1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree sets: sorted associative containers of
20 // values.
21 //
22 // * `absl::btree_set<>`
23 // * `absl::btree_multiset<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::set` and `std::multiset`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::set` and `std::multiset`, which are commonly implemented using
31 // red-black tree nodes, B-tree sets use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree sets perform better than their `std::set` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::set` and `std::multiset` as there are some API differences, which are
38 // noted in this header file.
39 //
40 // Importantly, insertions and deletions may invalidate outstanding iterators,
41 // pointers, and references to elements. Such invalidations are typically only
42 // an issue if insertion and deletion operations are interleaved with the use of
43 // more than one iterator, pointer, or reference simultaneously. For this
44 // reason, `insert()` and `erase()` return a valid iterator at the current
45 // position.
46
47 #ifndef ABSL_CONTAINER_BTREE_SET_H_
48 #define ABSL_CONTAINER_BTREE_SET_H_
49
50 #include "absl/container/internal/btree.h" // IWYU pragma: export
51 #include "absl/container/internal/btree_container.h" // IWYU pragma: export
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55
56 // absl::btree_set<>
57 //
58 // An `absl::btree_set<K>` is an ordered associative container of unique key
59 // values designed to be a more efficient replacement for `std::set` (in most
60 // cases).
61 //
62 // Keys are sorted using an (optional) comparison function, which defaults to
63 // `std::less<K>`.
64 //
65 // An `absl::btree_set<K>` uses a default allocator of `std::allocator<K>` to
66 // allocate (and deallocate) nodes, and construct and destruct values within
67 // those nodes. You may instead specify a custom allocator `A` (which in turn
68 // requires specifying a custom comparator `C`) as in
69 // `absl::btree_set<K, C, A>`.
70 //
71 template <typename Key, typename Compare = std::less<Key>,
72 typename Alloc = std::allocator<Key>>
73 class btree_set
74 : public container_internal::btree_set_container<
75 container_internal::btree<container_internal::set_params<
76 Key, Compare, Alloc, /*TargetNodeSize=*/256,
77 /*Multi=*/false>>> {
78 using Base = typename btree_set::btree_set_container;
79
80 public:
81 // Constructors and Assignment Operators
82 //
83 // A `btree_set` supports the same overload set as `std::set`
84 // for construction and assignment:
85 //
86 // * Default constructor
87 //
88 // absl::btree_set<std::string> set1;
89 //
90 // * Initializer List constructor
91 //
92 // absl::btree_set<std::string> set2 =
93 // {{"huey"}, {"dewey"}, {"louie"},};
94 //
95 // * Copy constructor
96 //
97 // absl::btree_set<std::string> set3(set2);
98 //
99 // * Copy assignment operator
100 //
101 // absl::btree_set<std::string> set4;
102 // set4 = set3;
103 //
104 // * Move constructor
105 //
106 // // Move is guaranteed efficient
107 // absl::btree_set<std::string> set5(std::move(set4));
108 //
109 // * Move assignment operator
110 //
111 // // May be efficient if allocators are compatible
112 // absl::btree_set<std::string> set6;
113 // set6 = std::move(set5);
114 //
115 // * Range constructor
116 //
117 // std::vector<std::string> v = {"a", "b"};
118 // absl::btree_set<std::string> set7(v.begin(), v.end());
btree_set()119 btree_set() {}
120 using Base::Base;
121
122 // btree_set::begin()
123 //
124 // Returns an iterator to the beginning of the `btree_set`.
125 using Base::begin;
126
127 // btree_set::cbegin()
128 //
129 // Returns a const iterator to the beginning of the `btree_set`.
130 using Base::cbegin;
131
132 // btree_set::end()
133 //
134 // Returns an iterator to the end of the `btree_set`.
135 using Base::end;
136
137 // btree_set::cend()
138 //
139 // Returns a const iterator to the end of the `btree_set`.
140 using Base::cend;
141
142 // btree_set::empty()
143 //
144 // Returns whether or not the `btree_set` is empty.
145 using Base::empty;
146
147 // btree_set::max_size()
148 //
149 // Returns the largest theoretical possible number of elements within a
150 // `btree_set` under current memory constraints. This value can be thought
151 // of as the largest value of `std::distance(begin(), end())` for a
152 // `btree_set<Key>`.
153 using Base::max_size;
154
155 // btree_set::size()
156 //
157 // Returns the number of elements currently within the `btree_set`.
158 using Base::size;
159
160 // btree_set::clear()
161 //
162 // Removes all elements from the `btree_set`. Invalidates any references,
163 // pointers, or iterators referring to contained elements.
164 using Base::clear;
165
166 // btree_set::erase()
167 //
168 // Erases elements within the `btree_set`. Overloads are listed below.
169 //
170 // iterator erase(iterator position):
171 // iterator erase(const_iterator position):
172 //
173 // Erases the element at `position` of the `btree_set`, returning
174 // the iterator pointing to the element after the one that was erased
175 // (or end() if none exists).
176 //
177 // iterator erase(const_iterator first, const_iterator last):
178 //
179 // Erases the elements in the open interval [`first`, `last`), returning
180 // the iterator pointing to the element after the interval that was erased
181 // (or end() if none exists).
182 //
183 // template <typename K> size_type erase(const K& key):
184 //
185 // Erases the element with the matching key, if it exists, returning the
186 // number of elements erased (0 or 1).
187 using Base::erase;
188
189 // btree_set::insert()
190 //
191 // Inserts an element of the specified value into the `btree_set`,
192 // returning an iterator pointing to the newly inserted element, provided that
193 // an element with the given key does not already exist. If an insertion
194 // occurs, any references, pointers, or iterators are invalidated.
195 // Overloads are listed below.
196 //
197 // std::pair<iterator,bool> insert(const value_type& value):
198 //
199 // Inserts a value into the `btree_set`. Returns a pair consisting of an
200 // iterator to the inserted element (or to the element that prevented the
201 // insertion) and a bool denoting whether the insertion took place.
202 //
203 // std::pair<iterator,bool> insert(value_type&& value):
204 //
205 // Inserts a moveable value into the `btree_set`. Returns a pair
206 // consisting of an iterator to the inserted element (or to the element that
207 // prevented the insertion) and a bool denoting whether the insertion took
208 // place.
209 //
210 // iterator insert(const_iterator hint, const value_type& value):
211 // iterator insert(const_iterator hint, value_type&& value):
212 //
213 // Inserts a value, using the position of `hint` as a non-binding suggestion
214 // for where to begin the insertion search. Returns an iterator to the
215 // inserted element, or to the existing element that prevented the
216 // insertion.
217 //
218 // void insert(InputIterator first, InputIterator last):
219 //
220 // Inserts a range of values [`first`, `last`).
221 //
222 // void insert(std::initializer_list<init_type> ilist):
223 //
224 // Inserts the elements within the initializer list `ilist`.
225 using Base::insert;
226
227 // btree_set::emplace()
228 //
229 // Inserts an element of the specified value by constructing it in-place
230 // within the `btree_set`, provided that no element with the given key
231 // already exists.
232 //
233 // The element may be constructed even if there already is an element with the
234 // key in the container, in which case the newly constructed element will be
235 // destroyed immediately.
236 //
237 // If an insertion occurs, any references, pointers, or iterators are
238 // invalidated.
239 using Base::emplace;
240
241 // btree_set::emplace_hint()
242 //
243 // Inserts an element of the specified value by constructing it in-place
244 // within the `btree_set`, using the position of `hint` as a non-binding
245 // suggestion for where to begin the insertion search, and only inserts
246 // provided that no element with the given key already exists.
247 //
248 // The element may be constructed even if there already is an element with the
249 // key in the container, in which case the newly constructed element will be
250 // destroyed immediately.
251 //
252 // If an insertion occurs, any references, pointers, or iterators are
253 // invalidated.
254 using Base::emplace_hint;
255
256 // btree_set::extract()
257 //
258 // Extracts the indicated element, erasing it in the process, and returns it
259 // as a C++17-compatible node handle. Overloads are listed below.
260 //
261 // node_type extract(const_iterator position):
262 //
263 // Extracts the element at the indicated position and returns a node handle
264 // owning that extracted data.
265 //
266 // template <typename K> node_type extract(const K& k):
267 //
268 // Extracts the element with the key matching the passed key value and
269 // returns a node handle owning that extracted data. If the `btree_set`
270 // does not contain an element with a matching key, this function returns an
271 // empty node handle.
272 //
273 // NOTE: In this context, `node_type` refers to the C++17 concept of a
274 // move-only type that owns and provides access to the elements in associative
275 // containers (https://en.cppreference.com/w/cpp/container/node_handle).
276 // It does NOT refer to the data layout of the underlying btree.
277 using Base::extract;
278
279 // btree_set::merge()
280 //
281 // Extracts elements from a given `source` btree_set into this
282 // `btree_set`. If the destination `btree_set` already contains an
283 // element with an equivalent key, that element is not extracted.
284 using Base::merge;
285
286 // btree_set::swap(btree_set& other)
287 //
288 // Exchanges the contents of this `btree_set` with those of the `other`
289 // btree_set, avoiding invocation of any move, copy, or swap operations on
290 // individual elements.
291 //
292 // All iterators and references on the `btree_set` remain valid, excepting
293 // for the past-the-end iterator, which is invalidated.
294 using Base::swap;
295
296 // btree_set::contains()
297 //
298 // template <typename K> bool contains(const K& key) const:
299 //
300 // Determines whether an element comparing equal to the given `key` exists
301 // within the `btree_set`, returning `true` if so or `false` otherwise.
302 //
303 // Supports heterogeneous lookup, provided that the set is provided a
304 // compatible heterogeneous comparator.
305 using Base::contains;
306
307 // btree_set::count()
308 //
309 // template <typename K> size_type count(const K& key) const:
310 //
311 // Returns the number of elements comparing equal to the given `key` within
312 // the `btree_set`. Note that this function will return either `1` or `0`
313 // since duplicate elements are not allowed within a `btree_set`.
314 //
315 // Supports heterogeneous lookup, provided that the set is provided a
316 // compatible heterogeneous comparator.
317 using Base::count;
318
319 // btree_set::equal_range()
320 //
321 // Returns a closed range [first, last], defined by a `std::pair` of two
322 // iterators, containing all elements with the passed key in the
323 // `btree_set`.
324 using Base::equal_range;
325
326 // btree_set::find()
327 //
328 // template <typename K> iterator find(const K& key):
329 // template <typename K> const_iterator find(const K& key) const:
330 //
331 // Finds an element with the passed `key` within the `btree_set`.
332 //
333 // Supports heterogeneous lookup, provided that the set is provided a
334 // compatible heterogeneous comparator.
335 using Base::find;
336
337 // btree_set::get_allocator()
338 //
339 // Returns the allocator function associated with this `btree_set`.
340 using Base::get_allocator;
341
342 // btree_set::key_comp();
343 //
344 // Returns the key comparator associated with this `btree_set`.
345 using Base::key_comp;
346
347 // btree_set::value_comp();
348 //
349 // Returns the value comparator associated with this `btree_set`. The keys to
350 // sort the elements are the values themselves, therefore `value_comp` and its
351 // sibling member function `key_comp` are equivalent.
352 using Base::value_comp;
353 };
354
355 // absl::swap(absl::btree_set<>, absl::btree_set<>)
356 //
357 // Swaps the contents of two `absl::btree_set` containers.
358 template <typename K, typename C, typename A>
swap(btree_set<K,C,A> & x,btree_set<K,C,A> & y)359 void swap(btree_set<K, C, A> &x, btree_set<K, C, A> &y) {
360 return x.swap(y);
361 }
362
363 // absl::erase_if(absl::btree_set<>, Pred)
364 //
365 // Erases all elements that satisfy the predicate pred from the container.
366 template <typename K, typename C, typename A, typename Pred>
erase_if(btree_set<K,C,A> & set,Pred pred)367 void erase_if(btree_set<K, C, A> &set, Pred pred) {
368 for (auto it = set.begin(); it != set.end();) {
369 if (pred(*it)) {
370 it = set.erase(it);
371 } else {
372 ++it;
373 }
374 }
375 }
376
377 // absl::btree_multiset<>
378 //
379 // An `absl::btree_multiset<K>` is an ordered associative container of
380 // keys and associated values designed to be a more efficient replacement
381 // for `std::multiset` (in most cases). Unlike `absl::btree_set`, a B-tree
382 // multiset allows equivalent elements.
383 //
384 // Keys are sorted using an (optional) comparison function, which defaults to
385 // `std::less<K>`.
386 //
387 // An `absl::btree_multiset<K>` uses a default allocator of `std::allocator<K>`
388 // to allocate (and deallocate) nodes, and construct and destruct values within
389 // those nodes. You may instead specify a custom allocator `A` (which in turn
390 // requires specifying a custom comparator `C`) as in
391 // `absl::btree_multiset<K, C, A>`.
392 //
393 template <typename Key, typename Compare = std::less<Key>,
394 typename Alloc = std::allocator<Key>>
395 class btree_multiset
396 : public container_internal::btree_multiset_container<
397 container_internal::btree<container_internal::set_params<
398 Key, Compare, Alloc, /*TargetNodeSize=*/256,
399 /*Multi=*/true>>> {
400 using Base = typename btree_multiset::btree_multiset_container;
401
402 public:
403 // Constructors and Assignment Operators
404 //
405 // A `btree_multiset` supports the same overload set as `std::set`
406 // for construction and assignment:
407 //
408 // * Default constructor
409 //
410 // absl::btree_multiset<std::string> set1;
411 //
412 // * Initializer List constructor
413 //
414 // absl::btree_multiset<std::string> set2 =
415 // {{"huey"}, {"dewey"}, {"louie"},};
416 //
417 // * Copy constructor
418 //
419 // absl::btree_multiset<std::string> set3(set2);
420 //
421 // * Copy assignment operator
422 //
423 // absl::btree_multiset<std::string> set4;
424 // set4 = set3;
425 //
426 // * Move constructor
427 //
428 // // Move is guaranteed efficient
429 // absl::btree_multiset<std::string> set5(std::move(set4));
430 //
431 // * Move assignment operator
432 //
433 // // May be efficient if allocators are compatible
434 // absl::btree_multiset<std::string> set6;
435 // set6 = std::move(set5);
436 //
437 // * Range constructor
438 //
439 // std::vector<std::string> v = {"a", "b"};
440 // absl::btree_multiset<std::string> set7(v.begin(), v.end());
btree_multiset()441 btree_multiset() {}
442 using Base::Base;
443
444 // btree_multiset::begin()
445 //
446 // Returns an iterator to the beginning of the `btree_multiset`.
447 using Base::begin;
448
449 // btree_multiset::cbegin()
450 //
451 // Returns a const iterator to the beginning of the `btree_multiset`.
452 using Base::cbegin;
453
454 // btree_multiset::end()
455 //
456 // Returns an iterator to the end of the `btree_multiset`.
457 using Base::end;
458
459 // btree_multiset::cend()
460 //
461 // Returns a const iterator to the end of the `btree_multiset`.
462 using Base::cend;
463
464 // btree_multiset::empty()
465 //
466 // Returns whether or not the `btree_multiset` is empty.
467 using Base::empty;
468
469 // btree_multiset::max_size()
470 //
471 // Returns the largest theoretical possible number of elements within a
472 // `btree_multiset` under current memory constraints. This value can be
473 // thought of as the largest value of `std::distance(begin(), end())` for a
474 // `btree_multiset<Key>`.
475 using Base::max_size;
476
477 // btree_multiset::size()
478 //
479 // Returns the number of elements currently within the `btree_multiset`.
480 using Base::size;
481
482 // btree_multiset::clear()
483 //
484 // Removes all elements from the `btree_multiset`. Invalidates any references,
485 // pointers, or iterators referring to contained elements.
486 using Base::clear;
487
488 // btree_multiset::erase()
489 //
490 // Erases elements within the `btree_multiset`. Overloads are listed below.
491 //
492 // iterator erase(iterator position):
493 // iterator erase(const_iterator position):
494 //
495 // Erases the element at `position` of the `btree_multiset`, returning
496 // the iterator pointing to the element after the one that was erased
497 // (or end() if none exists).
498 //
499 // iterator erase(const_iterator first, const_iterator last):
500 //
501 // Erases the elements in the open interval [`first`, `last`), returning
502 // the iterator pointing to the element after the interval that was erased
503 // (or end() if none exists).
504 //
505 // template <typename K> size_type erase(const K& key):
506 //
507 // Erases the elements matching the key, if any exist, returning the
508 // number of elements erased.
509 using Base::erase;
510
511 // btree_multiset::insert()
512 //
513 // Inserts an element of the specified value into the `btree_multiset`,
514 // returning an iterator pointing to the newly inserted element.
515 // Any references, pointers, or iterators are invalidated. Overloads are
516 // listed below.
517 //
518 // iterator insert(const value_type& value):
519 //
520 // Inserts a value into the `btree_multiset`, returning an iterator to the
521 // inserted element.
522 //
523 // iterator insert(value_type&& value):
524 //
525 // Inserts a moveable value into the `btree_multiset`, returning an iterator
526 // to the inserted element.
527 //
528 // iterator insert(const_iterator hint, const value_type& value):
529 // iterator insert(const_iterator hint, value_type&& value):
530 //
531 // Inserts a value, using the position of `hint` as a non-binding suggestion
532 // for where to begin the insertion search. Returns an iterator to the
533 // inserted element.
534 //
535 // void insert(InputIterator first, InputIterator last):
536 //
537 // Inserts a range of values [`first`, `last`).
538 //
539 // void insert(std::initializer_list<init_type> ilist):
540 //
541 // Inserts the elements within the initializer list `ilist`.
542 using Base::insert;
543
544 // btree_multiset::emplace()
545 //
546 // Inserts an element of the specified value by constructing it in-place
547 // within the `btree_multiset`. Any references, pointers, or iterators are
548 // invalidated.
549 using Base::emplace;
550
551 // btree_multiset::emplace_hint()
552 //
553 // Inserts an element of the specified value by constructing it in-place
554 // within the `btree_multiset`, using the position of `hint` as a non-binding
555 // suggestion for where to begin the insertion search.
556 //
557 // Any references, pointers, or iterators are invalidated.
558 using Base::emplace_hint;
559
560 // btree_multiset::extract()
561 //
562 // Extracts the indicated element, erasing it in the process, and returns it
563 // as a C++17-compatible node handle. Overloads are listed below.
564 //
565 // node_type extract(const_iterator position):
566 //
567 // Extracts the element at the indicated position and returns a node handle
568 // owning that extracted data.
569 //
570 // template <typename K> node_type extract(const K& k):
571 //
572 // Extracts the element with the key matching the passed key value and
573 // returns a node handle owning that extracted data. If the `btree_multiset`
574 // does not contain an element with a matching key, this function returns an
575 // empty node handle.
576 //
577 // NOTE: In this context, `node_type` refers to the C++17 concept of a
578 // move-only type that owns and provides access to the elements in associative
579 // containers (https://en.cppreference.com/w/cpp/container/node_handle).
580 // It does NOT refer to the data layout of the underlying btree.
581 using Base::extract;
582
583 // btree_multiset::merge()
584 //
585 // Extracts elements from a given `source` btree_multiset into this
586 // `btree_multiset`. If the destination `btree_multiset` already contains an
587 // element with an equivalent key, that element is not extracted.
588 using Base::merge;
589
590 // btree_multiset::swap(btree_multiset& other)
591 //
592 // Exchanges the contents of this `btree_multiset` with those of the `other`
593 // btree_multiset, avoiding invocation of any move, copy, or swap operations
594 // on individual elements.
595 //
596 // All iterators and references on the `btree_multiset` remain valid,
597 // excepting for the past-the-end iterator, which is invalidated.
598 using Base::swap;
599
600 // btree_multiset::contains()
601 //
602 // template <typename K> bool contains(const K& key) const:
603 //
604 // Determines whether an element comparing equal to the given `key` exists
605 // within the `btree_multiset`, returning `true` if so or `false` otherwise.
606 //
607 // Supports heterogeneous lookup, provided that the set is provided a
608 // compatible heterogeneous comparator.
609 using Base::contains;
610
611 // btree_multiset::count()
612 //
613 // template <typename K> size_type count(const K& key) const:
614 //
615 // Returns the number of elements comparing equal to the given `key` within
616 // the `btree_multiset`.
617 //
618 // Supports heterogeneous lookup, provided that the set is provided a
619 // compatible heterogeneous comparator.
620 using Base::count;
621
622 // btree_multiset::equal_range()
623 //
624 // Returns a closed range [first, last], defined by a `std::pair` of two
625 // iterators, containing all elements with the passed key in the
626 // `btree_multiset`.
627 using Base::equal_range;
628
629 // btree_multiset::find()
630 //
631 // template <typename K> iterator find(const K& key):
632 // template <typename K> const_iterator find(const K& key) const:
633 //
634 // Finds an element with the passed `key` within the `btree_multiset`.
635 //
636 // Supports heterogeneous lookup, provided that the set is provided a
637 // compatible heterogeneous comparator.
638 using Base::find;
639
640 // btree_multiset::get_allocator()
641 //
642 // Returns the allocator function associated with this `btree_multiset`.
643 using Base::get_allocator;
644
645 // btree_multiset::key_comp();
646 //
647 // Returns the key comparator associated with this `btree_multiset`.
648 using Base::key_comp;
649
650 // btree_multiset::value_comp();
651 //
652 // Returns the value comparator associated with this `btree_multiset`. The
653 // keys to sort the elements are the values themselves, therefore `value_comp`
654 // and its sibling member function `key_comp` are equivalent.
655 using Base::value_comp;
656 };
657
658 // absl::swap(absl::btree_multiset<>, absl::btree_multiset<>)
659 //
660 // Swaps the contents of two `absl::btree_multiset` containers.
661 template <typename K, typename C, typename A>
swap(btree_multiset<K,C,A> & x,btree_multiset<K,C,A> & y)662 void swap(btree_multiset<K, C, A> &x, btree_multiset<K, C, A> &y) {
663 return x.swap(y);
664 }
665
666 // absl::erase_if(absl::btree_multiset<>, Pred)
667 //
668 // Erases all elements that satisfy the predicate pred from the container.
669 template <typename K, typename C, typename A, typename Pred>
erase_if(btree_multiset<K,C,A> & set,Pred pred)670 void erase_if(btree_multiset<K, C, A> &set, Pred pred) {
671 for (auto it = set.begin(); it != set.end();) {
672 if (pred(*it)) {
673 it = set.erase(it);
674 } else {
675 ++it;
676 }
677 }
678 }
679
680 ABSL_NAMESPACE_END
681 } // namespace absl
682
683 #endif // ABSL_CONTAINER_BTREE_SET_H_
684