1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/synchronization/mutex.h"
16
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <algorithm>
37 #include <atomic>
38 #include <cinttypes>
39 #include <thread> // NOLINT(build/c++11)
40
41 #include "absl/base/attributes.h"
42 #include "absl/base/call_once.h"
43 #include "absl/base/config.h"
44 #include "absl/base/dynamic_annotations.h"
45 #include "absl/base/internal/atomic_hook.h"
46 #include "absl/base/internal/cycleclock.h"
47 #include "absl/base/internal/hide_ptr.h"
48 #include "absl/base/internal/low_level_alloc.h"
49 #include "absl/base/internal/raw_logging.h"
50 #include "absl/base/internal/spinlock.h"
51 #include "absl/base/internal/sysinfo.h"
52 #include "absl/base/internal/thread_identity.h"
53 #include "absl/base/internal/tsan_mutex_interface.h"
54 #include "absl/base/port.h"
55 #include "absl/debugging/stacktrace.h"
56 #include "absl/debugging/symbolize.h"
57 #include "absl/synchronization/internal/graphcycles.h"
58 #include "absl/synchronization/internal/per_thread_sem.h"
59 #include "absl/time/time.h"
60
61 using absl::base_internal::CurrentThreadIdentityIfPresent;
62 using absl::base_internal::PerThreadSynch;
63 using absl::base_internal::SchedulingGuard;
64 using absl::base_internal::ThreadIdentity;
65 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
66 using absl::synchronization_internal::GraphCycles;
67 using absl::synchronization_internal::GraphId;
68 using absl::synchronization_internal::InvalidGraphId;
69 using absl::synchronization_internal::KernelTimeout;
70 using absl::synchronization_internal::PerThreadSem;
71
72 extern "C" {
AbslInternalMutexYield()73 ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
74 } // extern "C"
75
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
78
79 namespace {
80
81 #if defined(ABSL_HAVE_THREAD_SANITIZER)
82 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
83 #else
84 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
85 #endif
86
87 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
88 kDeadlockDetectionDefault);
89 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
90
91 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
92 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
93 submit_profile_data;
94 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
95 const char *msg, const void *obj, int64_t wait_cycles)>
96 mutex_tracer;
97 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
98 absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
99 cond_var_tracer;
100 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
101 bool (*)(const void *pc, char *out, int out_size)>
102 symbolizer(absl::Symbolize);
103
104 } // namespace
105
106 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
107 bool locking, bool trylock,
108 bool read_lock);
109
RegisterMutexProfiler(void (* fn)(int64_t wait_timestamp))110 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
111 submit_profile_data.Store(fn);
112 }
113
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))114 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
115 int64_t wait_cycles)) {
116 mutex_tracer.Store(fn);
117 }
118
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))119 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
120 cond_var_tracer.Store(fn);
121 }
122
RegisterSymbolizer(bool (* fn)(const void * pc,char * out,int out_size))123 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
124 symbolizer.Store(fn);
125 }
126
127 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
128 absl::once_flag once;
129 int num_cpus = 0;
130 int spinloop_iterations = 0;
131 };
132
GetMutexGlobals()133 static const MutexGlobals& GetMutexGlobals() {
134 ABSL_CONST_INIT static MutexGlobals data;
135 absl::base_internal::LowLevelCallOnce(&data.once, [&]() {
136 data.num_cpus = absl::base_internal::NumCPUs();
137 data.spinloop_iterations = data.num_cpus > 1 ? 1500 : 0;
138 });
139 return data;
140 }
141
142 // Spinlock delay on iteration c. Returns new c.
143 namespace {
144 enum DelayMode { AGGRESSIVE, GENTLE };
145 };
146
147 namespace synchronization_internal {
MutexDelay(int32_t c,int mode)148 int MutexDelay(int32_t c, int mode) {
149 // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is
150 // aggressive then spin many times before yielding. If the mode is
151 // gentle then spin only a few times before yielding. Aggressive spinning is
152 // used to ensure that an Unlock() call, which must get the spin lock for
153 // any thread to make progress gets it without undue delay.
154 const int32_t limit =
155 GetMutexGlobals().num_cpus > 1 ? (mode == AGGRESSIVE ? 5000 : 250) : 0;
156 if (c < limit) {
157 // Spin.
158 c++;
159 } else {
160 SchedulingGuard::ScopedEnable enable_rescheduling;
161 ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
162 if (c == limit) {
163 // Yield once.
164 AbslInternalMutexYield();
165 c++;
166 } else {
167 // Then wait.
168 absl::SleepFor(absl::Microseconds(10));
169 c = 0;
170 }
171 ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
172 }
173 return c;
174 }
175 } // namespace synchronization_internal
176
177 // --------------------------Generic atomic ops
178 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
179 // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
180 // before making any change.
181 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)182 static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
183 intptr_t wait_until_clear) {
184 intptr_t v;
185 do {
186 v = pv->load(std::memory_order_relaxed);
187 } while ((v & bits) != bits &&
188 ((v & wait_until_clear) != 0 ||
189 !pv->compare_exchange_weak(v, v | bits,
190 std::memory_order_release,
191 std::memory_order_relaxed)));
192 }
193
194 // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
195 // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
196 // before making any change.
197 // This is used to unset flags in mutex and condition variable words.
AtomicClearBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)198 static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
199 intptr_t wait_until_clear) {
200 intptr_t v;
201 do {
202 v = pv->load(std::memory_order_relaxed);
203 } while ((v & bits) != 0 &&
204 ((v & wait_until_clear) != 0 ||
205 !pv->compare_exchange_weak(v, v & ~bits,
206 std::memory_order_release,
207 std::memory_order_relaxed)));
208 }
209
210 //------------------------------------------------------------------
211
212 // Data for doing deadlock detection.
213 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
214 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
215
216 // Graph used to detect deadlocks.
217 ABSL_CONST_INIT static GraphCycles *deadlock_graph
218 ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
219
220 //------------------------------------------------------------------
221 // An event mechanism for debugging mutex use.
222 // It also allows mutexes to be given names for those who can't handle
223 // addresses, and instead like to give their data structures names like
224 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
225
226 namespace { // to prevent name pollution
227 enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
228 // Mutex events
229 SYNCH_EV_TRYLOCK_SUCCESS,
230 SYNCH_EV_TRYLOCK_FAILED,
231 SYNCH_EV_READERTRYLOCK_SUCCESS,
232 SYNCH_EV_READERTRYLOCK_FAILED,
233 SYNCH_EV_LOCK,
234 SYNCH_EV_LOCK_RETURNING,
235 SYNCH_EV_READERLOCK,
236 SYNCH_EV_READERLOCK_RETURNING,
237 SYNCH_EV_UNLOCK,
238 SYNCH_EV_READERUNLOCK,
239
240 // CondVar events
241 SYNCH_EV_WAIT,
242 SYNCH_EV_WAIT_RETURNING,
243 SYNCH_EV_SIGNAL,
244 SYNCH_EV_SIGNALALL,
245 };
246
247 enum { // Event flags
248 SYNCH_F_R = 0x01, // reader event
249 SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
250 SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock
251 SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock
252
253 SYNCH_F_LCK_W = SYNCH_F_LCK,
254 SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
255 };
256 } // anonymous namespace
257
258 // Properties of the events.
259 static const struct {
260 int flags;
261 const char *msg;
262 } event_properties[] = {
263 {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
264 {0, "TryLock failed "},
265 {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
266 {0, "ReaderTryLock failed "},
267 {0, "Lock blocking "},
268 {SYNCH_F_LCK_W, "Lock returning "},
269 {0, "ReaderLock blocking "},
270 {SYNCH_F_LCK_R, "ReaderLock returning "},
271 {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
272 {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
273 {0, "Wait on "},
274 {0, "Wait unblocked "},
275 {0, "Signal on "},
276 {0, "SignalAll on "},
277 };
278
279 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
280 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
281
282 // Hash table size; should be prime > 2.
283 // Can't be too small, as it's used for deadlock detection information.
284 static constexpr uint32_t kNSynchEvent = 1031;
285
286 static struct SynchEvent { // this is a trivial hash table for the events
287 // struct is freed when refcount reaches 0
288 int refcount ABSL_GUARDED_BY(synch_event_mu);
289
290 // buckets have linear, 0-terminated chains
291 SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
292
293 // Constant after initialization
294 uintptr_t masked_addr; // object at this address is called "name"
295
296 // No explicit synchronization used. Instead we assume that the
297 // client who enables/disables invariants/logging on a Mutex does so
298 // while the Mutex is not being concurrently accessed by others.
299 void (*invariant)(void *arg); // called on each event
300 void *arg; // first arg to (*invariant)()
301 bool log; // logging turned on
302
303 // Constant after initialization
304 char name[1]; // actually longer---NUL-terminated string
305 } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
306
307 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
308 // set "bits" in the word there (waiting until lockbit is clear before doing
309 // so), and return a refcounted reference that will remain valid until
310 // UnrefSynchEvent() is called. If a new SynchEvent is allocated,
311 // the string name is copied into it.
312 // When used with a mutex, the caller should also ensure that kMuEvent
313 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)314 static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
315 const char *name, intptr_t bits,
316 intptr_t lockbit) {
317 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
318 SynchEvent *e;
319 // first look for existing SynchEvent struct..
320 synch_event_mu.Lock();
321 for (e = synch_event[h];
322 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
323 e = e->next) {
324 }
325 if (e == nullptr) { // no SynchEvent struct found; make one.
326 if (name == nullptr) {
327 name = "";
328 }
329 size_t l = strlen(name);
330 e = reinterpret_cast<SynchEvent *>(
331 base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
332 e->refcount = 2; // one for return value, one for linked list
333 e->masked_addr = base_internal::HidePtr(addr);
334 e->invariant = nullptr;
335 e->arg = nullptr;
336 e->log = false;
337 strcpy(e->name, name); // NOLINT(runtime/printf)
338 e->next = synch_event[h];
339 AtomicSetBits(addr, bits, lockbit);
340 synch_event[h] = e;
341 } else {
342 e->refcount++; // for return value
343 }
344 synch_event_mu.Unlock();
345 return e;
346 }
347
348 // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
DeleteSynchEvent(SynchEvent * e)349 static void DeleteSynchEvent(SynchEvent *e) {
350 base_internal::LowLevelAlloc::Free(e);
351 }
352
353 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)354 static void UnrefSynchEvent(SynchEvent *e) {
355 if (e != nullptr) {
356 synch_event_mu.Lock();
357 bool del = (--(e->refcount) == 0);
358 synch_event_mu.Unlock();
359 if (del) {
360 DeleteSynchEvent(e);
361 }
362 }
363 }
364
365 // Forget the mapping from the object (Mutex or CondVar) at address addr
366 // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
367 // is clear before doing so).
ForgetSynchEvent(std::atomic<intptr_t> * addr,intptr_t bits,intptr_t lockbit)368 static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
369 intptr_t lockbit) {
370 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
371 SynchEvent **pe;
372 SynchEvent *e;
373 synch_event_mu.Lock();
374 for (pe = &synch_event[h];
375 (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
376 pe = &e->next) {
377 }
378 bool del = false;
379 if (e != nullptr) {
380 *pe = e->next;
381 del = (--(e->refcount) == 0);
382 }
383 AtomicClearBits(addr, bits, lockbit);
384 synch_event_mu.Unlock();
385 if (del) {
386 DeleteSynchEvent(e);
387 }
388 }
389
390 // Return a refcounted reference to the SynchEvent of the object at address
391 // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
392 // called.
GetSynchEvent(const void * addr)393 static SynchEvent *GetSynchEvent(const void *addr) {
394 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
395 SynchEvent *e;
396 synch_event_mu.Lock();
397 for (e = synch_event[h];
398 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
399 e = e->next) {
400 }
401 if (e != nullptr) {
402 e->refcount++;
403 }
404 synch_event_mu.Unlock();
405 return e;
406 }
407
408 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
409 // if event recording is on
PostSynchEvent(void * obj,int ev)410 static void PostSynchEvent(void *obj, int ev) {
411 SynchEvent *e = GetSynchEvent(obj);
412 // logging is on if event recording is on and either there's no event struct,
413 // or it explicitly says to log
414 if (e == nullptr || e->log) {
415 void *pcs[40];
416 int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
417 // A buffer with enough space for the ASCII for all the PCs, even on a
418 // 64-bit machine.
419 char buffer[ABSL_ARRAYSIZE(pcs) * 24];
420 int pos = snprintf(buffer, sizeof (buffer), " @");
421 for (int i = 0; i != n; i++) {
422 pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
423 }
424 ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
425 (e == nullptr ? "" : e->name), buffer);
426 }
427 const int flags = event_properties[ev].flags;
428 if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
429 // Calling the invariant as is causes problems under ThreadSanitizer.
430 // We are currently inside of Mutex Lock/Unlock and are ignoring all
431 // memory accesses and synchronization. If the invariant transitively
432 // synchronizes something else and we ignore the synchronization, we will
433 // get false positive race reports later.
434 // Reuse EvalConditionAnnotated to properly call into user code.
435 struct local {
436 static bool pred(SynchEvent *ev) {
437 (*ev->invariant)(ev->arg);
438 return false;
439 }
440 };
441 Condition cond(&local::pred, e);
442 Mutex *mu = static_cast<Mutex *>(obj);
443 const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
444 const bool trylock = (flags & SYNCH_F_TRY) != 0;
445 const bool read_lock = (flags & SYNCH_F_R) != 0;
446 EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
447 }
448 UnrefSynchEvent(e);
449 }
450
451 //------------------------------------------------------------------
452
453 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
454 // whether it has a timeout, the condition, exclusive/shared, and whether a
455 // condition variable wait has an associated Mutex (as opposed to another
456 // type of lock). It also points to the PerThreadSynch struct of its thread.
457 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
458 //
459 // This structure is held on the stack rather than directly in
460 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
461 // while waiting on one Mutex, the implementation calls a client callback
462 // (such as a Condition function) that acquires another Mutex. We don't
463 // strictly need to allow this, but programmers become confused if we do not
464 // allow them to use functions such a LOG() within Condition functions. The
465 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
466 // the thread is on a Mutex's waiter queue.
467 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams468 SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
469 KernelTimeout timeout_arg, Mutex *cvmu_arg,
470 PerThreadSynch *thread_arg,
471 std::atomic<intptr_t> *cv_word_arg)
472 : how(how_arg),
473 cond(cond_arg),
474 timeout(timeout_arg),
475 cvmu(cvmu_arg),
476 thread(thread_arg),
477 cv_word(cv_word_arg),
478 contention_start_cycles(base_internal::CycleClock::Now()) {}
479
480 const Mutex::MuHow how; // How this thread needs to wait.
481 const Condition *cond; // The condition that this thread is waiting for.
482 // In Mutex, this field is set to zero if a timeout
483 // expires.
484 KernelTimeout timeout; // timeout expiry---absolute time
485 // In Mutex, this field is set to zero if a timeout
486 // expires.
487 Mutex *const cvmu; // used for transfer from cond var to mutex
488 PerThreadSynch *const thread; // thread that is waiting
489
490 // If not null, thread should be enqueued on the CondVar whose state
491 // word is cv_word instead of queueing normally on the Mutex.
492 std::atomic<intptr_t> *cv_word;
493
494 int64_t contention_start_cycles; // Time (in cycles) when this thread started
495 // to contend for the mutex.
496 };
497
498 struct SynchLocksHeld {
499 int n; // number of valid entries in locks[]
500 bool overflow; // true iff we overflowed the array at some point
501 struct {
502 Mutex *mu; // lock acquired
503 int32_t count; // times acquired
504 GraphId id; // deadlock_graph id of acquired lock
505 } locks[40];
506 // If a thread overfills the array during deadlock detection, we
507 // continue, discarding information as needed. If no overflow has
508 // taken place, we can provide more error checking, such as
509 // detecting when a thread releases a lock it does not hold.
510 };
511
512 // A sentinel value in lists that is not 0.
513 // A 0 value is used to mean "not on a list".
514 static PerThreadSynch *const kPerThreadSynchNull =
515 reinterpret_cast<PerThreadSynch *>(1);
516
LocksHeldAlloc()517 static SynchLocksHeld *LocksHeldAlloc() {
518 SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
519 base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
520 ret->n = 0;
521 ret->overflow = false;
522 return ret;
523 }
524
525 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()526 static PerThreadSynch *Synch_GetPerThread() {
527 ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
528 return &identity->per_thread_synch;
529 }
530
Synch_GetPerThreadAnnotated(Mutex * mu)531 static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
532 if (mu) {
533 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
534 }
535 PerThreadSynch *w = Synch_GetPerThread();
536 if (mu) {
537 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
538 }
539 return w;
540 }
541
Synch_GetAllLocks()542 static SynchLocksHeld *Synch_GetAllLocks() {
543 PerThreadSynch *s = Synch_GetPerThread();
544 if (s->all_locks == nullptr) {
545 s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
546 }
547 return s->all_locks;
548 }
549
550 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)551 inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
552 if (mu) {
553 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
554 }
555 PerThreadSem::Post(w->thread_identity());
556 if (mu) {
557 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
558 }
559 }
560
561 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)562 bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
563 if (mu) {
564 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
565 }
566 assert(w == Synch_GetPerThread());
567 static_cast<void>(w);
568 bool res = PerThreadSem::Wait(t);
569 if (mu) {
570 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
571 }
572 return res;
573 }
574
575 // We're in a fatal signal handler that hopes to use Mutex and to get
576 // lucky by not deadlocking. We try to improve its chances of success
577 // by effectively disabling some of the consistency checks. This will
578 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
579 // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
580 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()581 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
582 // Fix the per-thread state only if it exists.
583 ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
584 if (identity != nullptr) {
585 identity->per_thread_synch.suppress_fatal_errors = true;
586 }
587 // Don't do deadlock detection when we are already failing.
588 synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
589 std::memory_order_release);
590 }
591
592 // --------------------------time support
593
594 // Return the current time plus the timeout. Use the same clock as
595 // PerThreadSem::Wait() for consistency. Unfortunately, we don't have
596 // such a choice when a deadline is given directly.
DeadlineFromTimeout(absl::Duration timeout)597 static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
598 #ifndef _WIN32
599 struct timeval tv;
600 gettimeofday(&tv, nullptr);
601 return absl::TimeFromTimeval(tv) + timeout;
602 #else
603 return absl::Now() + timeout;
604 #endif
605 }
606
607 // --------------------------Mutexes
608
609 // In the layout below, the msb of the bottom byte is currently unused. Also,
610 // the following constraints were considered in choosing the layout:
611 // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
612 // 0xcd) are illegal: reader and writer lock both held.
613 // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
614 // bit-twiddling trick in Mutex::Unlock().
615 // o kMuWriter / kMuReader == kMuWrWait / kMuWait,
616 // to enable the bit-twiddling trick in CheckForMutexCorruption().
617 static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
618 static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
619 static const intptr_t kMuWait = 0x0004L; // threads are waiting
620 static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
621 static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
622 // INVARIANT1: there's a thread that was blocked on the mutex, is
623 // no longer, yet has not yet acquired the mutex. If there's a
624 // designated waker, all threads can avoid taking the slow path in
625 // unlock because the designated waker will subsequently acquire
626 // the lock and wake someone. To maintain INVARIANT1 the bit is
627 // set when a thread is unblocked(INV1a), and threads that were
628 // unblocked reset the bit when they either acquire or re-block
629 // (INV1b).
630 static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
631 // for a reader
632 static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
633 static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
634 static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
635
636 // Hack to make constant values available to gdb pretty printer
637 enum {
638 kGdbMuSpin = kMuSpin,
639 kGdbMuEvent = kMuEvent,
640 kGdbMuWait = kMuWait,
641 kGdbMuWriter = kMuWriter,
642 kGdbMuDesig = kMuDesig,
643 kGdbMuWrWait = kMuWrWait,
644 kGdbMuReader = kMuReader,
645 kGdbMuLow = kMuLow,
646 };
647
648 // kMuWrWait implies kMuWait.
649 // kMuReader and kMuWriter are mutually exclusive.
650 // If kMuReader is zero, there are no readers.
651 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
652 // number of readers. Otherwise, the reader count is held in
653 // PerThreadSynch::readers of the most recently queued waiter, again in the
654 // bits above kMuLow.
655 static const intptr_t kMuOne = 0x0100; // a count of one reader
656
657 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
658 static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
659 static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
660
661 static_assert(PerThreadSynch::kAlignment > kMuLow,
662 "PerThreadSynch::kAlignment must be greater than kMuLow");
663
664 // This struct contains various bitmasks to be used in
665 // acquiring and releasing a mutex in a particular mode.
666 struct MuHowS {
667 // if all the bits in fast_need_zero are zero, the lock can be acquired by
668 // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
669 // this is the designated waker.
670 intptr_t fast_need_zero;
671 intptr_t fast_or;
672 intptr_t fast_add;
673
674 intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
675
676 intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
677 // zero a reader can acquire a read share by
678 // setting the reader bit and incrementing
679 // the reader count (in last waiter since
680 // we're now slow-path). kMuWrWait be may
681 // be ignored if we already waited once.
682 };
683
684 static const MuHowS kSharedS = {
685 // shared or read lock
686 kMuWriter | kMuWait | kMuEvent, // fast_need_zero
687 kMuReader, // fast_or
688 kMuOne, // fast_add
689 kMuWriter | kMuWait, // slow_need_zero
690 kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
691 };
692 static const MuHowS kExclusiveS = {
693 // exclusive or write lock
694 kMuWriter | kMuReader | kMuEvent, // fast_need_zero
695 kMuWriter, // fast_or
696 0, // fast_add
697 kMuWriter | kMuReader, // slow_need_zero
698 ~static_cast<intptr_t>(0), // slow_inc_need_zero
699 };
700 static const Mutex::MuHow kShared = &kSharedS; // shared lock
701 static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
702
703 #ifdef NDEBUG
704 static constexpr bool kDebugMode = false;
705 #else
706 static constexpr bool kDebugMode = true;
707 #endif
708
709 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)710 static unsigned TsanFlags(Mutex::MuHow how) {
711 return how == kShared ? __tsan_mutex_read_lock : 0;
712 }
713 #endif
714
DebugOnlyIsExiting()715 static bool DebugOnlyIsExiting() {
716 return false;
717 }
718
~Mutex()719 Mutex::~Mutex() {
720 intptr_t v = mu_.load(std::memory_order_relaxed);
721 if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
722 ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
723 }
724 if (kDebugMode) {
725 this->ForgetDeadlockInfo();
726 }
727 ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
728 }
729
EnableDebugLog(const char * name)730 void Mutex::EnableDebugLog(const char *name) {
731 SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
732 e->log = true;
733 UnrefSynchEvent(e);
734 }
735
EnableMutexInvariantDebugging(bool enabled)736 void EnableMutexInvariantDebugging(bool enabled) {
737 synch_check_invariants.store(enabled, std::memory_order_release);
738 }
739
EnableInvariantDebugging(void (* invariant)(void *),void * arg)740 void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
741 void *arg) {
742 if (synch_check_invariants.load(std::memory_order_acquire) &&
743 invariant != nullptr) {
744 SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
745 e->invariant = invariant;
746 e->arg = arg;
747 UnrefSynchEvent(e);
748 }
749 }
750
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)751 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
752 synch_deadlock_detection.store(mode, std::memory_order_release);
753 }
754
755 // Return true iff threads x and y are waiting on the same condition for the
756 // same type of lock. Requires that x and y be waiting on the same Mutex
757 // queue.
MuSameCondition(PerThreadSynch * x,PerThreadSynch * y)758 static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
759 return x->waitp->how == y->waitp->how &&
760 Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
761 }
762
763 // Given the contents of a mutex word containing a PerThreadSynch pointer,
764 // return the pointer.
GetPerThreadSynch(intptr_t v)765 static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
766 return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
767 }
768
769 // The next several routines maintain the per-thread next and skip fields
770 // used in the Mutex waiter queue.
771 // The queue is a circular singly-linked list, of which the "head" is the
772 // last element, and head->next if the first element.
773 // The skip field has the invariant:
774 // For thread x, x->skip is one of:
775 // - invalid (iff x is not in a Mutex wait queue),
776 // - null, or
777 // - a pointer to a distinct thread waiting later in the same Mutex queue
778 // such that all threads in [x, x->skip] have the same condition and
779 // lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
780 // In addition, if x->skip is valid, (x->may_skip || x->skip == null)
781 //
782 // By the spec of MuSameCondition(), it is not necessary when removing the
783 // first runnable thread y from the front a Mutex queue to adjust the skip
784 // field of another thread x because if x->skip==y, x->skip must (have) become
785 // invalid before y is removed. The function TryRemove can remove a specified
786 // thread from an arbitrary position in the queue whether runnable or not, so
787 // it fixes up skip fields that would otherwise be left dangling.
788 // The statement
789 // if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
790 // maintains the invariant provided x is not the last waiter in a Mutex queue
791 // The statement
792 // if (x->skip != null) { x->skip = x->skip->skip; }
793 // maintains the invariant.
794
795 // Returns the last thread y in a mutex waiter queue such that all threads in
796 // [x, y] inclusive share the same condition. Sets skip fields of some threads
797 // in that range to optimize future evaluation of Skip() on x values in
798 // the range. Requires thread x is in a mutex waiter queue.
799 // The locking is unusual. Skip() is called under these conditions:
800 // - spinlock is held in call from Enqueue(), with maybe_unlocking == false
801 // - Mutex is held in call from UnlockSlow() by last unlocker, with
802 // maybe_unlocking == true
803 // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
804 // UnlockSlow()) and TryRemove()
805 // These cases are mutually exclusive, so Skip() never runs concurrently
806 // with itself on the same Mutex. The skip chain is used in these other places
807 // that cannot occur concurrently:
808 // - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
809 // - Dequeue() (with spinlock and Mutex held)
810 // - UnlockSlow() (with spinlock and Mutex held)
811 // A more complex case is Enqueue()
812 // - Enqueue() (with spinlock held and maybe_unlocking == false)
813 // This is the first case in which Skip is called, above.
814 // - Enqueue() (without spinlock held; but queue is empty and being freshly
815 // formed)
816 // - Enqueue() (with spinlock held and maybe_unlocking == true)
817 // The first case has mutual exclusion, and the second isolation through
818 // working on an otherwise unreachable data structure.
819 // In the last case, Enqueue() is required to change no skip/next pointers
820 // except those in the added node and the former "head" node. This implies
821 // that the new node is added after head, and so must be the new head or the
822 // new front of the queue.
Skip(PerThreadSynch * x)823 static PerThreadSynch *Skip(PerThreadSynch *x) {
824 PerThreadSynch *x0 = nullptr;
825 PerThreadSynch *x1 = x;
826 PerThreadSynch *x2 = x->skip;
827 if (x2 != nullptr) {
828 // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
829 // such that x1 == x0->skip && x2 == x1->skip
830 while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
831 x0->skip = x2; // short-circuit skip from x0 to x2
832 }
833 x->skip = x1; // short-circuit skip from x to result
834 }
835 return x1;
836 }
837
838 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
839 // The latter is going to be removed out of order, because of a timeout.
840 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
841 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)842 static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
843 if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
844 if (to_be_removed->skip != nullptr) {
845 ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
846 } else if (ancestor->next != to_be_removed) { // they are not adjacent
847 ancestor->skip = ancestor->next; // can skip one past ancestor
848 } else {
849 ancestor->skip = nullptr; // can't skip at all
850 }
851 }
852 }
853
854 static void CondVarEnqueue(SynchWaitParams *waitp);
855
856 // Enqueue thread "waitp->thread" on a waiter queue.
857 // Called with mutex spinlock held if head != nullptr
858 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
859 // idempotent; it alters no state associated with the existing (empty)
860 // queue.
861 //
862 // If waitp->cv_word == nullptr, queue the thread at either the front or
863 // the end (according to its priority) of the circular mutex waiter queue whose
864 // head is "head", and return the new head. mu is the previous mutex state,
865 // which contains the reader count (perhaps adjusted for the operation in
866 // progress) if the list was empty and a read lock held, and the holder hint if
867 // the list was empty and a write lock held. (flags & kMuIsCond) indicates
868 // whether this thread was transferred from a CondVar or is waiting for a
869 // non-trivial condition. In this case, Enqueue() never returns nullptr
870 //
871 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
872 // returned. This mechanism is used by CondVar to queue a thread on the
873 // condition variable queue instead of the mutex queue in implementing Wait().
874 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)875 static PerThreadSynch *Enqueue(PerThreadSynch *head,
876 SynchWaitParams *waitp, intptr_t mu, int flags) {
877 // If we have been given a cv_word, call CondVarEnqueue() and return
878 // the previous head of the Mutex waiter queue.
879 if (waitp->cv_word != nullptr) {
880 CondVarEnqueue(waitp);
881 return head;
882 }
883
884 PerThreadSynch *s = waitp->thread;
885 ABSL_RAW_CHECK(
886 s->waitp == nullptr || // normal case
887 s->waitp == waitp || // Fer()---transfer from condition variable
888 s->suppress_fatal_errors,
889 "detected illegal recursion into Mutex code");
890 s->waitp = waitp;
891 s->skip = nullptr; // maintain skip invariant (see above)
892 s->may_skip = true; // always true on entering queue
893 s->wake = false; // not being woken
894 s->cond_waiter = ((flags & kMuIsCond) != 0);
895 if (head == nullptr) { // s is the only waiter
896 s->next = s; // it's the only entry in the cycle
897 s->readers = mu; // reader count is from mu word
898 s->maybe_unlocking = false; // no one is searching an empty list
899 head = s; // s is new head
900 } else {
901 PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
902 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
903 int64_t now_cycles = base_internal::CycleClock::Now();
904 if (s->next_priority_read_cycles < now_cycles) {
905 // Every so often, update our idea of the thread's priority.
906 // pthread_getschedparam() is 5% of the block/wakeup time;
907 // base_internal::CycleClock::Now() is 0.5%.
908 int policy;
909 struct sched_param param;
910 const int err = pthread_getschedparam(pthread_self(), &policy, ¶m);
911 if (err != 0) {
912 ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
913 } else {
914 s->priority = param.sched_priority;
915 s->next_priority_read_cycles =
916 now_cycles +
917 static_cast<int64_t>(base_internal::CycleClock::Frequency());
918 }
919 }
920 if (s->priority > head->priority) { // s's priority is above head's
921 // try to put s in priority-fifo order, or failing that at the front.
922 if (!head->maybe_unlocking) {
923 // No unlocker can be scanning the queue, so we can insert between
924 // skip-chains, and within a skip-chain if it has the same condition as
925 // s. We insert in priority-fifo order, examining the end of every
926 // skip-chain, plus every element with the same condition as s.
927 PerThreadSynch *advance_to = head; // next value of enqueue_after
928 PerThreadSynch *cur; // successor of enqueue_after
929 do {
930 enqueue_after = advance_to;
931 cur = enqueue_after->next; // this advance ensures progress
932 advance_to = Skip(cur); // normally, advance to end of skip chain
933 // (side-effect: optimizes skip chain)
934 if (advance_to != cur && s->priority > advance_to->priority &&
935 MuSameCondition(s, cur)) {
936 // but this skip chain is not a singleton, s has higher priority
937 // than its tail and has the same condition as the chain,
938 // so we can insert within the skip-chain
939 advance_to = cur; // advance by just one
940 }
941 } while (s->priority <= advance_to->priority);
942 // termination guaranteed because s->priority > head->priority
943 // and head is the end of a skip chain
944 } else if (waitp->how == kExclusive &&
945 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
946 // An unlocker could be scanning the queue, but we know it will recheck
947 // the queue front for writers that have no condition, which is what s
948 // is, so an insert at front is safe.
949 enqueue_after = head; // add after head, at front
950 }
951 }
952 #endif
953 if (enqueue_after != nullptr) {
954 s->next = enqueue_after->next;
955 enqueue_after->next = s;
956
957 // enqueue_after can be: head, Skip(...), or cur.
958 // The first two imply enqueue_after->skip == nullptr, and
959 // the last is used only if MuSameCondition(s, cur).
960 // We require this because clearing enqueue_after->skip
961 // is impossible; enqueue_after's predecessors might also
962 // incorrectly skip over s if we were to allow other
963 // insertion points.
964 ABSL_RAW_CHECK(
965 enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
966 "Mutex Enqueue failure");
967
968 if (enqueue_after != head && enqueue_after->may_skip &&
969 MuSameCondition(enqueue_after, enqueue_after->next)) {
970 // enqueue_after can skip to its new successor, s
971 enqueue_after->skip = enqueue_after->next;
972 }
973 if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true
974 s->skip = s->next; // s may skip to its successor
975 }
976 } else { // enqueue not done any other way, so
977 // we're inserting s at the back
978 // s will become new head; copy data from head into it
979 s->next = head->next; // add s after head
980 head->next = s;
981 s->readers = head->readers; // reader count is from previous head
982 s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
983 if (head->may_skip && MuSameCondition(head, s)) {
984 // head now has successor; may skip
985 head->skip = s;
986 }
987 head = s; // s is new head
988 }
989 }
990 s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
991 return head;
992 }
993
994 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
995 // whose last element is head. The new head element is returned, or null
996 // if the list is made empty.
997 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)998 static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
999 PerThreadSynch *w = pw->next;
1000 pw->next = w->next; // snip w out of list
1001 if (head == w) { // we removed the head
1002 head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
1003 } else if (pw != head && MuSameCondition(pw, pw->next)) {
1004 // pw can skip to its new successor
1005 if (pw->next->skip !=
1006 nullptr) { // either skip to its successors skip target
1007 pw->skip = pw->next->skip;
1008 } else { // or to pw's successor
1009 pw->skip = pw->next;
1010 }
1011 }
1012 return head;
1013 }
1014
1015 // Traverse the elements [ pw->next, h] of the circular list whose last element
1016 // is head.
1017 // Remove all elements with wake==true and place them in the
1018 // singly-linked list wake_list in the order found. Assumes that
1019 // there is only one such element if the element has how == kExclusive.
1020 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1021 static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
1022 PerThreadSynch *pw,
1023 PerThreadSynch **wake_tail) {
1024 PerThreadSynch *orig_h = head;
1025 PerThreadSynch *w = pw->next;
1026 bool skipped = false;
1027 do {
1028 if (w->wake) { // remove this element
1029 ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1030 // we're removing pw's successor so either pw->skip is zero or we should
1031 // already have removed pw since if pw->skip!=null, pw has the same
1032 // condition as w.
1033 head = Dequeue(head, pw);
1034 w->next = *wake_tail; // keep list terminated
1035 *wake_tail = w; // add w to wake_list;
1036 wake_tail = &w->next; // next addition to end
1037 if (w->waitp->how == kExclusive) { // wake at most 1 writer
1038 break;
1039 }
1040 } else { // not waking this one; skip
1041 pw = Skip(w); // skip as much as possible
1042 skipped = true;
1043 }
1044 w = pw->next;
1045 // We want to stop processing after we've considered the original head,
1046 // orig_h. We can't test for w==orig_h in the loop because w may skip over
1047 // it; we are guaranteed only that w's predecessor will not skip over
1048 // orig_h. When we've considered orig_h, either we've processed it and
1049 // removed it (so orig_h != head), or we considered it and skipped it (so
1050 // skipped==true && pw == head because skipping from head always skips by
1051 // just one, leaving pw pointing at head). So we want to
1052 // continue the loop with the negation of that expression.
1053 } while (orig_h == head && (pw != head || !skipped));
1054 return head;
1055 }
1056
1057 // Try to remove thread s from the list of waiters on this mutex.
1058 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1059 void Mutex::TryRemove(PerThreadSynch *s) {
1060 SchedulingGuard::ScopedDisable disable_rescheduling;
1061 intptr_t v = mu_.load(std::memory_order_relaxed);
1062 // acquire spinlock & lock
1063 if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1064 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1065 std::memory_order_acquire,
1066 std::memory_order_relaxed)) {
1067 PerThreadSynch *h = GetPerThreadSynch(v);
1068 if (h != nullptr) {
1069 PerThreadSynch *pw = h; // pw is w's predecessor
1070 PerThreadSynch *w;
1071 if ((w = pw->next) != s) { // search for thread,
1072 do { // processing at least one element
1073 if (!MuSameCondition(s, w)) { // seeking different condition
1074 pw = Skip(w); // so skip all that won't match
1075 // we don't have to worry about dangling skip fields
1076 // in the threads we skipped; none can point to s
1077 // because their condition differs from s
1078 } else { // seeking same condition
1079 FixSkip(w, s); // fix up any skip pointer from w to s
1080 pw = w;
1081 }
1082 // don't search further if we found the thread, or we're about to
1083 // process the first thread again.
1084 } while ((w = pw->next) != s && pw != h);
1085 }
1086 if (w == s) { // found thread; remove it
1087 // pw->skip may be non-zero here; the loop above ensured that
1088 // no ancestor of s can skip to s, so removal is safe anyway.
1089 h = Dequeue(h, pw);
1090 s->next = nullptr;
1091 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1092 }
1093 }
1094 intptr_t nv;
1095 do { // release spinlock and lock
1096 v = mu_.load(std::memory_order_relaxed);
1097 nv = v & (kMuDesig | kMuEvent);
1098 if (h != nullptr) {
1099 nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1100 h->readers = 0; // we hold writer lock
1101 h->maybe_unlocking = false; // finished unlocking
1102 }
1103 } while (!mu_.compare_exchange_weak(v, nv,
1104 std::memory_order_release,
1105 std::memory_order_relaxed));
1106 }
1107 }
1108
1109 // Wait until thread "s", which must be the current thread, is removed from the
1110 // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
1111 // if the wait extends past the absolute time specified, even if "s" is still
1112 // on the mutex queue. In this case, remove "s" from the queue and return
1113 // true, otherwise return false.
Block(PerThreadSynch * s)1114 ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
1115 while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1116 if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1117 // After a timeout, we go into a spin loop until we remove ourselves
1118 // from the queue, or someone else removes us. We can't be sure to be
1119 // able to remove ourselves in a single lock acquisition because this
1120 // mutex may be held, and the holder has the right to read the centre
1121 // of the waiter queue without holding the spinlock.
1122 this->TryRemove(s);
1123 int c = 0;
1124 while (s->next != nullptr) {
1125 c = synchronization_internal::MutexDelay(c, GENTLE);
1126 this->TryRemove(s);
1127 }
1128 if (kDebugMode) {
1129 // This ensures that we test the case that TryRemove() is called when s
1130 // is not on the queue.
1131 this->TryRemove(s);
1132 }
1133 s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
1134 s->waitp->cond = nullptr; // condition no longer relevant for wakeups
1135 }
1136 }
1137 ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1138 "detected illegal recursion in Mutex code");
1139 s->waitp = nullptr;
1140 }
1141
1142 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1143 PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
1144 PerThreadSynch *next = w->next;
1145 w->next = nullptr;
1146 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1147 IncrementSynchSem(this, w);
1148
1149 return next;
1150 }
1151
GetGraphIdLocked(Mutex * mu)1152 static GraphId GetGraphIdLocked(Mutex *mu)
1153 ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1154 if (!deadlock_graph) { // (re)create the deadlock graph.
1155 deadlock_graph =
1156 new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1157 GraphCycles;
1158 }
1159 return deadlock_graph->GetId(mu);
1160 }
1161
GetGraphId(Mutex * mu)1162 static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1163 deadlock_graph_mu.Lock();
1164 GraphId id = GetGraphIdLocked(mu);
1165 deadlock_graph_mu.Unlock();
1166 return id;
1167 }
1168
1169 // Record a lock acquisition. This is used in debug mode for deadlock
1170 // detection. The held_locks pointer points to the relevant data
1171 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1172 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1173 int n = held_locks->n;
1174 int i = 0;
1175 while (i != n && held_locks->locks[i].id != id) {
1176 i++;
1177 }
1178 if (i == n) {
1179 if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1180 held_locks->overflow = true; // lost some data
1181 } else { // we have room for lock
1182 held_locks->locks[i].mu = mu;
1183 held_locks->locks[i].count = 1;
1184 held_locks->locks[i].id = id;
1185 held_locks->n = n + 1;
1186 }
1187 } else {
1188 held_locks->locks[i].count++;
1189 }
1190 }
1191
1192 // Record a lock release. Each call to LockEnter(mu, id, x) should be
1193 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1194 // It does not process the event if is not needed when deadlock detection is
1195 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1196 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1197 int n = held_locks->n;
1198 int i = 0;
1199 while (i != n && held_locks->locks[i].id != id) {
1200 i++;
1201 }
1202 if (i == n) {
1203 if (!held_locks->overflow) {
1204 // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1205 // but in that case mu should still be present.
1206 i = 0;
1207 while (i != n && held_locks->locks[i].mu != mu) {
1208 i++;
1209 }
1210 if (i == n) { // mu missing means releasing unheld lock
1211 SynchEvent *mu_events = GetSynchEvent(mu);
1212 ABSL_RAW_LOG(FATAL,
1213 "thread releasing lock it does not hold: %p %s; "
1214 ,
1215 static_cast<void *>(mu),
1216 mu_events == nullptr ? "" : mu_events->name);
1217 }
1218 }
1219 } else if (held_locks->locks[i].count == 1) {
1220 held_locks->n = n - 1;
1221 held_locks->locks[i] = held_locks->locks[n - 1];
1222 held_locks->locks[n - 1].id = InvalidGraphId();
1223 held_locks->locks[n - 1].mu =
1224 nullptr; // clear mu to please the leak detector.
1225 } else {
1226 assert(held_locks->locks[i].count > 0);
1227 held_locks->locks[i].count--;
1228 }
1229 }
1230
1231 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1232 static inline void DebugOnlyLockEnter(Mutex *mu) {
1233 if (kDebugMode) {
1234 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1235 OnDeadlockCycle::kIgnore) {
1236 LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1237 }
1238 }
1239 }
1240
1241 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1242 static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
1243 if (kDebugMode) {
1244 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1245 OnDeadlockCycle::kIgnore) {
1246 LockEnter(mu, id, Synch_GetAllLocks());
1247 }
1248 }
1249 }
1250
1251 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1252 static inline void DebugOnlyLockLeave(Mutex *mu) {
1253 if (kDebugMode) {
1254 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1255 OnDeadlockCycle::kIgnore) {
1256 LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1257 }
1258 }
1259 }
1260
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1261 static char *StackString(void **pcs, int n, char *buf, int maxlen,
1262 bool symbolize) {
1263 static const int kSymLen = 200;
1264 char sym[kSymLen];
1265 int len = 0;
1266 for (int i = 0; i != n; i++) {
1267 if (symbolize) {
1268 if (!symbolizer(pcs[i], sym, kSymLen)) {
1269 sym[0] = '\0';
1270 }
1271 snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
1272 (i == 0 ? "\n" : ""),
1273 pcs[i], sym);
1274 } else {
1275 snprintf(buf + len, maxlen - len, " %p", pcs[i]);
1276 }
1277 len += strlen(&buf[len]);
1278 }
1279 return buf;
1280 }
1281
CurrentStackString(char * buf,int maxlen,bool symbolize)1282 static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
1283 void *pcs[40];
1284 return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1285 maxlen, symbolize);
1286 }
1287
1288 namespace {
1289 enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
1290 // a path this long would be remarkable
1291 // Buffers required to report a deadlock.
1292 // We do not allocate them on stack to avoid large stack frame.
1293 struct DeadlockReportBuffers {
1294 char buf[6100];
1295 GraphId path[kMaxDeadlockPathLen];
1296 };
1297
1298 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anonb9bf711f0a11::ScopedDeadlockReportBuffers1299 ScopedDeadlockReportBuffers() {
1300 b = reinterpret_cast<DeadlockReportBuffers *>(
1301 base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1302 }
~ScopedDeadlockReportBuffersabsl::__anonb9bf711f0a11::ScopedDeadlockReportBuffers1303 ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1304 DeadlockReportBuffers *b;
1305 };
1306
1307 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1308 int GetStack(void** stack, int max_depth) {
1309 return absl::GetStackTrace(stack, max_depth, 3);
1310 }
1311 } // anonymous namespace
1312
1313 // Called in debug mode when a thread is about to acquire a lock in a way that
1314 // may block.
DeadlockCheck(Mutex * mu)1315 static GraphId DeadlockCheck(Mutex *mu) {
1316 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1317 OnDeadlockCycle::kIgnore) {
1318 return InvalidGraphId();
1319 }
1320
1321 SynchLocksHeld *all_locks = Synch_GetAllLocks();
1322
1323 absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1324 const GraphId mu_id = GetGraphIdLocked(mu);
1325
1326 if (all_locks->n == 0) {
1327 // There are no other locks held. Return now so that we don't need to
1328 // call GetSynchEvent(). This way we do not record the stack trace
1329 // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1330 // it can't always be the first lock acquired by a thread.
1331 return mu_id;
1332 }
1333
1334 // We prefer to keep stack traces that show a thread holding and acquiring
1335 // as many locks as possible. This increases the chances that a given edge
1336 // in the acquires-before graph will be represented in the stack traces
1337 // recorded for the locks.
1338 deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1339
1340 // For each other mutex already held by this thread:
1341 for (int i = 0; i != all_locks->n; i++) {
1342 const GraphId other_node_id = all_locks->locks[i].id;
1343 const Mutex *other =
1344 static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
1345 if (other == nullptr) {
1346 // Ignore stale lock
1347 continue;
1348 }
1349
1350 // Add the acquired-before edge to the graph.
1351 if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1352 ScopedDeadlockReportBuffers scoped_buffers;
1353 DeadlockReportBuffers *b = scoped_buffers.b;
1354 static int number_of_reported_deadlocks = 0;
1355 number_of_reported_deadlocks++;
1356 // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1357 bool symbolize = number_of_reported_deadlocks <= 2;
1358 ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1359 CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1360 int len = 0;
1361 for (int j = 0; j != all_locks->n; j++) {
1362 void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1363 if (pr != nullptr) {
1364 snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
1365 len += static_cast<int>(strlen(&b->buf[len]));
1366 }
1367 }
1368 ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s",
1369 static_cast<void *>(mu), b->buf);
1370 ABSL_RAW_LOG(ERROR, "Cycle: ");
1371 int path_len = deadlock_graph->FindPath(
1372 mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
1373 for (int j = 0; j != path_len; j++) {
1374 GraphId id = b->path[j];
1375 Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
1376 if (path_mu == nullptr) continue;
1377 void** stack;
1378 int depth = deadlock_graph->GetStackTrace(id, &stack);
1379 snprintf(b->buf, sizeof(b->buf),
1380 "mutex@%p stack: ", static_cast<void *>(path_mu));
1381 StackString(stack, depth, b->buf + strlen(b->buf),
1382 static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1383 symbolize);
1384 ABSL_RAW_LOG(ERROR, "%s", b->buf);
1385 }
1386 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1387 OnDeadlockCycle::kAbort) {
1388 deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
1389 ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1390 return mu_id;
1391 }
1392 break; // report at most one potential deadlock per acquisition
1393 }
1394 }
1395
1396 return mu_id;
1397 }
1398
1399 // Invoke DeadlockCheck() iff we're in debug mode and
1400 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1401 static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
1402 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1403 OnDeadlockCycle::kIgnore) {
1404 return DeadlockCheck(mu);
1405 } else {
1406 return InvalidGraphId();
1407 }
1408 }
1409
ForgetDeadlockInfo()1410 void Mutex::ForgetDeadlockInfo() {
1411 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1412 OnDeadlockCycle::kIgnore) {
1413 deadlock_graph_mu.Lock();
1414 if (deadlock_graph != nullptr) {
1415 deadlock_graph->RemoveNode(this);
1416 }
1417 deadlock_graph_mu.Unlock();
1418 }
1419 }
1420
AssertNotHeld() const1421 void Mutex::AssertNotHeld() const {
1422 // We have the data to allow this check only if in debug mode and deadlock
1423 // detection is enabled.
1424 if (kDebugMode &&
1425 (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1426 synch_deadlock_detection.load(std::memory_order_acquire) !=
1427 OnDeadlockCycle::kIgnore) {
1428 GraphId id = GetGraphId(const_cast<Mutex *>(this));
1429 SynchLocksHeld *locks = Synch_GetAllLocks();
1430 for (int i = 0; i != locks->n; i++) {
1431 if (locks->locks[i].id == id) {
1432 SynchEvent *mu_events = GetSynchEvent(this);
1433 ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1434 static_cast<const void *>(this),
1435 (mu_events == nullptr ? "" : mu_events->name));
1436 }
1437 }
1438 }
1439 }
1440
1441 // Attempt to acquire *mu, and return whether successful. The implementation
1442 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1443 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1444 int c = GetMutexGlobals().spinloop_iterations;
1445 do { // do/while somewhat faster on AMD
1446 intptr_t v = mu->load(std::memory_order_relaxed);
1447 if ((v & (kMuReader|kMuEvent)) != 0) {
1448 return false; // a reader or tracing -> give up
1449 } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
1450 mu->compare_exchange_strong(v, kMuWriter | v,
1451 std::memory_order_acquire,
1452 std::memory_order_relaxed)) {
1453 return true;
1454 }
1455 } while (--c > 0);
1456 return false;
1457 }
1458
Lock()1459 ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
1460 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1461 GraphId id = DebugOnlyDeadlockCheck(this);
1462 intptr_t v = mu_.load(std::memory_order_relaxed);
1463 // try fast acquire, then spin loop
1464 if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
1465 !mu_.compare_exchange_strong(v, kMuWriter | v,
1466 std::memory_order_acquire,
1467 std::memory_order_relaxed)) {
1468 // try spin acquire, then slow loop
1469 if (!TryAcquireWithSpinning(&this->mu_)) {
1470 this->LockSlow(kExclusive, nullptr, 0);
1471 }
1472 }
1473 DebugOnlyLockEnter(this, id);
1474 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1475 }
1476
ReaderLock()1477 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
1478 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1479 GraphId id = DebugOnlyDeadlockCheck(this);
1480 intptr_t v = mu_.load(std::memory_order_relaxed);
1481 // try fast acquire, then slow loop
1482 if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
1483 !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1484 std::memory_order_acquire,
1485 std::memory_order_relaxed)) {
1486 this->LockSlow(kShared, nullptr, 0);
1487 }
1488 DebugOnlyLockEnter(this, id);
1489 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1490 }
1491
LockWhen(const Condition & cond)1492 void Mutex::LockWhen(const Condition &cond) {
1493 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1494 GraphId id = DebugOnlyDeadlockCheck(this);
1495 this->LockSlow(kExclusive, &cond, 0);
1496 DebugOnlyLockEnter(this, id);
1497 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1498 }
1499
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1500 bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
1501 return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1502 }
1503
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)1504 bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
1505 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1506 GraphId id = DebugOnlyDeadlockCheck(this);
1507 bool res = LockSlowWithDeadline(kExclusive, &cond,
1508 KernelTimeout(deadline), 0);
1509 DebugOnlyLockEnter(this, id);
1510 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1511 return res;
1512 }
1513
ReaderLockWhen(const Condition & cond)1514 void Mutex::ReaderLockWhen(const Condition &cond) {
1515 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1516 GraphId id = DebugOnlyDeadlockCheck(this);
1517 this->LockSlow(kShared, &cond, 0);
1518 DebugOnlyLockEnter(this, id);
1519 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1520 }
1521
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1522 bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
1523 absl::Duration timeout) {
1524 return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1525 }
1526
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)1527 bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
1528 absl::Time deadline) {
1529 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1530 GraphId id = DebugOnlyDeadlockCheck(this);
1531 bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
1532 DebugOnlyLockEnter(this, id);
1533 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1534 return res;
1535 }
1536
Await(const Condition & cond)1537 void Mutex::Await(const Condition &cond) {
1538 if (cond.Eval()) { // condition already true; nothing to do
1539 if (kDebugMode) {
1540 this->AssertReaderHeld();
1541 }
1542 } else { // normal case
1543 ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
1544 "condition untrue on return from Await");
1545 }
1546 }
1547
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)1548 bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
1549 return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
1550 }
1551
AwaitWithDeadline(const Condition & cond,absl::Time deadline)1552 bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
1553 if (cond.Eval()) { // condition already true; nothing to do
1554 if (kDebugMode) {
1555 this->AssertReaderHeld();
1556 }
1557 return true;
1558 }
1559
1560 KernelTimeout t{deadline};
1561 bool res = this->AwaitCommon(cond, t);
1562 ABSL_RAW_CHECK(res || t.has_timeout(),
1563 "condition untrue on return from Await");
1564 return res;
1565 }
1566
AwaitCommon(const Condition & cond,KernelTimeout t)1567 bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
1568 this->AssertReaderHeld();
1569 MuHow how =
1570 (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1571 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1572 SynchWaitParams waitp(
1573 how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1574 nullptr /*no cv_word*/);
1575 int flags = kMuHasBlocked;
1576 if (!Condition::GuaranteedEqual(&cond, nullptr)) {
1577 flags |= kMuIsCond;
1578 }
1579 this->UnlockSlow(&waitp);
1580 this->Block(waitp.thread);
1581 ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1582 ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1583 this->LockSlowLoop(&waitp, flags);
1584 bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
1585 EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1586 ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1587 return res;
1588 }
1589
TryLock()1590 ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
1591 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1592 intptr_t v = mu_.load(std::memory_order_relaxed);
1593 if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
1594 mu_.compare_exchange_strong(v, kMuWriter | v,
1595 std::memory_order_acquire,
1596 std::memory_order_relaxed)) {
1597 DebugOnlyLockEnter(this);
1598 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1599 return true;
1600 }
1601 if ((v & kMuEvent) != 0) { // we're recording events
1602 if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
1603 mu_.compare_exchange_strong(
1604 v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1605 std::memory_order_acquire, std::memory_order_relaxed)) {
1606 DebugOnlyLockEnter(this);
1607 PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1608 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1609 return true;
1610 } else {
1611 PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1612 }
1613 }
1614 ABSL_TSAN_MUTEX_POST_LOCK(
1615 this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1616 return false;
1617 }
1618
ReaderTryLock()1619 ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
1620 ABSL_TSAN_MUTEX_PRE_LOCK(this,
1621 __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1622 intptr_t v = mu_.load(std::memory_order_relaxed);
1623 // The while-loops (here and below) iterate only if the mutex word keeps
1624 // changing (typically because the reader count changes) under the CAS. We
1625 // limit the number of attempts to avoid having to think about livelock.
1626 int loop_limit = 5;
1627 while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
1628 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1629 std::memory_order_acquire,
1630 std::memory_order_relaxed)) {
1631 DebugOnlyLockEnter(this);
1632 ABSL_TSAN_MUTEX_POST_LOCK(
1633 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1634 return true;
1635 }
1636 loop_limit--;
1637 v = mu_.load(std::memory_order_relaxed);
1638 }
1639 if ((v & kMuEvent) != 0) { // we're recording events
1640 loop_limit = 5;
1641 while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
1642 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1643 std::memory_order_acquire,
1644 std::memory_order_relaxed)) {
1645 DebugOnlyLockEnter(this);
1646 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1647 ABSL_TSAN_MUTEX_POST_LOCK(
1648 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1649 return true;
1650 }
1651 loop_limit--;
1652 v = mu_.load(std::memory_order_relaxed);
1653 }
1654 if ((v & kMuEvent) != 0) {
1655 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1656 }
1657 }
1658 ABSL_TSAN_MUTEX_POST_LOCK(this,
1659 __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1660 __tsan_mutex_try_lock_failed,
1661 0);
1662 return false;
1663 }
1664
Unlock()1665 ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
1666 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1667 DebugOnlyLockLeave(this);
1668 intptr_t v = mu_.load(std::memory_order_relaxed);
1669
1670 if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1671 ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1672 static_cast<unsigned>(v));
1673 }
1674
1675 // should_try_cas is whether we'll try a compare-and-swap immediately.
1676 // NOTE: optimized out when kDebugMode is false.
1677 bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1678 (v & (kMuWait | kMuDesig)) != kMuWait);
1679 // But, we can use an alternate computation of it, that compilers
1680 // currently don't find on their own. When that changes, this function
1681 // can be simplified.
1682 intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1683 intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1684 // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1685 // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1686 // all possible non-zero values for x exceed all possible values for y.
1687 // Therefore, (x == 0 && y > 0) == (x < y).
1688 if (kDebugMode && should_try_cas != (x < y)) {
1689 // We would usually use PRIdPTR here, but is not correctly implemented
1690 // within the android toolchain.
1691 ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1692 static_cast<long long>(v), static_cast<long long>(x),
1693 static_cast<long long>(y));
1694 }
1695 if (x < y &&
1696 mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1697 std::memory_order_release,
1698 std::memory_order_relaxed)) {
1699 // fast writer release (writer with no waiters or with designated waker)
1700 } else {
1701 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1702 }
1703 ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1704 }
1705
1706 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1707 static bool ExactlyOneReader(intptr_t v) {
1708 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1709 assert((v & kMuHigh) != 0);
1710 // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1711 // on some architectures the following generates slightly smaller code.
1712 // It may be faster too.
1713 constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1714 return (v & kMuMultipleWaitersMask) == 0;
1715 }
1716
ReaderUnlock()1717 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
1718 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1719 DebugOnlyLockLeave(this);
1720 intptr_t v = mu_.load(std::memory_order_relaxed);
1721 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1722 if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
1723 // fast reader release (reader with no waiters)
1724 intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
1725 if (mu_.compare_exchange_strong(v, v - clear,
1726 std::memory_order_release,
1727 std::memory_order_relaxed)) {
1728 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1729 return;
1730 }
1731 }
1732 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1733 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1734 }
1735
1736 // The zap_desig_waker bitmask is used to clear the designated waker flag in
1737 // the mutex if this thread has blocked, and therefore may be the designated
1738 // waker.
1739 static const intptr_t zap_desig_waker[] = {
1740 ~static_cast<intptr_t>(0), // not blocked
1741 ~static_cast<intptr_t>(
1742 kMuDesig) // blocked; turn off the designated waker bit
1743 };
1744
1745 // The ignore_waiting_writers bitmask is used to ignore the existence
1746 // of waiting writers if a reader that has already blocked once
1747 // wakes up.
1748 static const intptr_t ignore_waiting_writers[] = {
1749 ~static_cast<intptr_t>(0), // not blocked
1750 ~static_cast<intptr_t>(
1751 kMuWrWait) // blocked; pretend there are no waiting writers
1752 };
1753
1754 // Internal version of LockWhen(). See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1755 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond,
1756 int flags) {
1757 ABSL_RAW_CHECK(
1758 this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1759 "condition untrue on return from LockSlow");
1760 }
1761
1762 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1763 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
1764 bool locking, bool trylock,
1765 bool read_lock) {
1766 // Delicate annotation dance.
1767 // We are currently inside of read/write lock/unlock operation.
1768 // All memory accesses are ignored inside of mutex operations + for unlock
1769 // operation tsan considers that we've already released the mutex.
1770 bool res = false;
1771 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1772 const int flags = read_lock ? __tsan_mutex_read_lock : 0;
1773 const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1774 #endif
1775 if (locking) {
1776 // For lock we pretend that we have finished the operation,
1777 // evaluate the predicate, then unlock the mutex and start locking it again
1778 // to match the annotation at the end of outer lock operation.
1779 // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1780 // will think the lock acquisition is recursive which will trigger
1781 // deadlock detector.
1782 ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1783 res = cond->Eval();
1784 // There is no "try" version of Unlock, so use flags instead of tryflags.
1785 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1786 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1787 ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1788 } else {
1789 // Similarly, for unlock we pretend that we have unlocked the mutex,
1790 // lock the mutex, evaluate the predicate, and start unlocking it again
1791 // to match the annotation at the end of outer unlock operation.
1792 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1793 ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1794 ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1795 res = cond->Eval();
1796 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1797 }
1798 // Prevent unused param warnings in non-TSAN builds.
1799 static_cast<void>(mu);
1800 static_cast<void>(trylock);
1801 static_cast<void>(read_lock);
1802 return res;
1803 }
1804
1805 // Compute cond->Eval() hiding it from race detectors.
1806 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1807 // that was just added by a concurrent Lock operation; Lock adds the predicate
1808 // to the internal Mutex list without actually acquiring the Mutex
1809 // (it only acquires the internal spinlock, which is rightfully invisible for
1810 // tsan). As the result there is no tsan-visible synchronization between the
1811 // addition and this thread. So if we would enable race detection here,
1812 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1813 static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
1814 // Memory accesses are already ignored inside of lock/unlock operations,
1815 // but synchronization operations are also ignored. When we evaluate the
1816 // predicate we must ignore only memory accesses but not synchronization,
1817 // because missed synchronization can lead to false reports later.
1818 // So we "divert" (which un-ignores both memory accesses and synchronization)
1819 // and then separately turn on ignores of memory accesses.
1820 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1821 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1822 bool res = cond->Eval();
1823 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1824 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1825 static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
1826 return res;
1827 }
1828
1829 // Internal equivalent of *LockWhenWithDeadline(), where
1830 // "t" represents the absolute timeout; !t.has_timeout() means "forever".
1831 // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1832 // In flags, bits are ored together:
1833 // - kMuHasBlocked indicates that the client has already blocked on the call so
1834 // the designated waker bit must be cleared and waiting writers should not
1835 // obstruct this call
1836 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1837 // Await, LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1838 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
1839 KernelTimeout t, int flags) {
1840 intptr_t v = mu_.load(std::memory_order_relaxed);
1841 bool unlock = false;
1842 if ((v & how->fast_need_zero) == 0 && // try fast acquire
1843 mu_.compare_exchange_strong(
1844 v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
1845 how->fast_add,
1846 std::memory_order_acquire, std::memory_order_relaxed)) {
1847 if (cond == nullptr ||
1848 EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1849 return true;
1850 }
1851 unlock = true;
1852 }
1853 SynchWaitParams waitp(
1854 how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1855 nullptr /*no cv_word*/);
1856 if (!Condition::GuaranteedEqual(cond, nullptr)) {
1857 flags |= kMuIsCond;
1858 }
1859 if (unlock) {
1860 this->UnlockSlow(&waitp);
1861 this->Block(waitp.thread);
1862 flags |= kMuHasBlocked;
1863 }
1864 this->LockSlowLoop(&waitp, flags);
1865 return waitp.cond != nullptr || // => cond known true from LockSlowLoop
1866 cond == nullptr ||
1867 EvalConditionAnnotated(cond, this, true, false, how == kShared);
1868 }
1869
1870 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1871 // the printf-style argument list. The format string must be a literal.
1872 // Arguments after the first are not evaluated unless the condition is true.
1873 #define RAW_CHECK_FMT(cond, ...) \
1874 do { \
1875 if (ABSL_PREDICT_FALSE(!(cond))) { \
1876 ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1877 } \
1878 } while (0)
1879
CheckForMutexCorruption(intptr_t v,const char * label)1880 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1881 // Test for either of two situations that should not occur in v:
1882 // kMuWriter and kMuReader
1883 // kMuWrWait and !kMuWait
1884 const uintptr_t w = v ^ kMuWait;
1885 // By flipping that bit, we can now test for:
1886 // kMuWriter and kMuReader in w
1887 // kMuWrWait and kMuWait in w
1888 // We've chosen these two pairs of values to be so that they will overlap,
1889 // respectively, when the word is left shifted by three. This allows us to
1890 // save a branch in the common (correct) case of them not being coincident.
1891 static_assert(kMuReader << 3 == kMuWriter, "must match");
1892 static_assert(kMuWait << 3 == kMuWrWait, "must match");
1893 if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1894 RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1895 "%s: Mutex corrupt: both reader and writer lock held: %p",
1896 label, reinterpret_cast<void *>(v));
1897 RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1898 "%s: Mutex corrupt: waiting writer with no waiters: %p",
1899 label, reinterpret_cast<void *>(v));
1900 assert(false);
1901 }
1902
LockSlowLoop(SynchWaitParams * waitp,int flags)1903 void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
1904 SchedulingGuard::ScopedDisable disable_rescheduling;
1905 int c = 0;
1906 intptr_t v = mu_.load(std::memory_order_relaxed);
1907 if ((v & kMuEvent) != 0) {
1908 PostSynchEvent(this,
1909 waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
1910 }
1911 ABSL_RAW_CHECK(
1912 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1913 "detected illegal recursion into Mutex code");
1914 for (;;) {
1915 v = mu_.load(std::memory_order_relaxed);
1916 CheckForMutexCorruption(v, "Lock");
1917 if ((v & waitp->how->slow_need_zero) == 0) {
1918 if (mu_.compare_exchange_strong(
1919 v, (waitp->how->fast_or |
1920 (v & zap_desig_waker[flags & kMuHasBlocked])) +
1921 waitp->how->fast_add,
1922 std::memory_order_acquire, std::memory_order_relaxed)) {
1923 if (waitp->cond == nullptr ||
1924 EvalConditionAnnotated(waitp->cond, this, true, false,
1925 waitp->how == kShared)) {
1926 break; // we timed out, or condition true, so return
1927 }
1928 this->UnlockSlow(waitp); // got lock but condition false
1929 this->Block(waitp->thread);
1930 flags |= kMuHasBlocked;
1931 c = 0;
1932 }
1933 } else { // need to access waiter list
1934 bool dowait = false;
1935 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
1936 // This thread tries to become the one and only waiter.
1937 PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
1938 intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
1939 kMuWait;
1940 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
1941 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1942 nv |= kMuWrWait;
1943 }
1944 if (mu_.compare_exchange_strong(
1945 v, reinterpret_cast<intptr_t>(new_h) | nv,
1946 std::memory_order_release, std::memory_order_relaxed)) {
1947 dowait = true;
1948 } else { // attempted Enqueue() failed
1949 // zero out the waitp field set by Enqueue()
1950 waitp->thread->waitp = nullptr;
1951 }
1952 } else if ((v & waitp->how->slow_inc_need_zero &
1953 ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
1954 // This is a reader that needs to increment the reader count,
1955 // but the count is currently held in the last waiter.
1956 if (mu_.compare_exchange_strong(
1957 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1958 kMuReader,
1959 std::memory_order_acquire, std::memory_order_relaxed)) {
1960 PerThreadSynch *h = GetPerThreadSynch(v);
1961 h->readers += kMuOne; // inc reader count in waiter
1962 do { // release spinlock
1963 v = mu_.load(std::memory_order_relaxed);
1964 } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
1965 std::memory_order_release,
1966 std::memory_order_relaxed));
1967 if (waitp->cond == nullptr ||
1968 EvalConditionAnnotated(waitp->cond, this, true, false,
1969 waitp->how == kShared)) {
1970 break; // we timed out, or condition true, so return
1971 }
1972 this->UnlockSlow(waitp); // got lock but condition false
1973 this->Block(waitp->thread);
1974 flags |= kMuHasBlocked;
1975 c = 0;
1976 }
1977 } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
1978 mu_.compare_exchange_strong(
1979 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1980 kMuWait,
1981 std::memory_order_acquire, std::memory_order_relaxed)) {
1982 PerThreadSynch *h = GetPerThreadSynch(v);
1983 PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
1984 intptr_t wr_wait = 0;
1985 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
1986 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1987 wr_wait = kMuWrWait; // give priority to a waiting writer
1988 }
1989 do { // release spinlock
1990 v = mu_.load(std::memory_order_relaxed);
1991 } while (!mu_.compare_exchange_weak(
1992 v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
1993 reinterpret_cast<intptr_t>(new_h),
1994 std::memory_order_release, std::memory_order_relaxed));
1995 dowait = true;
1996 }
1997 if (dowait) {
1998 this->Block(waitp->thread); // wait until removed from list or timeout
1999 flags |= kMuHasBlocked;
2000 c = 0;
2001 }
2002 }
2003 ABSL_RAW_CHECK(
2004 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2005 "detected illegal recursion into Mutex code");
2006 // delay, then try again
2007 c = synchronization_internal::MutexDelay(c, GENTLE);
2008 }
2009 ABSL_RAW_CHECK(
2010 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2011 "detected illegal recursion into Mutex code");
2012 if ((v & kMuEvent) != 0) {
2013 PostSynchEvent(this,
2014 waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
2015 SYNCH_EV_READERLOCK_RETURNING);
2016 }
2017 }
2018
2019 // Unlock this mutex, which is held by the current thread.
2020 // If waitp is non-zero, it must be the wait parameters for the current thread
2021 // which holds the lock but is not runnable because its condition is false
2022 // or it is in the process of blocking on a condition variable; it must requeue
2023 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2024 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
2025 SchedulingGuard::ScopedDisable disable_rescheduling;
2026 intptr_t v = mu_.load(std::memory_order_relaxed);
2027 this->AssertReaderHeld();
2028 CheckForMutexCorruption(v, "Unlock");
2029 if ((v & kMuEvent) != 0) {
2030 PostSynchEvent(this,
2031 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
2032 }
2033 int c = 0;
2034 // the waiter under consideration to wake, or zero
2035 PerThreadSynch *w = nullptr;
2036 // the predecessor to w or zero
2037 PerThreadSynch *pw = nullptr;
2038 // head of the list searched previously, or zero
2039 PerThreadSynch *old_h = nullptr;
2040 // a condition that's known to be false.
2041 const Condition *known_false = nullptr;
2042 PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
2043 intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
2044 // later writer could have acquired the lock
2045 // (starvation avoidance)
2046 ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2047 waitp->thread->suppress_fatal_errors,
2048 "detected illegal recursion into Mutex code");
2049 // This loop finds threads wake_list to wakeup if any, and removes them from
2050 // the list of waiters. In addition, it places waitp.thread on the queue of
2051 // waiters if waitp is non-zero.
2052 for (;;) {
2053 v = mu_.load(std::memory_order_relaxed);
2054 if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2055 waitp == nullptr) {
2056 // fast writer release (writer with no waiters or with designated waker)
2057 if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2058 std::memory_order_release,
2059 std::memory_order_relaxed)) {
2060 return;
2061 }
2062 } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2063 // fast reader release (reader with no waiters)
2064 intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2065 if (mu_.compare_exchange_strong(v, v - clear,
2066 std::memory_order_release,
2067 std::memory_order_relaxed)) {
2068 return;
2069 }
2070 } else if ((v & kMuSpin) == 0 && // attempt to get spinlock
2071 mu_.compare_exchange_strong(v, v | kMuSpin,
2072 std::memory_order_acquire,
2073 std::memory_order_relaxed)) {
2074 if ((v & kMuWait) == 0) { // no one to wake
2075 intptr_t nv;
2076 bool do_enqueue = true; // always Enqueue() the first time
2077 ABSL_RAW_CHECK(waitp != nullptr,
2078 "UnlockSlow is confused"); // about to sleep
2079 do { // must loop to release spinlock as reader count may change
2080 v = mu_.load(std::memory_order_relaxed);
2081 // decrement reader count if there are readers
2082 intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
2083 PerThreadSynch *new_h = nullptr;
2084 if (do_enqueue) {
2085 // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2086 // we must not retry here. The initial attempt will always have
2087 // succeeded, further attempts would enqueue us against *this due to
2088 // Fer() handling.
2089 do_enqueue = (waitp->cv_word == nullptr);
2090 new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2091 }
2092 intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
2093 if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
2094 clear = kMuWrWait | kMuReader; // clear read bit
2095 }
2096 nv = (v & kMuLow & ~clear & ~kMuSpin);
2097 if (new_h != nullptr) {
2098 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2099 } else { // new_h could be nullptr if we queued ourselves on a
2100 // CondVar
2101 // In that case, we must place the reader count back in the mutex
2102 // word, as Enqueue() did not store it in the new waiter.
2103 nv |= new_readers & kMuHigh;
2104 }
2105 // release spinlock & our lock; retry if reader-count changed
2106 // (writer count cannot change since we hold lock)
2107 } while (!mu_.compare_exchange_weak(v, nv,
2108 std::memory_order_release,
2109 std::memory_order_relaxed));
2110 break;
2111 }
2112
2113 // There are waiters.
2114 // Set h to the head of the circular waiter list.
2115 PerThreadSynch *h = GetPerThreadSynch(v);
2116 if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2117 // a reader but not the last
2118 h->readers -= kMuOne; // release our lock
2119 intptr_t nv = v; // normally just release spinlock
2120 if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
2121 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2122 ABSL_RAW_CHECK(new_h != nullptr,
2123 "waiters disappeared during Enqueue()!");
2124 nv &= kMuLow;
2125 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2126 }
2127 mu_.store(nv, std::memory_order_release); // release spinlock
2128 // can release with a store because there were waiters
2129 break;
2130 }
2131
2132 // Either we didn't search before, or we marked the queue
2133 // as "maybe_unlocking" and no one else should have changed it.
2134 ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2135 "Mutex queue changed beneath us");
2136
2137 // The lock is becoming free, and there's a waiter
2138 if (old_h != nullptr &&
2139 !old_h->may_skip) { // we used old_h as a terminator
2140 old_h->may_skip = true; // allow old_h to skip once more
2141 ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2142 if (h != old_h && MuSameCondition(old_h, old_h->next)) {
2143 old_h->skip = old_h->next; // old_h not head & can skip to successor
2144 }
2145 }
2146 if (h->next->waitp->how == kExclusive &&
2147 Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
2148 // easy case: writer with no condition; no need to search
2149 pw = h; // wake w, the successor of h (=pw)
2150 w = h->next;
2151 w->wake = true;
2152 // We are waking up a writer. This writer may be racing against
2153 // an already awake reader for the lock. We want the
2154 // writer to usually win this race,
2155 // because if it doesn't, we can potentially keep taking a reader
2156 // perpetually and writers will starve. Worse than
2157 // that, this can also starve other readers if kMuWrWait gets set
2158 // later.
2159 wr_wait = kMuWrWait;
2160 } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2161 // we found a waiter w to wake on a previous iteration and either it's
2162 // a writer, or we've searched the entire list so we have all the
2163 // readers.
2164 if (pw == nullptr) { // if w's predecessor is unknown, it must be h
2165 pw = h;
2166 }
2167 } else {
2168 // At this point we don't know all the waiters to wake, and the first
2169 // waiter has a condition or is a reader. We avoid searching over
2170 // waiters we've searched on previous iterations by starting at
2171 // old_h if it's set. If old_h==h, there's no one to wakeup at all.
2172 if (old_h == h) { // we've searched before, and nothing's new
2173 // so there's no one to wake.
2174 intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
2175 h->readers = 0;
2176 h->maybe_unlocking = false; // finished unlocking
2177 if (waitp != nullptr) { // we must queue ourselves and sleep
2178 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2179 nv &= kMuLow;
2180 if (new_h != nullptr) {
2181 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2182 } // else new_h could be nullptr if we queued ourselves on a
2183 // CondVar
2184 }
2185 // release spinlock & lock
2186 // can release with a store because there were waiters
2187 mu_.store(nv, std::memory_order_release);
2188 break;
2189 }
2190
2191 // set up to walk the list
2192 PerThreadSynch *w_walk; // current waiter during list walk
2193 PerThreadSynch *pw_walk; // previous waiter during list walk
2194 if (old_h != nullptr) { // we've searched up to old_h before
2195 pw_walk = old_h;
2196 w_walk = old_h->next;
2197 } else { // no prior search, start at beginning
2198 pw_walk =
2199 nullptr; // h->next's predecessor may change; don't record it
2200 w_walk = h->next;
2201 }
2202
2203 h->may_skip = false; // ensure we never skip past h in future searches
2204 // even if other waiters are queued after it.
2205 ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2206
2207 h->maybe_unlocking = true; // we're about to scan the waiter list
2208 // without the spinlock held.
2209 // Enqueue must be conservative about
2210 // priority queuing.
2211
2212 // We must release the spinlock to evaluate the conditions.
2213 mu_.store(v, std::memory_order_release); // release just spinlock
2214 // can release with a store because there were waiters
2215
2216 // h is the last waiter queued, and w_walk the first unsearched waiter.
2217 // Without the spinlock, the locations mu_ and h->next may now change
2218 // underneath us, but since we hold the lock itself, the only legal
2219 // change is to add waiters between h and w_walk. Therefore, it's safe
2220 // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2221 // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2222
2223 old_h = h; // remember we searched to here
2224
2225 // Walk the path upto and including h looking for waiters we can wake.
2226 while (pw_walk != h) {
2227 w_walk->wake = false;
2228 if (w_walk->waitp->cond ==
2229 nullptr || // no condition => vacuously true OR
2230 (w_walk->waitp->cond != known_false &&
2231 // this thread's condition is not known false, AND
2232 // is in fact true
2233 EvalConditionIgnored(this, w_walk->waitp->cond))) {
2234 if (w == nullptr) {
2235 w_walk->wake = true; // can wake this waiter
2236 w = w_walk;
2237 pw = pw_walk;
2238 if (w_walk->waitp->how == kExclusive) {
2239 wr_wait = kMuWrWait;
2240 break; // bail if waking this writer
2241 }
2242 } else if (w_walk->waitp->how == kShared) { // wake if a reader
2243 w_walk->wake = true;
2244 } else { // writer with true condition
2245 wr_wait = kMuWrWait;
2246 }
2247 } else { // can't wake; condition false
2248 known_false = w_walk->waitp->cond; // remember last false condition
2249 }
2250 if (w_walk->wake) { // we're waking reader w_walk
2251 pw_walk = w_walk; // don't skip similar waiters
2252 } else { // not waking; skip as much as possible
2253 pw_walk = Skip(w_walk);
2254 }
2255 // If pw_walk == h, then load of pw_walk->next can race with
2256 // concurrent write in Enqueue(). However, at the same time
2257 // we do not need to do the load, because we will bail out
2258 // from the loop anyway.
2259 if (pw_walk != h) {
2260 w_walk = pw_walk->next;
2261 }
2262 }
2263
2264 continue; // restart for(;;)-loop to wakeup w or to find more waiters
2265 }
2266 ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2267 // The first (and perhaps only) waiter we've chosen to wake is w, whose
2268 // predecessor is pw. If w is a reader, we must wake all the other
2269 // waiters with wake==true as well. We may also need to queue
2270 // ourselves if waitp != null. The spinlock and the lock are still
2271 // held.
2272
2273 // This traverses the list in [ pw->next, h ], where h is the head,
2274 // removing all elements with wake==true and placing them in the
2275 // singly-linked list wake_list. Returns the new head.
2276 h = DequeueAllWakeable(h, pw, &wake_list);
2277
2278 intptr_t nv = (v & kMuEvent) | kMuDesig;
2279 // assume no waiters left,
2280 // set kMuDesig for INV1a
2281
2282 if (waitp != nullptr) { // we must queue ourselves and sleep
2283 h = Enqueue(h, waitp, v, kMuIsCond);
2284 // h is new last waiter; could be null if we queued ourselves on a
2285 // CondVar
2286 }
2287
2288 ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2289 "unexpected empty wake list");
2290
2291 if (h != nullptr) { // there are waiters left
2292 h->readers = 0;
2293 h->maybe_unlocking = false; // finished unlocking
2294 nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2295 }
2296
2297 // release both spinlock & lock
2298 // can release with a store because there were waiters
2299 mu_.store(nv, std::memory_order_release);
2300 break; // out of for(;;)-loop
2301 }
2302 // aggressive here; no one can proceed till we do
2303 c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2304 } // end of for(;;)-loop
2305
2306 if (wake_list != kPerThreadSynchNull) {
2307 int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
2308 bool cond_waiter = wake_list->cond_waiter;
2309 do {
2310 wake_list = Wakeup(wake_list); // wake waiters
2311 } while (wake_list != kPerThreadSynchNull);
2312 if (!cond_waiter) {
2313 // Sample lock contention events only if the (first) waiter was trying to
2314 // acquire the lock, not waiting on a condition variable or Condition.
2315 int64_t wait_cycles =
2316 base_internal::CycleClock::Now() - enqueue_timestamp;
2317 mutex_tracer("slow release", this, wait_cycles);
2318 ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2319 submit_profile_data(enqueue_timestamp);
2320 ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2321 }
2322 }
2323 }
2324
2325 // Used by CondVar implementation to reacquire mutex after waking from
2326 // condition variable. This routine is used instead of Lock() because the
2327 // waiting thread may have been moved from the condition variable queue to the
2328 // mutex queue without a wakeup, by Trans(). In that case, when the thread is
2329 // finally woken, the woken thread will believe it has been woken from the
2330 // condition variable (i.e. its PC will be in when in the CondVar code), when
2331 // in fact it has just been woken from the mutex. Thus, it must enter the slow
2332 // path of the mutex in the same state as if it had just woken from the mutex.
2333 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2334 void Mutex::Trans(MuHow how) {
2335 this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2336 }
2337
2338 // Used by CondVar implementation to effectively wake thread w from the
2339 // condition variable. If this mutex is free, we simply wake the thread.
2340 // It will later acquire the mutex with high probability. Otherwise, we
2341 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2342 void Mutex::Fer(PerThreadSynch *w) {
2343 SchedulingGuard::ScopedDisable disable_rescheduling;
2344 int c = 0;
2345 ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2346 "Mutex::Fer while waiting on Condition");
2347 ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
2348 "Mutex::Fer while in timed wait");
2349 ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2350 "Mutex::Fer with pending CondVar queueing");
2351 for (;;) {
2352 intptr_t v = mu_.load(std::memory_order_relaxed);
2353 // Note: must not queue if the mutex is unlocked (nobody will wake it).
2354 // For example, we can have only kMuWait (conditional) or maybe
2355 // kMuWait|kMuWrWait.
2356 // conflicting != 0 implies that the waking thread cannot currently take
2357 // the mutex, which in turn implies that someone else has it and can wake
2358 // us if we queue.
2359 const intptr_t conflicting =
2360 kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2361 if ((v & conflicting) == 0) {
2362 w->next = nullptr;
2363 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2364 IncrementSynchSem(this, w);
2365 return;
2366 } else {
2367 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
2368 // This thread tries to become the one and only waiter.
2369 PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
2370 ABSL_RAW_CHECK(new_h != nullptr,
2371 "Enqueue failed"); // we must queue ourselves
2372 if (mu_.compare_exchange_strong(
2373 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2374 std::memory_order_release, std::memory_order_relaxed)) {
2375 return;
2376 }
2377 } else if ((v & kMuSpin) == 0 &&
2378 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2379 PerThreadSynch *h = GetPerThreadSynch(v);
2380 PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
2381 ABSL_RAW_CHECK(new_h != nullptr,
2382 "Enqueue failed"); // we must queue ourselves
2383 do {
2384 v = mu_.load(std::memory_order_relaxed);
2385 } while (!mu_.compare_exchange_weak(
2386 v,
2387 (v & kMuLow & ~kMuSpin) | kMuWait |
2388 reinterpret_cast<intptr_t>(new_h),
2389 std::memory_order_release, std::memory_order_relaxed));
2390 return;
2391 }
2392 }
2393 c = synchronization_internal::MutexDelay(c, GENTLE);
2394 }
2395 }
2396
AssertHeld() const2397 void Mutex::AssertHeld() const {
2398 if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2399 SynchEvent *e = GetSynchEvent(this);
2400 ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2401 static_cast<const void *>(this),
2402 (e == nullptr ? "" : e->name));
2403 }
2404 }
2405
AssertReaderHeld() const2406 void Mutex::AssertReaderHeld() const {
2407 if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2408 SynchEvent *e = GetSynchEvent(this);
2409 ABSL_RAW_LOG(
2410 FATAL, "thread should hold at least a read lock on Mutex %p %s",
2411 static_cast<const void *>(this), (e == nullptr ? "" : e->name));
2412 }
2413 }
2414
2415 // -------------------------------- condition variables
2416 static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
2417 static const intptr_t kCvEvent = 0x0002L; // record events
2418
2419 static const intptr_t kCvLow = 0x0003L; // low order bits of CV
2420
2421 // Hack to make constant values available to gdb pretty printer
2422 enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
2423
2424 static_assert(PerThreadSynch::kAlignment > kCvLow,
2425 "PerThreadSynch::kAlignment must be greater than kCvLow");
2426
EnableDebugLog(const char * name)2427 void CondVar::EnableDebugLog(const char *name) {
2428 SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2429 e->log = true;
2430 UnrefSynchEvent(e);
2431 }
2432
~CondVar()2433 CondVar::~CondVar() {
2434 if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
2435 ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
2436 }
2437 }
2438
2439
2440 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2441 void CondVar::Remove(PerThreadSynch *s) {
2442 SchedulingGuard::ScopedDisable disable_rescheduling;
2443 intptr_t v;
2444 int c = 0;
2445 for (v = cv_.load(std::memory_order_relaxed);;
2446 v = cv_.load(std::memory_order_relaxed)) {
2447 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2448 cv_.compare_exchange_strong(v, v | kCvSpin,
2449 std::memory_order_acquire,
2450 std::memory_order_relaxed)) {
2451 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2452 if (h != nullptr) {
2453 PerThreadSynch *w = h;
2454 while (w->next != s && w->next != h) { // search for thread
2455 w = w->next;
2456 }
2457 if (w->next == s) { // found thread; remove it
2458 w->next = s->next;
2459 if (h == s) {
2460 h = (w == s) ? nullptr : w;
2461 }
2462 s->next = nullptr;
2463 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2464 }
2465 }
2466 // release spinlock
2467 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2468 std::memory_order_release);
2469 return;
2470 } else {
2471 // try again after a delay
2472 c = synchronization_internal::MutexDelay(c, GENTLE);
2473 }
2474 }
2475 }
2476
2477 // Queue thread waitp->thread on condition variable word cv_word using
2478 // wait parameters waitp.
2479 // We split this into a separate routine, rather than simply doing it as part
2480 // of WaitCommon(). If we were to queue ourselves on the condition variable
2481 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2482 // the logging code, or via a Condition function) and might potentially attempt
2483 // to block this thread. That would be a problem if the thread were already on
2484 // a the condition variable waiter queue. Thus, we use the waitp->cv_word
2485 // to tell the unlock code to call CondVarEnqueue() to queue the thread on the
2486 // condition variable queue just before the mutex is to be unlocked, and (most
2487 // importantly) after any call to an external routine that might re-enter the
2488 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2489 static void CondVarEnqueue(SynchWaitParams *waitp) {
2490 // This thread might be transferred to the Mutex queue by Fer() when
2491 // we are woken. To make sure that is what happens, Enqueue() doesn't
2492 // call CondVarEnqueue() again but instead uses its normal code. We
2493 // must do this before we queue ourselves so that cv_word will be null
2494 // when seen by the dequeuer, who may wish immediately to requeue
2495 // this thread on another queue.
2496 std::atomic<intptr_t> *cv_word = waitp->cv_word;
2497 waitp->cv_word = nullptr;
2498
2499 intptr_t v = cv_word->load(std::memory_order_relaxed);
2500 int c = 0;
2501 while ((v & kCvSpin) != 0 || // acquire spinlock
2502 !cv_word->compare_exchange_weak(v, v | kCvSpin,
2503 std::memory_order_acquire,
2504 std::memory_order_relaxed)) {
2505 c = synchronization_internal::MutexDelay(c, GENTLE);
2506 v = cv_word->load(std::memory_order_relaxed);
2507 }
2508 ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2509 waitp->thread->waitp = waitp; // prepare ourselves for waiting
2510 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2511 if (h == nullptr) { // add this thread to waiter list
2512 waitp->thread->next = waitp->thread;
2513 } else {
2514 waitp->thread->next = h->next;
2515 h->next = waitp->thread;
2516 }
2517 waitp->thread->state.store(PerThreadSynch::kQueued,
2518 std::memory_order_relaxed);
2519 cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2520 std::memory_order_release);
2521 }
2522
WaitCommon(Mutex * mutex,KernelTimeout t)2523 bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
2524 bool rc = false; // return value; true iff we timed-out
2525
2526 intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2527 Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2528 ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2529
2530 // maybe trace this call
2531 intptr_t v = cv_.load(std::memory_order_relaxed);
2532 cond_var_tracer("Wait", this);
2533 if ((v & kCvEvent) != 0) {
2534 PostSynchEvent(this, SYNCH_EV_WAIT);
2535 }
2536
2537 // Release mu and wait on condition variable.
2538 SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2539 Synch_GetPerThreadAnnotated(mutex), &cv_);
2540 // UnlockSlow() will call CondVarEnqueue() just before releasing the
2541 // Mutex, thus queuing this thread on the condition variable. See
2542 // CondVarEnqueue() for the reasons.
2543 mutex->UnlockSlow(&waitp);
2544
2545 // wait for signal
2546 while (waitp.thread->state.load(std::memory_order_acquire) ==
2547 PerThreadSynch::kQueued) {
2548 if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2549 this->Remove(waitp.thread);
2550 rc = true;
2551 }
2552 }
2553
2554 ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2555 waitp.thread->waitp = nullptr; // cleanup
2556
2557 // maybe trace this call
2558 cond_var_tracer("Unwait", this);
2559 if ((v & kCvEvent) != 0) {
2560 PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2561 }
2562
2563 // From synchronization point of view Wait is unlock of the mutex followed
2564 // by lock of the mutex. We've annotated start of unlock in the beginning
2565 // of the function. Now, finish unlock and annotate lock of the mutex.
2566 // (Trans is effectively lock).
2567 ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2568 ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2569 mutex->Trans(mutex_how); // Reacquire mutex
2570 ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2571 return rc;
2572 }
2573
WaitWithTimeout(Mutex * mu,absl::Duration timeout)2574 bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
2575 return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
2576 }
2577
WaitWithDeadline(Mutex * mu,absl::Time deadline)2578 bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
2579 return WaitCommon(mu, KernelTimeout(deadline));
2580 }
2581
Wait(Mutex * mu)2582 void CondVar::Wait(Mutex *mu) {
2583 WaitCommon(mu, KernelTimeout::Never());
2584 }
2585
2586 // Wake thread w
2587 // If it was a timed wait, w will be waiting on w->cv
2588 // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
2589 // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
Wakeup(PerThreadSynch * w)2590 void CondVar::Wakeup(PerThreadSynch *w) {
2591 if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
2592 // The waiting thread only needs to observe "w->state == kAvailable" to be
2593 // released, we must cache "cvmu" before clearing "next".
2594 Mutex *mu = w->waitp->cvmu;
2595 w->next = nullptr;
2596 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2597 Mutex::IncrementSynchSem(mu, w);
2598 } else {
2599 w->waitp->cvmu->Fer(w);
2600 }
2601 }
2602
Signal()2603 void CondVar::Signal() {
2604 SchedulingGuard::ScopedDisable disable_rescheduling;
2605 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2606 intptr_t v;
2607 int c = 0;
2608 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2609 v = cv_.load(std::memory_order_relaxed)) {
2610 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2611 cv_.compare_exchange_strong(v, v | kCvSpin,
2612 std::memory_order_acquire,
2613 std::memory_order_relaxed)) {
2614 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2615 PerThreadSynch *w = nullptr;
2616 if (h != nullptr) { // remove first waiter
2617 w = h->next;
2618 if (w == h) {
2619 h = nullptr;
2620 } else {
2621 h->next = w->next;
2622 }
2623 }
2624 // release spinlock
2625 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2626 std::memory_order_release);
2627 if (w != nullptr) {
2628 CondVar::Wakeup(w); // wake waiter, if there was one
2629 cond_var_tracer("Signal wakeup", this);
2630 }
2631 if ((v & kCvEvent) != 0) {
2632 PostSynchEvent(this, SYNCH_EV_SIGNAL);
2633 }
2634 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2635 return;
2636 } else {
2637 c = synchronization_internal::MutexDelay(c, GENTLE);
2638 }
2639 }
2640 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2641 }
2642
SignalAll()2643 void CondVar::SignalAll () {
2644 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2645 intptr_t v;
2646 int c = 0;
2647 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2648 v = cv_.load(std::memory_order_relaxed)) {
2649 // empty the list if spinlock free
2650 // We do this by simply setting the list to empty using
2651 // compare and swap. We then have the entire list in our hands,
2652 // which cannot be changing since we grabbed it while no one
2653 // held the lock.
2654 if ((v & kCvSpin) == 0 &&
2655 cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2656 std::memory_order_relaxed)) {
2657 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2658 if (h != nullptr) {
2659 PerThreadSynch *w;
2660 PerThreadSynch *n = h->next;
2661 do { // for every thread, wake it up
2662 w = n;
2663 n = n->next;
2664 CondVar::Wakeup(w);
2665 } while (w != h);
2666 cond_var_tracer("SignalAll wakeup", this);
2667 }
2668 if ((v & kCvEvent) != 0) {
2669 PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2670 }
2671 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2672 return;
2673 } else {
2674 // try again after a delay
2675 c = synchronization_internal::MutexDelay(c, GENTLE);
2676 }
2677 }
2678 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2679 }
2680
Release()2681 void ReleasableMutexLock::Release() {
2682 ABSL_RAW_CHECK(this->mu_ != nullptr,
2683 "ReleasableMutexLock::Release may only be called once");
2684 this->mu_->Unlock();
2685 this->mu_ = nullptr;
2686 }
2687
2688 #ifdef ABSL_HAVE_THREAD_SANITIZER
2689 extern "C" void __tsan_read1(void *addr);
2690 #else
2691 #define __tsan_read1(addr) // do nothing if TSan not enabled
2692 #endif
2693
2694 // A function that just returns its argument, dereferenced
Dereference(void * arg)2695 static bool Dereference(void *arg) {
2696 // ThreadSanitizer does not instrument this file for memory accesses.
2697 // This function dereferences a user variable that can participate
2698 // in a data race, so we need to manually tell TSan about this memory access.
2699 __tsan_read1(arg);
2700 return *(static_cast<bool *>(arg));
2701 }
2702
Condition()2703 Condition::Condition() {} // null constructor, used for kTrue only
2704 const Condition Condition::kTrue;
2705
Condition(bool (* func)(void *),void * arg)2706 Condition::Condition(bool (*func)(void *), void *arg)
2707 : eval_(&CallVoidPtrFunction),
2708 function_(func),
2709 method_(nullptr),
2710 arg_(arg) {}
2711
CallVoidPtrFunction(const Condition * c)2712 bool Condition::CallVoidPtrFunction(const Condition *c) {
2713 return (*c->function_)(c->arg_);
2714 }
2715
Condition(const bool * cond)2716 Condition::Condition(const bool *cond)
2717 : eval_(CallVoidPtrFunction),
2718 function_(Dereference),
2719 method_(nullptr),
2720 // const_cast is safe since Dereference does not modify arg
2721 arg_(const_cast<bool *>(cond)) {}
2722
Eval() const2723 bool Condition::Eval() const {
2724 // eval_ == null for kTrue
2725 return (this->eval_ == nullptr) || (*this->eval_)(this);
2726 }
2727
GuaranteedEqual(const Condition * a,const Condition * b)2728 bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
2729 if (a == nullptr) {
2730 return b == nullptr || b->eval_ == nullptr;
2731 }
2732 if (b == nullptr || b->eval_ == nullptr) {
2733 return a->eval_ == nullptr;
2734 }
2735 return a->eval_ == b->eval_ && a->function_ == b->function_ &&
2736 a->arg_ == b->arg_ && a->method_ == b->method_;
2737 }
2738
2739 ABSL_NAMESPACE_END
2740 } // namespace absl
2741