1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file tests string processing functions related to numeric values.
16
17 #include "absl/strings/numbers.h"
18
19 #include <sys/types.h>
20
21 #include <cfenv> // NOLINT(build/c++11)
22 #include <cinttypes>
23 #include <climits>
24 #include <cmath>
25 #include <cstddef>
26 #include <cstdint>
27 #include <cstdio>
28 #include <cstdlib>
29 #include <cstring>
30 #include <limits>
31 #include <numeric>
32 #include <random>
33 #include <set>
34 #include <string>
35 #include <vector>
36
37 #include "gmock/gmock.h"
38 #include "gtest/gtest.h"
39 #include "absl/base/internal/raw_logging.h"
40 #include "absl/random/distributions.h"
41 #include "absl/random/random.h"
42 #include "absl/strings/internal/numbers_test_common.h"
43 #include "absl/strings/internal/ostringstream.h"
44 #include "absl/strings/internal/pow10_helper.h"
45 #include "absl/strings/str_cat.h"
46
47 namespace {
48
49 using absl::numbers_internal::kSixDigitsToBufferSize;
50 using absl::numbers_internal::safe_strto32_base;
51 using absl::numbers_internal::safe_strto64_base;
52 using absl::numbers_internal::safe_strtou32_base;
53 using absl::numbers_internal::safe_strtou64_base;
54 using absl::numbers_internal::SixDigitsToBuffer;
55 using absl::strings_internal::Itoa;
56 using absl::strings_internal::strtouint32_test_cases;
57 using absl::strings_internal::strtouint64_test_cases;
58 using absl::SimpleAtoi;
59 using testing::Eq;
60 using testing::MatchesRegex;
61
62 // Number of floats to test with.
63 // 5,000,000 is a reasonable default for a test that only takes a few seconds.
64 // 1,000,000,000+ triggers checking for all possible mantissa values for
65 // double-precision tests. 2,000,000,000+ triggers checking for every possible
66 // single-precision float.
67 const int kFloatNumCases = 5000000;
68
69 // This is a slow, brute-force routine to compute the exact base-10
70 // representation of a double-precision floating-point number. It
71 // is useful for debugging only.
PerfectDtoa(double d)72 std::string PerfectDtoa(double d) {
73 if (d == 0) return "0";
74 if (d < 0) return "-" + PerfectDtoa(-d);
75
76 // Basic theory: decompose d into mantissa and exp, where
77 // d = mantissa * 2^exp, and exp is as close to zero as possible.
78 int64_t mantissa, exp = 0;
79 while (d >= 1ULL << 63) ++exp, d *= 0.5;
80 while ((mantissa = d) != d) --exp, d *= 2.0;
81
82 // Then convert mantissa to ASCII, and either double it (if
83 // exp > 0) or halve it (if exp < 0) repeatedly. "halve it"
84 // in this case means multiplying it by five and dividing by 10.
85 constexpr int maxlen = 1100; // worst case is actually 1030 or so.
86 char buf[maxlen + 5];
87 for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
88 buf[pos] = '0' + (num % 10);
89 num /= 10;
90 }
91 char* begin = &buf[0];
92 char* end = buf + maxlen;
93 for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
94 int carry = 0;
95 for (char* p = end; --p != begin;) {
96 int dig = *p - '0';
97 dig = dig * (exp > 0 ? 2 : 5) + carry;
98 carry = dig / 10;
99 dig %= 10;
100 *p = '0' + dig;
101 }
102 }
103 if (exp < 0) {
104 // "dividing by 10" above means we have to add the decimal point.
105 memmove(end + 1 + exp, end + exp, 1 - exp);
106 end[exp] = '.';
107 ++end;
108 }
109 while (*begin == '0' && begin[1] != '.') ++begin;
110 return {begin, end};
111 }
112
TEST(ToString,PerfectDtoa)113 TEST(ToString, PerfectDtoa) {
114 EXPECT_THAT(PerfectDtoa(1), Eq("1"));
115 EXPECT_THAT(PerfectDtoa(0.1),
116 Eq("0.1000000000000000055511151231257827021181583404541015625"));
117 EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
118 EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
119 for (int i = 0; i < 100; ++i) {
120 for (double multiplier :
121 {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
122 double d = multiplier * i;
123 std::string s = PerfectDtoa(d);
124 EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
125 }
126 }
127 }
128
129 template <typename integer>
130 struct MyInteger {
131 integer i;
MyInteger__anon2d9ee7ff0111::MyInteger132 explicit constexpr MyInteger(integer i) : i(i) {}
operator integer__anon2d9ee7ff0111::MyInteger133 constexpr operator integer() const { return i; }
134
operator +__anon2d9ee7ff0111::MyInteger135 constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
operator -__anon2d9ee7ff0111::MyInteger136 constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
operator *__anon2d9ee7ff0111::MyInteger137 constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
operator /__anon2d9ee7ff0111::MyInteger138 constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
139
operator <__anon2d9ee7ff0111::MyInteger140 constexpr bool operator<(MyInteger other) const { return i < other.i; }
operator <=__anon2d9ee7ff0111::MyInteger141 constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
operator ==__anon2d9ee7ff0111::MyInteger142 constexpr bool operator==(MyInteger other) const { return i == other.i; }
operator >=__anon2d9ee7ff0111::MyInteger143 constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
operator >__anon2d9ee7ff0111::MyInteger144 constexpr bool operator>(MyInteger other) const { return i > other.i; }
operator !=__anon2d9ee7ff0111::MyInteger145 constexpr bool operator!=(MyInteger other) const { return i != other.i; }
146
as_integer__anon2d9ee7ff0111::MyInteger147 integer as_integer() const { return i; }
148 };
149
150 typedef MyInteger<int64_t> MyInt64;
151 typedef MyInteger<uint64_t> MyUInt64;
152
CheckInt32(int32_t x)153 void CheckInt32(int32_t x) {
154 char buffer[absl::numbers_internal::kFastToBufferSize];
155 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
156 std::string expected = std::to_string(x);
157 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
158
159 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
160 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
161 }
162
CheckInt64(int64_t x)163 void CheckInt64(int64_t x) {
164 char buffer[absl::numbers_internal::kFastToBufferSize + 3];
165 buffer[0] = '*';
166 buffer[23] = '*';
167 buffer[24] = '*';
168 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
169 std::string expected = std::to_string(x);
170 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
171 EXPECT_EQ(buffer[0], '*');
172 EXPECT_EQ(buffer[23], '*');
173 EXPECT_EQ(buffer[24], '*');
174
175 char* my_actual =
176 absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
177 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
178 }
179
CheckUInt32(uint32_t x)180 void CheckUInt32(uint32_t x) {
181 char buffer[absl::numbers_internal::kFastToBufferSize];
182 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
183 std::string expected = std::to_string(x);
184 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
185
186 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
187 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
188 }
189
CheckUInt64(uint64_t x)190 void CheckUInt64(uint64_t x) {
191 char buffer[absl::numbers_internal::kFastToBufferSize + 1];
192 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
193 std::string expected = std::to_string(x);
194 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
195
196 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
197 EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
198 << " Input " << x;
199
200 char* my_actual =
201 absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
202 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
203 }
204
CheckHex64(uint64_t v)205 void CheckHex64(uint64_t v) {
206 char expected[16 + 1];
207 std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
208 snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
209 EXPECT_EQ(expected, actual) << " Input " << v;
210 actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
211 snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
212 EXPECT_EQ(expected, actual) << " Input " << v;
213 }
214
TEST(Numbers,TestFastPrints)215 TEST(Numbers, TestFastPrints) {
216 for (int i = -100; i <= 100; i++) {
217 CheckInt32(i);
218 CheckInt64(i);
219 }
220 for (int i = 0; i <= 100; i++) {
221 CheckUInt32(i);
222 CheckUInt64(i);
223 }
224 // Test min int to make sure that works
225 CheckInt32(INT_MIN);
226 CheckInt32(INT_MAX);
227 CheckInt64(LONG_MIN);
228 CheckInt64(uint64_t{1000000000});
229 CheckInt64(uint64_t{9999999999});
230 CheckInt64(uint64_t{100000000000000});
231 CheckInt64(uint64_t{999999999999999});
232 CheckInt64(uint64_t{1000000000000000000});
233 CheckInt64(uint64_t{1199999999999999999});
234 CheckInt64(int64_t{-700000000000000000});
235 CheckInt64(LONG_MAX);
236 CheckUInt32(std::numeric_limits<uint32_t>::max());
237 CheckUInt64(uint64_t{1000000000});
238 CheckUInt64(uint64_t{9999999999});
239 CheckUInt64(uint64_t{100000000000000});
240 CheckUInt64(uint64_t{999999999999999});
241 CheckUInt64(uint64_t{1000000000000000000});
242 CheckUInt64(uint64_t{1199999999999999999});
243 CheckUInt64(std::numeric_limits<uint64_t>::max());
244
245 for (int i = 0; i < 10000; i++) {
246 CheckHex64(i);
247 }
248 CheckHex64(uint64_t{0x123456789abcdef0});
249 }
250
251 template <typename int_type, typename in_val_type>
VerifySimpleAtoiGood(in_val_type in_value,int_type exp_value)252 void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
253 std::string s;
254 // (u)int128 can be streamed but not StrCat'd.
255 absl::strings_internal::OStringStream(&s) << in_value;
256 int_type x = static_cast<int_type>(~exp_value);
257 EXPECT_TRUE(SimpleAtoi(s, &x))
258 << "in_value=" << in_value << " s=" << s << " x=" << x;
259 EXPECT_EQ(exp_value, x);
260 x = static_cast<int_type>(~exp_value);
261 EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
262 EXPECT_EQ(exp_value, x);
263 }
264
265 template <typename int_type, typename in_val_type>
VerifySimpleAtoiBad(in_val_type in_value)266 void VerifySimpleAtoiBad(in_val_type in_value) {
267 std::string s;
268 // (u)int128 can be streamed but not StrCat'd.
269 absl::strings_internal::OStringStream(&s) << in_value;
270 int_type x;
271 EXPECT_FALSE(SimpleAtoi(s, &x));
272 EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
273 }
274
TEST(NumbersTest,Atoi)275 TEST(NumbersTest, Atoi) {
276 // SimpleAtoi(absl::string_view, int32_t)
277 VerifySimpleAtoiGood<int32_t>(0, 0);
278 VerifySimpleAtoiGood<int32_t>(42, 42);
279 VerifySimpleAtoiGood<int32_t>(-42, -42);
280
281 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
282 std::numeric_limits<int32_t>::min());
283 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
284 std::numeric_limits<int32_t>::max());
285
286 // SimpleAtoi(absl::string_view, uint32_t)
287 VerifySimpleAtoiGood<uint32_t>(0, 0);
288 VerifySimpleAtoiGood<uint32_t>(42, 42);
289 VerifySimpleAtoiBad<uint32_t>(-42);
290
291 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
292 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
293 std::numeric_limits<int32_t>::max());
294 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
295 std::numeric_limits<uint32_t>::max());
296 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
297 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
298 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
299
300 // SimpleAtoi(absl::string_view, int64_t)
301 VerifySimpleAtoiGood<int64_t>(0, 0);
302 VerifySimpleAtoiGood<int64_t>(42, 42);
303 VerifySimpleAtoiGood<int64_t>(-42, -42);
304
305 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
306 std::numeric_limits<int32_t>::min());
307 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
308 std::numeric_limits<int32_t>::max());
309 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
310 std::numeric_limits<uint32_t>::max());
311 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
312 std::numeric_limits<int64_t>::min());
313 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
314 std::numeric_limits<int64_t>::max());
315 VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
316
317 // SimpleAtoi(absl::string_view, uint64_t)
318 VerifySimpleAtoiGood<uint64_t>(0, 0);
319 VerifySimpleAtoiGood<uint64_t>(42, 42);
320 VerifySimpleAtoiBad<uint64_t>(-42);
321
322 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
323 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
324 std::numeric_limits<int32_t>::max());
325 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
326 std::numeric_limits<uint32_t>::max());
327 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
328 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
329 std::numeric_limits<int64_t>::max());
330 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
331 std::numeric_limits<uint64_t>::max());
332
333 // SimpleAtoi(absl::string_view, absl::uint128)
334 VerifySimpleAtoiGood<absl::uint128>(0, 0);
335 VerifySimpleAtoiGood<absl::uint128>(42, 42);
336 VerifySimpleAtoiBad<absl::uint128>(-42);
337
338 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
339 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
340 std::numeric_limits<int32_t>::max());
341 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
342 std::numeric_limits<uint32_t>::max());
343 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
344 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
345 std::numeric_limits<int64_t>::max());
346 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
347 std::numeric_limits<uint64_t>::max());
348 VerifySimpleAtoiGood<absl::uint128>(
349 std::numeric_limits<absl::uint128>::max(),
350 std::numeric_limits<absl::uint128>::max());
351
352 // SimpleAtoi(absl::string_view, absl::int128)
353 VerifySimpleAtoiGood<absl::int128>(0, 0);
354 VerifySimpleAtoiGood<absl::int128>(42, 42);
355 VerifySimpleAtoiGood<absl::int128>(-42, -42);
356
357 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
358 std::numeric_limits<int32_t>::min());
359 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
360 std::numeric_limits<int32_t>::max());
361 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
362 std::numeric_limits<uint32_t>::max());
363 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
364 std::numeric_limits<int64_t>::min());
365 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
366 std::numeric_limits<int64_t>::max());
367 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
368 std::numeric_limits<uint64_t>::max());
369 VerifySimpleAtoiGood<absl::int128>(
370 std::numeric_limits<absl::int128>::min(),
371 std::numeric_limits<absl::int128>::min());
372 VerifySimpleAtoiGood<absl::int128>(
373 std::numeric_limits<absl::int128>::max(),
374 std::numeric_limits<absl::int128>::max());
375 VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());
376
377 // Some other types
378 VerifySimpleAtoiGood<int>(-42, -42);
379 VerifySimpleAtoiGood<int32_t>(-42, -42);
380 VerifySimpleAtoiGood<uint32_t>(42, 42);
381 VerifySimpleAtoiGood<unsigned int>(42, 42);
382 VerifySimpleAtoiGood<int64_t>(-42, -42);
383 VerifySimpleAtoiGood<long>(-42, -42); // NOLINT(runtime/int)
384 VerifySimpleAtoiGood<uint64_t>(42, 42);
385 VerifySimpleAtoiGood<size_t>(42, 42);
386 VerifySimpleAtoiGood<std::string::size_type>(42, 42);
387 }
388
TEST(NumbersTest,Atod)389 TEST(NumbersTest, Atod) {
390 double d;
391 EXPECT_TRUE(absl::SimpleAtod("nan", &d));
392 EXPECT_TRUE(std::isnan(d));
393 }
394
TEST(NumbersTest,Atoenum)395 TEST(NumbersTest, Atoenum) {
396 enum E01 {
397 E01_zero = 0,
398 E01_one = 1,
399 };
400
401 VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
402 VerifySimpleAtoiGood<E01>(E01_one, E01_one);
403
404 enum E_101 {
405 E_101_minusone = -1,
406 E_101_zero = 0,
407 E_101_one = 1,
408 };
409
410 VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
411 VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
412 VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
413
414 enum E_bigint {
415 E_bigint_zero = 0,
416 E_bigint_one = 1,
417 E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
418 };
419
420 VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
421 VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
422 VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
423
424 enum E_fullint {
425 E_fullint_zero = 0,
426 E_fullint_one = 1,
427 E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
428 E_fullint_min32 = INT32_MIN,
429 };
430
431 VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
432 VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
433 VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
434 VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
435
436 enum E_biguint {
437 E_biguint_zero = 0,
438 E_biguint_one = 1,
439 E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
440 E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
441 };
442
443 VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
444 VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
445 VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
446 VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
447 }
448
TEST(stringtest,safe_strto32_base)449 TEST(stringtest, safe_strto32_base) {
450 int32_t value;
451 EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
452 EXPECT_EQ(0x34234324, value);
453
454 EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
455 EXPECT_EQ(0x34234324, value);
456
457 EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
458 EXPECT_EQ(0x34234324, value);
459
460 EXPECT_TRUE(safe_strto32_base("0", &value, 16));
461 EXPECT_EQ(0, value);
462
463 EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
464 EXPECT_EQ(-0x34234324, value);
465
466 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
467 EXPECT_EQ(-0x34234324, value);
468
469 EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
470 EXPECT_EQ(07654321, value);
471
472 EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
473 EXPECT_EQ(-01234, value);
474
475 EXPECT_FALSE(safe_strto32_base("1834", &value, 8));
476
477 // Autodetect base.
478 EXPECT_TRUE(safe_strto32_base("0", &value, 0));
479 EXPECT_EQ(0, value);
480
481 EXPECT_TRUE(safe_strto32_base("077", &value, 0));
482 EXPECT_EQ(077, value); // Octal interpretation
483
484 // Leading zero indicates octal, but then followed by invalid digit.
485 EXPECT_FALSE(safe_strto32_base("088", &value, 0));
486
487 // Leading 0x indicated hex, but then followed by invalid digit.
488 EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));
489
490 // Base-10 version.
491 EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
492 EXPECT_EQ(34234324, value);
493
494 EXPECT_TRUE(safe_strto32_base("0", &value, 10));
495 EXPECT_EQ(0, value);
496
497 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
498 EXPECT_EQ(-34234324, value);
499
500 EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
501 EXPECT_EQ(34234324, value);
502
503 // Invalid ints.
504 EXPECT_FALSE(safe_strto32_base("", &value, 10));
505 EXPECT_FALSE(safe_strto32_base(" ", &value, 10));
506 EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
507 EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
508 EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));
509
510 // Out of bounds.
511 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
512 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
513
514 // String version.
515 EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
516 EXPECT_EQ(0x1234, value);
517
518 // Base-10 string version.
519 EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
520 EXPECT_EQ(1234, value);
521 }
522
TEST(stringtest,safe_strto32_range)523 TEST(stringtest, safe_strto32_range) {
524 // These tests verify underflow/overflow behaviour.
525 int32_t value;
526 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
527 EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);
528
529 EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
530 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
531
532 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
533 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
534 }
535
TEST(stringtest,safe_strto64_range)536 TEST(stringtest, safe_strto64_range) {
537 // These tests verify underflow/overflow behaviour.
538 int64_t value;
539 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
540 EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);
541
542 EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
543 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
544
545 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
546 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
547 }
548
TEST(stringtest,safe_strto32_leading_substring)549 TEST(stringtest, safe_strto32_leading_substring) {
550 // These tests verify this comment in numbers.h:
551 // On error, returns false, and sets *value to: [...]
552 // conversion of leading substring if available ("123@@@" -> 123)
553 // 0 if no leading substring available
554 int32_t value;
555 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
556 EXPECT_EQ(4069, value);
557
558 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
559 EXPECT_EQ(0406, value);
560
561 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
562 EXPECT_EQ(4069, value);
563
564 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
565 EXPECT_EQ(0x4069ba, value);
566
567 EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
568 EXPECT_EQ(0, value); // there was no leading substring
569 }
570
TEST(stringtest,safe_strto64_leading_substring)571 TEST(stringtest, safe_strto64_leading_substring) {
572 // These tests verify this comment in numbers.h:
573 // On error, returns false, and sets *value to: [...]
574 // conversion of leading substring if available ("123@@@" -> 123)
575 // 0 if no leading substring available
576 int64_t value;
577 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
578 EXPECT_EQ(4069, value);
579
580 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
581 EXPECT_EQ(0406, value);
582
583 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
584 EXPECT_EQ(4069, value);
585
586 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
587 EXPECT_EQ(0x4069ba, value);
588
589 EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
590 EXPECT_EQ(0, value); // there was no leading substring
591 }
592
TEST(stringtest,safe_strto64_base)593 TEST(stringtest, safe_strto64_base) {
594 int64_t value;
595 EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
596 EXPECT_EQ(int64_t{0x3423432448783446}, value);
597
598 EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
599 EXPECT_EQ(int64_t{0x3423432448783446}, value);
600
601 EXPECT_TRUE(safe_strto64_base("0", &value, 16));
602 EXPECT_EQ(0, value);
603
604 EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
605 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
606
607 EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
608 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
609
610 EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
611 EXPECT_EQ(int64_t{0123456701234567012}, value);
612
613 EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
614 EXPECT_EQ(int64_t{-017777777777777}, value);
615
616 EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));
617
618 // Autodetect base.
619 EXPECT_TRUE(safe_strto64_base("0", &value, 0));
620 EXPECT_EQ(0, value);
621
622 EXPECT_TRUE(safe_strto64_base("077", &value, 0));
623 EXPECT_EQ(077, value); // Octal interpretation
624
625 // Leading zero indicates octal, but then followed by invalid digit.
626 EXPECT_FALSE(safe_strto64_base("088", &value, 0));
627
628 // Leading 0x indicated hex, but then followed by invalid digit.
629 EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));
630
631 // Base-10 version.
632 EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
633 EXPECT_EQ(int64_t{34234324487834466}, value);
634
635 EXPECT_TRUE(safe_strto64_base("0", &value, 10));
636 EXPECT_EQ(0, value);
637
638 EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
639 EXPECT_EQ(int64_t{-34234324487834466}, value);
640
641 EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
642 EXPECT_EQ(int64_t{34234324487834466}, value);
643
644 // Invalid ints.
645 EXPECT_FALSE(safe_strto64_base("", &value, 10));
646 EXPECT_FALSE(safe_strto64_base(" ", &value, 10));
647 EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
648 EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
649 EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));
650
651 // Out of bounds.
652 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
653 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
654
655 // String version.
656 EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
657 EXPECT_EQ(0x1234, value);
658
659 // Base-10 string version.
660 EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
661 EXPECT_EQ(1234, value);
662 }
663
664 const size_t kNumRandomTests = 10000;
665
666 template <typename IntType>
test_random_integer_parse_base(bool (* parse_func)(absl::string_view,IntType * value,int base))667 void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
668 IntType* value,
669 int base)) {
670 using RandomEngine = std::minstd_rand0;
671 std::random_device rd;
672 RandomEngine rng(rd());
673 std::uniform_int_distribution<IntType> random_int(
674 std::numeric_limits<IntType>::min());
675 std::uniform_int_distribution<int> random_base(2, 35);
676 for (size_t i = 0; i < kNumRandomTests; i++) {
677 IntType value = random_int(rng);
678 int base = random_base(rng);
679 std::string str_value;
680 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
681 IntType parsed_value;
682
683 // Test successful parse
684 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
685 EXPECT_EQ(parsed_value, value);
686
687 // Test overflow
688 EXPECT_FALSE(
689 parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
690 &parsed_value, base));
691
692 // Test underflow
693 if (std::numeric_limits<IntType>::min() < 0) {
694 EXPECT_FALSE(
695 parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
696 &parsed_value, base));
697 } else {
698 EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
699 }
700 }
701 }
702
TEST(stringtest,safe_strto32_random)703 TEST(stringtest, safe_strto32_random) {
704 test_random_integer_parse_base<int32_t>(&safe_strto32_base);
705 }
TEST(stringtest,safe_strto64_random)706 TEST(stringtest, safe_strto64_random) {
707 test_random_integer_parse_base<int64_t>(&safe_strto64_base);
708 }
TEST(stringtest,safe_strtou32_random)709 TEST(stringtest, safe_strtou32_random) {
710 test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
711 }
TEST(stringtest,safe_strtou64_random)712 TEST(stringtest, safe_strtou64_random) {
713 test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
714 }
TEST(stringtest,safe_strtou128_random)715 TEST(stringtest, safe_strtou128_random) {
716 // random number generators don't work for uint128, and
717 // uint128 can be streamed but not StrCat'd, so this code must be custom
718 // implemented for uint128, but is generally the same as what's above.
719 // test_random_integer_parse_base<absl::uint128>(
720 // &absl::numbers_internal::safe_strtou128_base);
721 using RandomEngine = std::minstd_rand0;
722 using IntType = absl::uint128;
723 constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;
724
725 std::random_device rd;
726 RandomEngine rng(rd());
727 std::uniform_int_distribution<uint64_t> random_uint64(
728 std::numeric_limits<uint64_t>::min());
729 std::uniform_int_distribution<int> random_base(2, 35);
730
731 for (size_t i = 0; i < kNumRandomTests; i++) {
732 IntType value = random_uint64(rng);
733 value = (value << 64) + random_uint64(rng);
734 int base = random_base(rng);
735 std::string str_value;
736 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
737 IntType parsed_value;
738
739 // Test successful parse
740 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
741 EXPECT_EQ(parsed_value, value);
742
743 // Test overflow
744 std::string s;
745 absl::strings_internal::OStringStream(&s)
746 << std::numeric_limits<IntType>::max() << value;
747 EXPECT_FALSE(parse_func(s, &parsed_value, base));
748
749 // Test underflow
750 s.clear();
751 absl::strings_internal::OStringStream(&s) << "-" << value;
752 EXPECT_FALSE(parse_func(s, &parsed_value, base));
753 }
754 }
TEST(stringtest,safe_strto128_random)755 TEST(stringtest, safe_strto128_random) {
756 // random number generators don't work for int128, and
757 // int128 can be streamed but not StrCat'd, so this code must be custom
758 // implemented for int128, but is generally the same as what's above.
759 // test_random_integer_parse_base<absl::int128>(
760 // &absl::numbers_internal::safe_strto128_base);
761 using RandomEngine = std::minstd_rand0;
762 using IntType = absl::int128;
763 constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;
764
765 std::random_device rd;
766 RandomEngine rng(rd());
767 std::uniform_int_distribution<int64_t> random_int64(
768 std::numeric_limits<int64_t>::min());
769 std::uniform_int_distribution<uint64_t> random_uint64(
770 std::numeric_limits<uint64_t>::min());
771 std::uniform_int_distribution<int> random_base(2, 35);
772
773 for (size_t i = 0; i < kNumRandomTests; ++i) {
774 int64_t high = random_int64(rng);
775 uint64_t low = random_uint64(rng);
776 IntType value = absl::MakeInt128(high, low);
777
778 int base = random_base(rng);
779 std::string str_value;
780 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
781 IntType parsed_value;
782
783 // Test successful parse
784 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
785 EXPECT_EQ(parsed_value, value);
786
787 // Test overflow
788 std::string s;
789 absl::strings_internal::OStringStream(&s)
790 << std::numeric_limits<IntType>::max() << value;
791 EXPECT_FALSE(parse_func(s, &parsed_value, base));
792
793 // Test underflow
794 s.clear();
795 absl::strings_internal::OStringStream(&s)
796 << std::numeric_limits<IntType>::min() << value;
797 EXPECT_FALSE(parse_func(s, &parsed_value, base));
798 }
799 }
800
TEST(stringtest,safe_strtou32_base)801 TEST(stringtest, safe_strtou32_base) {
802 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
803 const auto& e = strtouint32_test_cases()[i];
804 uint32_t value;
805 EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
806 << "str=\"" << e.str << "\" base=" << e.base;
807 if (e.expect_ok) {
808 EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
809 << "\" base=" << e.base;
810 }
811 }
812 }
813
TEST(stringtest,safe_strtou32_base_length_delimited)814 TEST(stringtest, safe_strtou32_base_length_delimited) {
815 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
816 const auto& e = strtouint32_test_cases()[i];
817 std::string tmp(e.str);
818 tmp.append("12"); // Adds garbage at the end.
819
820 uint32_t value;
821 EXPECT_EQ(e.expect_ok,
822 safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
823 &value, e.base))
824 << "str=\"" << e.str << "\" base=" << e.base;
825 if (e.expect_ok) {
826 EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
827 << " base=" << e.base;
828 }
829 }
830 }
831
TEST(stringtest,safe_strtou64_base)832 TEST(stringtest, safe_strtou64_base) {
833 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
834 const auto& e = strtouint64_test_cases()[i];
835 uint64_t value;
836 EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
837 << "str=\"" << e.str << "\" base=" << e.base;
838 if (e.expect_ok) {
839 EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
840 }
841 }
842 }
843
TEST(stringtest,safe_strtou64_base_length_delimited)844 TEST(stringtest, safe_strtou64_base_length_delimited) {
845 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
846 const auto& e = strtouint64_test_cases()[i];
847 std::string tmp(e.str);
848 tmp.append("12"); // Adds garbage at the end.
849
850 uint64_t value;
851 EXPECT_EQ(e.expect_ok,
852 safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
853 &value, e.base))
854 << "str=\"" << e.str << "\" base=" << e.base;
855 if (e.expect_ok) {
856 EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
857 }
858 }
859 }
860
861 // feenableexcept() and fedisableexcept() are extensions supported by some libc
862 // implementations.
863 #if defined(__GLIBC__) || defined(__BIONIC__)
864 #define ABSL_HAVE_FEENABLEEXCEPT 1
865 #define ABSL_HAVE_FEDISABLEEXCEPT 1
866 #endif
867
868 class SimpleDtoaTest : public testing::Test {
869 protected:
SetUp()870 void SetUp() override {
871 // Store the current floating point env & clear away any pending exceptions.
872 feholdexcept(&fp_env_);
873 #ifdef ABSL_HAVE_FEENABLEEXCEPT
874 // Turn on floating point exceptions.
875 feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
876 #endif
877 }
878
TearDown()879 void TearDown() override {
880 // Restore the floating point environment to the original state.
881 // In theory fedisableexcept is unnecessary; fesetenv will also do it.
882 // In practice, our toolchains have subtle bugs.
883 #ifdef ABSL_HAVE_FEDISABLEEXCEPT
884 fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
885 #endif
886 fesetenv(&fp_env_);
887 }
888
ToNineDigits(double value)889 std::string ToNineDigits(double value) {
890 char buffer[16]; // more than enough for %.9g
891 snprintf(buffer, sizeof(buffer), "%.9g", value);
892 return buffer;
893 }
894
895 fenv_t fp_env_;
896 };
897
898 // Run the given runnable functor for "cases" test cases, chosen over the
899 // available range of float. pi and e and 1/e are seeded, and then all
900 // available integer powers of 2 and 10 are multiplied against them. In
901 // addition to trying all those values, we try the next higher and next lower
902 // float, and then we add additional test cases evenly distributed between them.
903 // Each test case is passed to runnable as both a positive and negative value.
904 template <typename R>
ExhaustiveFloat(uint32_t cases,R && runnable)905 void ExhaustiveFloat(uint32_t cases, R&& runnable) {
906 runnable(0.0f);
907 runnable(-0.0f);
908 if (cases >= 2e9) { // more than 2 billion? Might as well run them all.
909 for (float f = 0; f < std::numeric_limits<float>::max(); ) {
910 f = nextafterf(f, std::numeric_limits<float>::max());
911 runnable(-f);
912 runnable(f);
913 }
914 return;
915 }
916 std::set<float> floats = {3.4028234e38f};
917 for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
918 for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
919 for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
920 for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
921 floats.insert(testf);
922 for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
923 }
924
925 float last = *floats.begin();
926
927 runnable(last);
928 runnable(-last);
929 int iters_per_float = cases / floats.size();
930 if (iters_per_float == 0) iters_per_float = 1;
931 for (float f : floats) {
932 if (f == last) continue;
933 float testf = std::nextafter(last, std::numeric_limits<float>::max());
934 runnable(testf);
935 runnable(-testf);
936 last = testf;
937 if (f == last) continue;
938 double step = (double{f} - last) / iters_per_float;
939 for (double d = last + step; d < f; d += step) {
940 testf = d;
941 if (testf != last) {
942 runnable(testf);
943 runnable(-testf);
944 last = testf;
945 }
946 }
947 testf = std::nextafter(f, 0.0f);
948 if (testf > last) {
949 runnable(testf);
950 runnable(-testf);
951 last = testf;
952 }
953 if (f != last) {
954 runnable(f);
955 runnable(-f);
956 last = f;
957 }
958 }
959 }
960
TEST_F(SimpleDtoaTest,ExhaustiveDoubleToSixDigits)961 TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
962 uint64_t test_count = 0;
963 std::vector<double> mismatches;
964 auto checker = [&](double d) {
965 if (d != d) return; // rule out NaNs
966 ++test_count;
967 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
968 SixDigitsToBuffer(d, sixdigitsbuf);
969 char snprintfbuf[kSixDigitsToBufferSize] = {0};
970 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
971 if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
972 mismatches.push_back(d);
973 if (mismatches.size() < 10) {
974 ABSL_RAW_LOG(ERROR, "%s",
975 absl::StrCat("Six-digit failure with double. ", "d=", d,
976 "=", d, " sixdigits=", sixdigitsbuf,
977 " printf(%g)=", snprintfbuf)
978 .c_str());
979 }
980 }
981 };
982 // Some quick sanity checks...
983 checker(5e-324);
984 checker(1e-308);
985 checker(1.0);
986 checker(1.000005);
987 checker(1.7976931348623157e308);
988 checker(0.00390625);
989 #ifndef _MSC_VER
990 // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
991 // to 0.00195312 (round half to even).
992 checker(0.001953125);
993 #endif
994 checker(0.005859375);
995 // Some cases where the rounding is very very close
996 checker(1.089095e-15);
997 checker(3.274195e-55);
998 checker(6.534355e-146);
999 checker(2.920845e+234);
1000
1001 if (mismatches.empty()) {
1002 test_count = 0;
1003 ExhaustiveFloat(kFloatNumCases, checker);
1004
1005 test_count = 0;
1006 std::vector<int> digit_testcases{
1007 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc
1008 195312, 195313, // 1.953125 is a case where we round down, just barely.
1009 200000, 500000, 800000, // misc mid-range cases
1010 585937, 585938, // 5.859375 is a case where we round up, just barely.
1011 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
1012 if (kFloatNumCases >= 1e9) {
1013 // If at least 1 billion test cases were requested, user wants an
1014 // exhaustive test. So let's test all mantissas, too.
1015 constexpr int min_mantissa = 100000, max_mantissa = 999999;
1016 digit_testcases.resize(max_mantissa - min_mantissa + 1);
1017 std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
1018 }
1019
1020 for (int exponent = -324; exponent <= 308; ++exponent) {
1021 double powten = absl::strings_internal::Pow10(exponent);
1022 if (powten == 0) powten = 5e-324;
1023 if (kFloatNumCases >= 1e9) {
1024 // The exhaustive test takes a very long time, so log progress.
1025 char buf[kSixDigitsToBufferSize];
1026 ABSL_RAW_LOG(
1027 INFO, "%s",
1028 absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,
1029 ") (",
1030 std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
1031 .c_str());
1032 }
1033 for (int digits : digit_testcases) {
1034 if (exponent == 308 && digits >= 179769) break; // don't overflow!
1035 double digiform = (digits + 0.5) * 0.00001;
1036 double testval = digiform * powten;
1037 double pretestval = nextafter(testval, 0);
1038 double posttestval = nextafter(testval, 1.7976931348623157e308);
1039 checker(testval);
1040 checker(pretestval);
1041 checker(posttestval);
1042 }
1043 }
1044 } else {
1045 EXPECT_EQ(mismatches.size(), 0);
1046 for (size_t i = 0; i < mismatches.size(); ++i) {
1047 if (i > 100) i = mismatches.size() - 1;
1048 double d = mismatches[i];
1049 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
1050 SixDigitsToBuffer(d, sixdigitsbuf);
1051 char snprintfbuf[kSixDigitsToBufferSize] = {0};
1052 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
1053 double before = nextafter(d, 0.0);
1054 double after = nextafter(d, 1.7976931348623157e308);
1055 char b1[32], b2[kSixDigitsToBufferSize];
1056 ABSL_RAW_LOG(
1057 ERROR, "%s",
1058 absl::StrCat(
1059 "Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")",
1060 " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
1061 "'", " Before.=", PerfectDtoa(before), " ",
1062 (SixDigitsToBuffer(before, b2), b2),
1063 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
1064 " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
1065 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
1066 " After.=.", PerfectDtoa(after), " ",
1067 (SixDigitsToBuffer(after, b2), b2),
1068 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
1069 .c_str());
1070 }
1071 }
1072 }
1073
TEST(StrToInt32,Partial)1074 TEST(StrToInt32, Partial) {
1075 struct Int32TestLine {
1076 std::string input;
1077 bool status;
1078 int32_t value;
1079 };
1080 const int32_t int32_min = std::numeric_limits<int32_t>::min();
1081 const int32_t int32_max = std::numeric_limits<int32_t>::max();
1082 Int32TestLine int32_test_line[] = {
1083 {"", false, 0},
1084 {" ", false, 0},
1085 {"-", false, 0},
1086 {"123@@@", false, 123},
1087 {absl::StrCat(int32_min, int32_max), false, int32_min},
1088 {absl::StrCat(int32_max, int32_max), false, int32_max},
1089 };
1090
1091 for (const Int32TestLine& test_line : int32_test_line) {
1092 int32_t value = -2;
1093 bool status = safe_strto32_base(test_line.input, &value, 10);
1094 EXPECT_EQ(test_line.status, status) << test_line.input;
1095 EXPECT_EQ(test_line.value, value) << test_line.input;
1096 value = -2;
1097 status = safe_strto32_base(test_line.input, &value, 10);
1098 EXPECT_EQ(test_line.status, status) << test_line.input;
1099 EXPECT_EQ(test_line.value, value) << test_line.input;
1100 value = -2;
1101 status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
1102 EXPECT_EQ(test_line.status, status) << test_line.input;
1103 EXPECT_EQ(test_line.value, value) << test_line.input;
1104 }
1105 }
1106
TEST(StrToUint32,Partial)1107 TEST(StrToUint32, Partial) {
1108 struct Uint32TestLine {
1109 std::string input;
1110 bool status;
1111 uint32_t value;
1112 };
1113 const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
1114 Uint32TestLine uint32_test_line[] = {
1115 {"", false, 0},
1116 {" ", false, 0},
1117 {"-", false, 0},
1118 {"123@@@", false, 123},
1119 {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
1120 };
1121
1122 for (const Uint32TestLine& test_line : uint32_test_line) {
1123 uint32_t value = 2;
1124 bool status = safe_strtou32_base(test_line.input, &value, 10);
1125 EXPECT_EQ(test_line.status, status) << test_line.input;
1126 EXPECT_EQ(test_line.value, value) << test_line.input;
1127 value = 2;
1128 status = safe_strtou32_base(test_line.input, &value, 10);
1129 EXPECT_EQ(test_line.status, status) << test_line.input;
1130 EXPECT_EQ(test_line.value, value) << test_line.input;
1131 value = 2;
1132 status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
1133 EXPECT_EQ(test_line.status, status) << test_line.input;
1134 EXPECT_EQ(test_line.value, value) << test_line.input;
1135 }
1136 }
1137
TEST(StrToInt64,Partial)1138 TEST(StrToInt64, Partial) {
1139 struct Int64TestLine {
1140 std::string input;
1141 bool status;
1142 int64_t value;
1143 };
1144 const int64_t int64_min = std::numeric_limits<int64_t>::min();
1145 const int64_t int64_max = std::numeric_limits<int64_t>::max();
1146 Int64TestLine int64_test_line[] = {
1147 {"", false, 0},
1148 {" ", false, 0},
1149 {"-", false, 0},
1150 {"123@@@", false, 123},
1151 {absl::StrCat(int64_min, int64_max), false, int64_min},
1152 {absl::StrCat(int64_max, int64_max), false, int64_max},
1153 };
1154
1155 for (const Int64TestLine& test_line : int64_test_line) {
1156 int64_t value = -2;
1157 bool status = safe_strto64_base(test_line.input, &value, 10);
1158 EXPECT_EQ(test_line.status, status) << test_line.input;
1159 EXPECT_EQ(test_line.value, value) << test_line.input;
1160 value = -2;
1161 status = safe_strto64_base(test_line.input, &value, 10);
1162 EXPECT_EQ(test_line.status, status) << test_line.input;
1163 EXPECT_EQ(test_line.value, value) << test_line.input;
1164 value = -2;
1165 status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
1166 EXPECT_EQ(test_line.status, status) << test_line.input;
1167 EXPECT_EQ(test_line.value, value) << test_line.input;
1168 }
1169 }
1170
TEST(StrToUint64,Partial)1171 TEST(StrToUint64, Partial) {
1172 struct Uint64TestLine {
1173 std::string input;
1174 bool status;
1175 uint64_t value;
1176 };
1177 const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
1178 Uint64TestLine uint64_test_line[] = {
1179 {"", false, 0},
1180 {" ", false, 0},
1181 {"-", false, 0},
1182 {"123@@@", false, 123},
1183 {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
1184 };
1185
1186 for (const Uint64TestLine& test_line : uint64_test_line) {
1187 uint64_t value = 2;
1188 bool status = safe_strtou64_base(test_line.input, &value, 10);
1189 EXPECT_EQ(test_line.status, status) << test_line.input;
1190 EXPECT_EQ(test_line.value, value) << test_line.input;
1191 value = 2;
1192 status = safe_strtou64_base(test_line.input, &value, 10);
1193 EXPECT_EQ(test_line.status, status) << test_line.input;
1194 EXPECT_EQ(test_line.value, value) << test_line.input;
1195 value = 2;
1196 status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
1197 EXPECT_EQ(test_line.status, status) << test_line.input;
1198 EXPECT_EQ(test_line.value, value) << test_line.input;
1199 }
1200 }
1201
TEST(StrToInt32Base,PrefixOnly)1202 TEST(StrToInt32Base, PrefixOnly) {
1203 struct Int32TestLine {
1204 std::string input;
1205 bool status;
1206 int32_t value;
1207 };
1208 Int32TestLine int32_test_line[] = {
1209 { "", false, 0 },
1210 { "-", false, 0 },
1211 { "-0", true, 0 },
1212 { "0", true, 0 },
1213 { "0x", false, 0 },
1214 { "-0x", false, 0 },
1215 };
1216 const int base_array[] = { 0, 2, 8, 10, 16 };
1217
1218 for (const Int32TestLine& line : int32_test_line) {
1219 for (const int base : base_array) {
1220 int32_t value = 2;
1221 bool status = safe_strto32_base(line.input.c_str(), &value, base);
1222 EXPECT_EQ(line.status, status) << line.input << " " << base;
1223 EXPECT_EQ(line.value, value) << line.input << " " << base;
1224 value = 2;
1225 status = safe_strto32_base(line.input, &value, base);
1226 EXPECT_EQ(line.status, status) << line.input << " " << base;
1227 EXPECT_EQ(line.value, value) << line.input << " " << base;
1228 value = 2;
1229 status = safe_strto32_base(absl::string_view(line.input), &value, base);
1230 EXPECT_EQ(line.status, status) << line.input << " " << base;
1231 EXPECT_EQ(line.value, value) << line.input << " " << base;
1232 }
1233 }
1234 }
1235
TEST(StrToUint32Base,PrefixOnly)1236 TEST(StrToUint32Base, PrefixOnly) {
1237 struct Uint32TestLine {
1238 std::string input;
1239 bool status;
1240 uint32_t value;
1241 };
1242 Uint32TestLine uint32_test_line[] = {
1243 { "", false, 0 },
1244 { "0", true, 0 },
1245 { "0x", false, 0 },
1246 };
1247 const int base_array[] = { 0, 2, 8, 10, 16 };
1248
1249 for (const Uint32TestLine& line : uint32_test_line) {
1250 for (const int base : base_array) {
1251 uint32_t value = 2;
1252 bool status = safe_strtou32_base(line.input.c_str(), &value, base);
1253 EXPECT_EQ(line.status, status) << line.input << " " << base;
1254 EXPECT_EQ(line.value, value) << line.input << " " << base;
1255 value = 2;
1256 status = safe_strtou32_base(line.input, &value, base);
1257 EXPECT_EQ(line.status, status) << line.input << " " << base;
1258 EXPECT_EQ(line.value, value) << line.input << " " << base;
1259 value = 2;
1260 status = safe_strtou32_base(absl::string_view(line.input), &value, base);
1261 EXPECT_EQ(line.status, status) << line.input << " " << base;
1262 EXPECT_EQ(line.value, value) << line.input << " " << base;
1263 }
1264 }
1265 }
1266
TEST(StrToInt64Base,PrefixOnly)1267 TEST(StrToInt64Base, PrefixOnly) {
1268 struct Int64TestLine {
1269 std::string input;
1270 bool status;
1271 int64_t value;
1272 };
1273 Int64TestLine int64_test_line[] = {
1274 { "", false, 0 },
1275 { "-", false, 0 },
1276 { "-0", true, 0 },
1277 { "0", true, 0 },
1278 { "0x", false, 0 },
1279 { "-0x", false, 0 },
1280 };
1281 const int base_array[] = { 0, 2, 8, 10, 16 };
1282
1283 for (const Int64TestLine& line : int64_test_line) {
1284 for (const int base : base_array) {
1285 int64_t value = 2;
1286 bool status = safe_strto64_base(line.input.c_str(), &value, base);
1287 EXPECT_EQ(line.status, status) << line.input << " " << base;
1288 EXPECT_EQ(line.value, value) << line.input << " " << base;
1289 value = 2;
1290 status = safe_strto64_base(line.input, &value, base);
1291 EXPECT_EQ(line.status, status) << line.input << " " << base;
1292 EXPECT_EQ(line.value, value) << line.input << " " << base;
1293 value = 2;
1294 status = safe_strto64_base(absl::string_view(line.input), &value, base);
1295 EXPECT_EQ(line.status, status) << line.input << " " << base;
1296 EXPECT_EQ(line.value, value) << line.input << " " << base;
1297 }
1298 }
1299 }
1300
TEST(StrToUint64Base,PrefixOnly)1301 TEST(StrToUint64Base, PrefixOnly) {
1302 struct Uint64TestLine {
1303 std::string input;
1304 bool status;
1305 uint64_t value;
1306 };
1307 Uint64TestLine uint64_test_line[] = {
1308 { "", false, 0 },
1309 { "0", true, 0 },
1310 { "0x", false, 0 },
1311 };
1312 const int base_array[] = { 0, 2, 8, 10, 16 };
1313
1314 for (const Uint64TestLine& line : uint64_test_line) {
1315 for (const int base : base_array) {
1316 uint64_t value = 2;
1317 bool status = safe_strtou64_base(line.input.c_str(), &value, base);
1318 EXPECT_EQ(line.status, status) << line.input << " " << base;
1319 EXPECT_EQ(line.value, value) << line.input << " " << base;
1320 value = 2;
1321 status = safe_strtou64_base(line.input, &value, base);
1322 EXPECT_EQ(line.status, status) << line.input << " " << base;
1323 EXPECT_EQ(line.value, value) << line.input << " " << base;
1324 value = 2;
1325 status = safe_strtou64_base(absl::string_view(line.input), &value, base);
1326 EXPECT_EQ(line.status, status) << line.input << " " << base;
1327 EXPECT_EQ(line.value, value) << line.input << " " << base;
1328 }
1329 }
1330 }
1331
TestFastHexToBufferZeroPad16(uint64_t v)1332 void TestFastHexToBufferZeroPad16(uint64_t v) {
1333 char buf[16];
1334 auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
1335 absl::string_view res(buf, 16);
1336 char buf2[17];
1337 snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
1338 EXPECT_EQ(res, buf2) << v;
1339 size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
1340 EXPECT_EQ(digits, expected_digits) << v;
1341 }
1342
TEST(FastHexToBufferZeroPad16,Smoke)1343 TEST(FastHexToBufferZeroPad16, Smoke) {
1344 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
1345 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
1346 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
1347 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
1348 absl::BitGen rng;
1349 for (int i = 0; i < 100000; ++i) {
1350 TestFastHexToBufferZeroPad16(
1351 absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
1352 std::numeric_limits<uint64_t>::max()));
1353 }
1354 }
1355
1356 } // namespace
1357