = 1 + pS0*s^2 + ... + pS4*s^10
136  * and
137  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
138  */
139 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
140   0.0000000000e+00, /* 0x00000000 */
141  -7.0312500000e-02, /* 0xbd900000 */
142  -8.0816707611e+00, /* 0xc1014e86 */
143  -2.5706311035e+02, /* 0xc3808814 */
144  -2.4852163086e+03, /* 0xc51b5376 */
145  -5.2530439453e+03, /* 0xc5a4285a */
146 };
147 static const float pS8[5] = {
148   1.1653436279e+02, /* 0x42e91198 */
149   3.8337448730e+03, /* 0x456f9beb */
150   4.0597855469e+04, /* 0x471e95db */
151   1.1675296875e+05, /* 0x47e4087c */
152   4.7627726562e+04, /* 0x473a0bba */
153 };
154 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
155  -1.1412546255e-11, /* 0xad48c58a */
156  -7.0312492549e-02, /* 0xbd8fffff */
157  -4.1596107483e+00, /* 0xc0851b88 */
158  -6.7674766541e+01, /* 0xc287597b */
159  -3.3123129272e+02, /* 0xc3a59d9b */
160  -3.4643338013e+02, /* 0xc3ad3779 */
161 };
162 static const float pS5[5] = {
163   6.0753936768e+01, /* 0x42730408 */
164   1.0512523193e+03, /* 0x44836813 */
165   5.9789707031e+03, /* 0x45bad7c4 */
166   9.6254453125e+03, /* 0x461665c8 */
167   2.4060581055e+03, /* 0x451660ee */
168 };
169 
170 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
171  -2.5470459075e-09, /* 0xb12f081b */
172  -7.0311963558e-02, /* 0xbd8fffb8 */
173  -2.4090321064e+00, /* 0xc01a2d95 */
174  -2.1965976715e+01, /* 0xc1afba52 */
175  -5.8079170227e+01, /* 0xc2685112 */
176  -3.1447946548e+01, /* 0xc1fb9565 */
177 };
178 static const float pS3[5] = {
179   3.5856033325e+01, /* 0x420f6c94 */
180   3.6151397705e+02, /* 0x43b4c1ca */
181   1.1936077881e+03, /* 0x44953373 */
182   1.1279968262e+03, /* 0x448cffe6 */
183   1.7358093262e+02, /* 0x432d94b8 */
184 };
185 
186 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
187  -8.8753431271e-08, /* 0xb3be98b7 */
188  -7.0303097367e-02, /* 0xbd8ffb12 */
189  -1.4507384300e+00, /* 0xbfb9b1cc */
190  -7.6356959343e+00, /* 0xc0f4579f */
191  -1.1193166733e+01, /* 0xc1331736 */
192  -3.2336456776e+00, /* 0xc04ef40d */
193 };
194 static const float pS2[5] = {
195   2.2220300674e+01, /* 0x41b1c32d */
196   1.3620678711e+02, /* 0x430834f0 */
197   2.7047027588e+02, /* 0x43873c32 */
198   1.5387539673e+02, /* 0x4319e01a */
199   1.4657617569e+01, /* 0x416a859a */
200 };
201 
pzerof(float x)202 static float pzerof(float x)
203 {
204 	const float *p,*q;
205 	float_t z,r,s;
206 	uint32_t ix;
207 
208 	GET_FLOAT_WORD(ix, x);
209 	ix &= 0x7fffffff;
210 	if      (ix >= 0x41000000){p = pR8; q = pS8;}
211 	else if (ix >= 0x409173eb){p = pR5; q = pS5;}
212 	else if (ix >= 0x4036d917){p = pR3; q = pS3;}
213 	else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
214 	z = 1.0f/(x*x);
215 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
216 	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
217 	return 1.0f + r/s;
218 }
219 
220 
221 /* For x >= 8, the asymptotic expansions of qzero is
222  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
223  * We approximate pzero by
224  *      qzero(x) = s*(-1.25 + (R/S))
225  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
226  *        S = 1 + qS0*s^2 + ... + qS5*s^12
227  * and
228  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
229  */
230 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
231   0.0000000000e+00, /* 0x00000000 */
232   7.3242187500e-02, /* 0x3d960000 */
233   1.1768206596e+01, /* 0x413c4a93 */
234   5.5767340088e+02, /* 0x440b6b19 */
235   8.8591972656e+03, /* 0x460a6cca */
236   3.7014625000e+04, /* 0x471096a0 */
237 };
238 static const float qS8[6] = {
239   1.6377603149e+02, /* 0x4323c6aa */
240   8.0983447266e+03, /* 0x45fd12c2 */
241   1.4253829688e+05, /* 0x480b3293 */
242   8.0330925000e+05, /* 0x49441ed4 */
243   8.4050156250e+05, /* 0x494d3359 */
244  -3.4389928125e+05, /* 0xc8a7eb69 */
245 };
246 
247 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
248   1.8408595828e-11, /* 0x2da1ec79 */
249   7.3242180049e-02, /* 0x3d95ffff */
250   5.8356351852e+00, /* 0x40babd86 */
251   1.3511157227e+02, /* 0x43071c90 */
252   1.0272437744e+03, /* 0x448067cd */
253   1.9899779053e+03, /* 0x44f8bf4b */
254 };
255 static const float qS5[6] = {
256   8.2776611328e+01, /* 0x42a58da0 */
257   2.0778142090e+03, /* 0x4501dd07 */
258   1.8847289062e+04, /* 0x46933e94 */
259   5.6751113281e+04, /* 0x475daf1d */
260   3.5976753906e+04, /* 0x470c88c1 */
261  -5.3543427734e+03, /* 0xc5a752be */
262 };
263 
264 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
265   4.3774099900e-09, /* 0x3196681b */
266   7.3241114616e-02, /* 0x3d95ff70 */
267   3.3442313671e+00, /* 0x405607e3 */
268   4.2621845245e+01, /* 0x422a7cc5 */
269   1.7080809021e+02, /* 0x432acedf */
270   1.6673394775e+02, /* 0x4326bbe4 */
271 };
272 static const float qS3[6] = {
273   4.8758872986e+01, /* 0x42430916 */
274   7.0968920898e+02, /* 0x44316c1c */
275   3.7041481934e+03, /* 0x4567825f */
276   6.4604252930e+03, /* 0x45c9e367 */
277   2.5163337402e+03, /* 0x451d4557 */
278  -1.4924745178e+02, /* 0xc3153f59 */
279 };
280 
281 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
282   1.5044444979e-07, /* 0x342189db */
283   7.3223426938e-02, /* 0x3d95f62a */
284   1.9981917143e+00, /* 0x3fffc4bf */
285   1.4495602608e+01, /* 0x4167edfd */
286   3.1666231155e+01, /* 0x41fd5471 */
287   1.6252708435e+01, /* 0x4182058c */
288 };
289 static const float qS2[6] = {
290   3.0365585327e+01, /* 0x41f2ecb8 */
291   2.6934811401e+02, /* 0x4386ac8f */
292   8.4478375244e+02, /* 0x44533229 */
293   8.8293585205e+02, /* 0x445cbbe5 */
294   2.1266638184e+02, /* 0x4354aa98 */
295  -5.3109550476e+00, /* 0xc0a9f358 */
296 };
297 
qzerof(float x)298 static float qzerof(float x)
299 {
300 	const float *p,*q;
301 	float_t s,r,z;
302 	uint32_t ix;
303 
304 	GET_FLOAT_WORD(ix, x);
305 	ix &= 0x7fffffff;
306 	if      (ix >= 0x41000000){p = qR8; q = qS8;}
307 	else if (ix >= 0x409173eb){p = qR5; q = qS5;}
308 	else if (ix >= 0x4036d917){p = qR3; q = qS3;}
309 	else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
310 	z = 1.0f/(x*x);
311 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
312 	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
313 	return (-.125f + r/s)/x;
314 }
315