• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*
18  *      Relative error logarithm
19  *      Natural logarithm of 1+x, long double precision
20  *
21  *
22  * SYNOPSIS:
23  *
24  * long double x, y, log1pl();
25  *
26  * y = log1pl( x );
27  *
28  *
29  * DESCRIPTION:
30  *
31  * Returns the base e (2.718...) logarithm of 1+x.
32  *
33  * The argument 1+x is separated into its exponent and fractional
34  * parts.  If the exponent is between -1 and +1, the logarithm
35  * of the fraction is approximated by
36  *
37  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
38  *
39  * Otherwise, setting  z = 2(x-1)/x+1),
40  *
41  *     log(x) = z + z^3 P(z)/Q(z).
42  *
43  *
44  * ACCURACY:
45  *
46  *                      Relative error:
47  * arithmetic   domain     # trials      peak         rms
48  *    IEEE     -1.0, 9.0    100000      8.2e-20    2.5e-20
49  */
50 
51 #include "libm.h"
52 
53 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
log1pl(long double x)54 long double log1pl(long double x)
55 {
56 	return log1p(x);
57 }
58 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
59 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
60  * 1/sqrt(2) <= x < sqrt(2)
61  * Theoretical peak relative error = 2.32e-20
62  */
63 static const long double P[] = {
64  4.5270000862445199635215E-5L,
65  4.9854102823193375972212E-1L,
66  6.5787325942061044846969E0L,
67  2.9911919328553073277375E1L,
68  6.0949667980987787057556E1L,
69  5.7112963590585538103336E1L,
70  2.0039553499201281259648E1L,
71 };
72 static const long double Q[] = {
73 /* 1.0000000000000000000000E0,*/
74  1.5062909083469192043167E1L,
75  8.3047565967967209469434E1L,
76  2.2176239823732856465394E2L,
77  3.0909872225312059774938E2L,
78  2.1642788614495947685003E2L,
79  6.0118660497603843919306E1L,
80 };
81 
82 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
83  * where z = 2(x-1)/(x+1)
84  * 1/sqrt(2) <= x < sqrt(2)
85  * Theoretical peak relative error = 6.16e-22
86  */
87 static const long double R[4] = {
88  1.9757429581415468984296E-3L,
89 -7.1990767473014147232598E-1L,
90  1.0777257190312272158094E1L,
91 -3.5717684488096787370998E1L,
92 };
93 static const long double S[4] = {
94 /* 1.00000000000000000000E0L,*/
95 -2.6201045551331104417768E1L,
96  1.9361891836232102174846E2L,
97 -4.2861221385716144629696E2L,
98 };
99 static const long double C1 = 6.9314575195312500000000E-1L;
100 static const long double C2 = 1.4286068203094172321215E-6L;
101 
102 #define SQRTH 0.70710678118654752440L
103 
log1pl(long double xm1)104 long double log1pl(long double xm1)
105 {
106 	long double x, y, z;
107 	int e;
108 
109 	if (isnan(xm1))
110 		return xm1;
111 	if (xm1 == INFINITY)
112 		return xm1;
113 	if (xm1 == 0.0)
114 		return xm1;
115 
116 	x = xm1 + 1.0;
117 
118 	/* Test for domain errors.  */
119 	if (x <= 0.0) {
120 		if (x == 0.0)
121 			return -1/(x*x); /* -inf with divbyzero */
122 		return 0/0.0f; /* nan with invalid */
123 	}
124 
125 	/* Separate mantissa from exponent.
126 	   Use frexp so that denormal numbers will be handled properly.  */
127 	x = frexpl(x, &e);
128 
129 	/* logarithm using log(x) = z + z^3 P(z)/Q(z),
130 	   where z = 2(x-1)/x+1)  */
131 	if (e > 2 || e < -2) {
132 		if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
133 			e -= 1;
134 			z = x - 0.5;
135 			y = 0.5 * z + 0.5;
136 		} else { /*  2 (x-1)/(x+1)   */
137 			z = x - 0.5;
138 			z -= 0.5;
139 			y = 0.5 * x  + 0.5;
140 		}
141 		x = z / y;
142 		z = x*x;
143 		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
144 		z = z + e * C2;
145 		z = z + x;
146 		z = z + e * C1;
147 		return z;
148 	}
149 
150 	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
151 	if (x < SQRTH) {
152 		e -= 1;
153 		if (e != 0)
154 			x = 2.0 * x - 1.0;
155 		else
156 			x = xm1;
157 	} else {
158 		if (e != 0)
159 			x = x - 1.0;
160 		else
161 			x = xm1;
162 	}
163 	z = x*x;
164 	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
165 	y = y + e * C2;
166 	z = y - 0.5 * z;
167 	z = z + x;
168 	z = z + e * C1;
169 	return z;
170 }
171 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
172 // TODO: broken implementation to make things compile
log1pl(long double x)173 long double log1pl(long double x)
174 {
175 	return log1p(x);
176 }
177 #endif
178