1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 // * Conditional predicates intrinsic to the `Mutex` object
27 // * Shared/reader locks, in addition to standard exclusive/writer locks
28 // * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 // write access within the current scope.
34 //
35 // ReaderMutexLock
36 // - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 // access within the current scope.
38 //
39 // WriterMutexLock
40 // - Effectively an alias for `MutexLock` above, designed for use in
41 // distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 // Condition - (Preferred) Used to wait for a particular predicate that
47 // depends on state protected by the `Mutex` to become true.
48 // CondVar - A lower-level variant of `Condition` that relies on
49 // application code to explicitly signal the `CondVar` when
50 // a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61 #include <atomic>
62 #include <cstdint>
63 #include <string>
64
65 #include "absl/base/const_init.h"
66 #include "absl/base/internal/identity.h"
67 #include "absl/base/internal/low_level_alloc.h"
68 #include "absl/base/internal/thread_identity.h"
69 #include "absl/base/internal/tsan_mutex_interface.h"
70 #include "absl/base/port.h"
71 #include "absl/base/thread_annotations.h"
72 #include "absl/synchronization/internal/kernel_timeout.h"
73 #include "absl/synchronization/internal/per_thread_sem.h"
74 #include "absl/time/time.h"
75
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
78
79 class Condition;
80 struct SynchWaitParams;
81
82 // -----------------------------------------------------------------------------
83 // Mutex
84 // -----------------------------------------------------------------------------
85 //
86 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
87 // on some resource, typically a variable or data structure with associated
88 // invariants. Proper usage of mutexes prevents concurrent access by different
89 // threads to the same resource.
90 //
91 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
92 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
93 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
94 // Mutex. During the span of time between the Lock() and Unlock() operations,
95 // a mutex is said to be *held*. By design all mutexes support exclusive/write
96 // locks, as this is the most common way to use a mutex.
97 //
98 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
99 //
100 // | | Lock() | Unlock() |
101 // |----------------+------------+----------|
102 // | Free | Exclusive | invalid |
103 // | Exclusive | blocks | Free |
104 //
105 // Attempts to `Unlock()` must originate from the thread that performed the
106 // corresponding `Lock()` operation.
107 //
108 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
109 // is allowed to do anything on an invalid call, including but not limited to
110 // crashing with a useful error message, silently succeeding, or corrupting
111 // data structures. In debug mode, the implementation attempts to crash with a
112 // useful error message.
113 //
114 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
115 // is, however, approximately fair over long periods, and starvation-free for
116 // threads at the same priority.
117 //
118 // The lock/unlock primitives are now annotated with lock annotations
119 // defined in (base/thread_annotations.h). When writing multi-threaded code,
120 // you should use lock annotations whenever possible to document your lock
121 // synchronization policy. Besides acting as documentation, these annotations
122 // also help compilers or static analysis tools to identify and warn about
123 // issues that could potentially result in race conditions and deadlocks.
124 //
125 // For more information about the lock annotations, please see
126 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
127 // in the Clang documentation.
128 //
129 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
130
131 class ABSL_LOCKABLE Mutex {
132 public:
133 // Creates a `Mutex` that is not held by anyone. This constructor is
134 // typically used for Mutexes allocated on the heap or the stack.
135 //
136 // To create `Mutex` instances with static storage duration
137 // (e.g. a namespace-scoped or global variable), see
138 // `Mutex::Mutex(absl::kConstInit)` below instead.
139 Mutex();
140
141 // Creates a mutex with static storage duration. A global variable
142 // constructed this way avoids the lifetime issues that can occur on program
143 // startup and shutdown. (See absl/base/const_init.h.)
144 //
145 // For Mutexes allocated on the heap and stack, instead use the default
146 // constructor, which can interact more fully with the thread sanitizer.
147 //
148 // Example usage:
149 // namespace foo {
150 // ABSL_CONST_INIT Mutex mu(absl::kConstInit);
151 // }
152 explicit constexpr Mutex(absl::ConstInitType);
153
154 ~Mutex();
155
156 // Mutex::Lock()
157 //
158 // Blocks the calling thread, if necessary, until this `Mutex` is free, and
159 // then acquires it exclusively. (This lock is also known as a "write lock.")
160 void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
161
162 // Mutex::Unlock()
163 //
164 // Releases this `Mutex` and returns it from the exclusive/write state to the
165 // free state. Caller must hold the `Mutex` exclusively.
166 void Unlock() ABSL_UNLOCK_FUNCTION();
167
168 // Mutex::TryLock()
169 //
170 // If the mutex can be acquired without blocking, does so exclusively and
171 // returns `true`. Otherwise, returns `false`. Returns `true` with high
172 // probability if the `Mutex` was free.
173 bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
174
175 // Mutex::AssertHeld()
176 //
177 // Return immediately if this thread holds the `Mutex` exclusively (in write
178 // mode). Otherwise, may report an error (typically by crashing with a
179 // diagnostic), or may return immediately.
180 void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
181
182 // ---------------------------------------------------------------------------
183 // Reader-Writer Locking
184 // ---------------------------------------------------------------------------
185
186 // A Mutex can also be used as a starvation-free reader-writer lock.
187 // Neither read-locks nor write-locks are reentrant/recursive to avoid
188 // potential client programming errors.
189 //
190 // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
191 // `Unlock()` and `TryLock()` methods for use within applications mixing
192 // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
193 // manner can make locking behavior clearer when mixing read and write modes.
194 //
195 // Introducing reader locks necessarily complicates the `Mutex` state
196 // machine somewhat. The table below illustrates the allowed state transitions
197 // of a mutex in such cases. Note that ReaderLock() may block even if the lock
198 // is held in shared mode; this occurs when another thread is blocked on a
199 // call to WriterLock().
200 //
201 // ---------------------------------------------------------------------------
202 // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
203 // ---------------------------------------------------------------------------
204 // State
205 // ---------------------------------------------------------------------------
206 // Free Exclusive invalid Shared(1) invalid
207 // Shared(1) blocks invalid Shared(2) or blocks Free
208 // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
209 // Exclusive blocks Free blocks invalid
210 // ---------------------------------------------------------------------------
211 //
212 // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
213
214 // Mutex::ReaderLock()
215 //
216 // Blocks the calling thread, if necessary, until this `Mutex` is either free,
217 // or in shared mode, and then acquires a share of it. Note that
218 // `ReaderLock()` will block if some other thread has an exclusive/writer lock
219 // on the mutex.
220
221 void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
222
223 // Mutex::ReaderUnlock()
224 //
225 // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
226 // the free state if this thread holds the last reader lock on the mutex. Note
227 // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
228 void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
229
230 // Mutex::ReaderTryLock()
231 //
232 // If the mutex can be acquired without blocking, acquires this mutex for
233 // shared access and returns `true`. Otherwise, returns `false`. Returns
234 // `true` with high probability if the `Mutex` was free or shared.
235 bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
236
237 // Mutex::AssertReaderHeld()
238 //
239 // Returns immediately if this thread holds the `Mutex` in at least shared
240 // mode (read mode). Otherwise, may report an error (typically by
241 // crashing with a diagnostic), or may return immediately.
242 void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
243
244 // Mutex::WriterLock()
245 // Mutex::WriterUnlock()
246 // Mutex::WriterTryLock()
247 //
248 // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
249 //
250 // These methods may be used (along with the complementary `Reader*()`
251 // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
252 // etc.) from reader/writer lock usage.
WriterLock()253 void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
254
WriterUnlock()255 void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
256
WriterTryLock()257 bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
258 return this->TryLock();
259 }
260
261 // ---------------------------------------------------------------------------
262 // Conditional Critical Regions
263 // ---------------------------------------------------------------------------
264
265 // Conditional usage of a `Mutex` can occur using two distinct paradigms:
266 //
267 // * Use of `Mutex` member functions with `Condition` objects.
268 // * Use of the separate `CondVar` abstraction.
269 //
270 // In general, prefer use of `Condition` and the `Mutex` member functions
271 // listed below over `CondVar`. When there are multiple threads waiting on
272 // distinctly different conditions, however, a battery of `CondVar`s may be
273 // more efficient. This section discusses use of `Condition` objects.
274 //
275 // `Mutex` contains member functions for performing lock operations only under
276 // certain conditions, of class `Condition`. For correctness, the `Condition`
277 // must return a boolean that is a pure function, only of state protected by
278 // the `Mutex`. The condition must be invariant w.r.t. environmental state
279 // such as thread, cpu id, or time, and must be `noexcept`. The condition will
280 // always be invoked with the mutex held in at least read mode, so you should
281 // not block it for long periods or sleep it on a timer.
282 //
283 // Since a condition must not depend directly on the current time, use
284 // `*WithTimeout()` member function variants to make your condition
285 // effectively true after a given duration, or `*WithDeadline()` variants to
286 // make your condition effectively true after a given time.
287 //
288 // The condition function should have no side-effects aside from debug
289 // logging; as a special exception, the function may acquire other mutexes
290 // provided it releases all those that it acquires. (This exception was
291 // required to allow logging.)
292
293 // Mutex::Await()
294 //
295 // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
296 // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
297 // same mode in which it was previously held. If the condition is initially
298 // `true`, `Await()` *may* skip the release/re-acquire step.
299 //
300 // `Await()` requires that this thread holds this `Mutex` in some mode.
301 void Await(const Condition &cond);
302
303 // Mutex::LockWhen()
304 // Mutex::ReaderLockWhen()
305 // Mutex::WriterLockWhen()
306 //
307 // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
308 // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
309 // logically equivalent to `*Lock(); Await();` though they may have different
310 // performance characteristics.
311 void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
312
313 void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
314
WriterLockWhen(const Condition & cond)315 void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
316 this->LockWhen(cond);
317 }
318
319 // ---------------------------------------------------------------------------
320 // Mutex Variants with Timeouts/Deadlines
321 // ---------------------------------------------------------------------------
322
323 // Mutex::AwaitWithTimeout()
324 // Mutex::AwaitWithDeadline()
325 //
326 // Unlocks this `Mutex` and blocks until simultaneously:
327 // - either `cond` is true or the {timeout has expired, deadline has passed}
328 // and
329 // - this `Mutex` can be reacquired,
330 // then reacquire this `Mutex` in the same mode in which it was previously
331 // held, returning `true` iff `cond` is `true` on return.
332 //
333 // If the condition is initially `true`, the implementation *may* skip the
334 // release/re-acquire step and return immediately.
335 //
336 // Deadlines in the past are equivalent to an immediate deadline.
337 // Negative timeouts are equivalent to a zero timeout.
338 //
339 // This method requires that this thread holds this `Mutex` in some mode.
340 bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
341
342 bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
343
344 // Mutex::LockWhenWithTimeout()
345 // Mutex::ReaderLockWhenWithTimeout()
346 // Mutex::WriterLockWhenWithTimeout()
347 //
348 // Blocks until simultaneously both:
349 // - either `cond` is `true` or the timeout has expired, and
350 // - this `Mutex` can be acquired,
351 // then atomically acquires this `Mutex`, returning `true` iff `cond` is
352 // `true` on return.
353 //
354 // Negative timeouts are equivalent to a zero timeout.
355 bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
356 ABSL_EXCLUSIVE_LOCK_FUNCTION();
357 bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
358 ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)359 bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
360 ABSL_EXCLUSIVE_LOCK_FUNCTION() {
361 return this->LockWhenWithTimeout(cond, timeout);
362 }
363
364 // Mutex::LockWhenWithDeadline()
365 // Mutex::ReaderLockWhenWithDeadline()
366 // Mutex::WriterLockWhenWithDeadline()
367 //
368 // Blocks until simultaneously both:
369 // - either `cond` is `true` or the deadline has been passed, and
370 // - this `Mutex` can be acquired,
371 // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
372 // on return.
373 //
374 // Deadlines in the past are equivalent to an immediate deadline.
375 bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
376 ABSL_EXCLUSIVE_LOCK_FUNCTION();
377 bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
378 ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)379 bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
380 ABSL_EXCLUSIVE_LOCK_FUNCTION() {
381 return this->LockWhenWithDeadline(cond, deadline);
382 }
383
384 // ---------------------------------------------------------------------------
385 // Debug Support: Invariant Checking, Deadlock Detection, Logging.
386 // ---------------------------------------------------------------------------
387
388 // Mutex::EnableInvariantDebugging()
389 //
390 // If `invariant`!=null and if invariant debugging has been enabled globally,
391 // cause `(*invariant)(arg)` to be called at moments when the invariant for
392 // this `Mutex` should hold (for example: just after acquire, just before
393 // release).
394 //
395 // The routine `invariant` should have no side-effects since it is not
396 // guaranteed how many times it will be called; it should check the invariant
397 // and crash if it does not hold. Enabling global invariant debugging may
398 // substantially reduce `Mutex` performance; it should be set only for
399 // non-production runs. Optimization options may also disable invariant
400 // checks.
401 void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
402
403 // Mutex::EnableDebugLog()
404 //
405 // Cause all subsequent uses of this `Mutex` to be logged via
406 // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
407 // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
408 //
409 // Note: This method substantially reduces `Mutex` performance.
410 void EnableDebugLog(const char *name);
411
412 // Deadlock detection
413
414 // Mutex::ForgetDeadlockInfo()
415 //
416 // Forget any deadlock-detection information previously gathered
417 // about this `Mutex`. Call this method in debug mode when the lock ordering
418 // of a `Mutex` changes.
419 void ForgetDeadlockInfo();
420
421 // Mutex::AssertNotHeld()
422 //
423 // Return immediately if this thread does not hold this `Mutex` in any
424 // mode; otherwise, may report an error (typically by crashing with a
425 // diagnostic), or may return immediately.
426 //
427 // Currently this check is performed only if all of:
428 // - in debug mode
429 // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
430 // - number of locks concurrently held by this thread is not large.
431 // are true.
432 void AssertNotHeld() const;
433
434 // Special cases.
435
436 // A `MuHow` is a constant that indicates how a lock should be acquired.
437 // Internal implementation detail. Clients should ignore.
438 typedef const struct MuHowS *MuHow;
439
440 // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
441 //
442 // Causes the `Mutex` implementation to prepare itself for re-entry caused by
443 // future use of `Mutex` within a fatal signal handler. This method is
444 // intended for use only for last-ditch attempts to log crash information.
445 // It does not guarantee that attempts to use Mutexes within the handler will
446 // not deadlock; it merely makes other faults less likely.
447 //
448 // WARNING: This routine must be invoked from a signal handler, and the
449 // signal handler must either loop forever or terminate the process.
450 // Attempts to return from (or `longjmp` out of) the signal handler once this
451 // call has been made may cause arbitrary program behaviour including
452 // crashes and deadlocks.
453 static void InternalAttemptToUseMutexInFatalSignalHandler();
454
455 private:
456 std::atomic<intptr_t> mu_; // The Mutex state.
457
458 // Post()/Wait() versus associated PerThreadSem; in class for required
459 // friendship with PerThreadSem.
460 static inline void IncrementSynchSem(Mutex *mu,
461 base_internal::PerThreadSynch *w);
462 static inline bool DecrementSynchSem(
463 Mutex *mu, base_internal::PerThreadSynch *w,
464 synchronization_internal::KernelTimeout t);
465
466 // slow path acquire
467 void LockSlowLoop(SynchWaitParams *waitp, int flags);
468 // wrappers around LockSlowLoop()
469 bool LockSlowWithDeadline(MuHow how, const Condition *cond,
470 synchronization_internal::KernelTimeout t,
471 int flags);
472 void LockSlow(MuHow how, const Condition *cond,
473 int flags) ABSL_ATTRIBUTE_COLD;
474 // slow path release
475 void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
476 // Common code between Await() and AwaitWithTimeout/Deadline()
477 bool AwaitCommon(const Condition &cond,
478 synchronization_internal::KernelTimeout t);
479 // Attempt to remove thread s from queue.
480 void TryRemove(base_internal::PerThreadSynch *s);
481 // Block a thread on mutex.
482 void Block(base_internal::PerThreadSynch *s);
483 // Wake a thread; return successor.
484 base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
485
486 friend class CondVar; // for access to Trans()/Fer().
487 void Trans(MuHow how); // used for CondVar->Mutex transfer
488 void Fer(
489 base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer
490
491 // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)492 Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit)
493
494 Mutex(const Mutex&) = delete;
495 Mutex& operator=(const Mutex&) = delete;
496 };
497
498 // -----------------------------------------------------------------------------
499 // Mutex RAII Wrappers
500 // -----------------------------------------------------------------------------
501
502 // MutexLock
503 //
504 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
505 // RAII.
506 //
507 // Example:
508 //
509 // Class Foo {
510 // public:
511 // Foo::Bar* Baz() {
512 // MutexLock lock(&mu_);
513 // ...
514 // return bar;
515 // }
516 //
517 // private:
518 // Mutex mu_;
519 // };
520 class ABSL_SCOPED_LOCKABLE MutexLock {
521 public:
522 // Constructors
523
524 // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
525 // guaranteed to be locked when this object is constructed. Requires that
526 // `mu` be dereferenceable.
MutexLock(Mutex * mu)527 explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
528 this->mu_->Lock();
529 }
530
531 // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
532 // the above, the condition given by `cond` is also guaranteed to hold when
533 // this object is constructed.
MutexLock(Mutex * mu,const Condition & cond)534 explicit MutexLock(Mutex *mu, const Condition &cond)
535 ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
536 : mu_(mu) {
537 this->mu_->LockWhen(cond);
538 }
539
540 MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex)
541 MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex)
542 MutexLock& operator=(const MutexLock&) = delete;
543 MutexLock& operator=(MutexLock&&) = delete;
544
ABSL_UNLOCK_FUNCTION()545 ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
546
547 private:
548 Mutex *const mu_;
549 };
550
551 // ReaderMutexLock
552 //
553 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
554 // releases a shared lock on a `Mutex` via RAII.
555 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
556 public:
ReaderMutexLock(Mutex * mu)557 explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
558 mu->ReaderLock();
559 }
560
ReaderMutexLock(Mutex * mu,const Condition & cond)561 explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
562 ABSL_SHARED_LOCK_FUNCTION(mu)
563 : mu_(mu) {
564 mu->ReaderLockWhen(cond);
565 }
566
567 ReaderMutexLock(const ReaderMutexLock&) = delete;
568 ReaderMutexLock(ReaderMutexLock&&) = delete;
569 ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
570 ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
571
ABSL_UNLOCK_FUNCTION()572 ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
573
574 private:
575 Mutex *const mu_;
576 };
577
578 // WriterMutexLock
579 //
580 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
581 // releases a write (exclusive) lock on a `Mutex` via RAII.
582 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
583 public:
WriterMutexLock(Mutex * mu)584 explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
585 : mu_(mu) {
586 mu->WriterLock();
587 }
588
WriterMutexLock(Mutex * mu,const Condition & cond)589 explicit WriterMutexLock(Mutex *mu, const Condition &cond)
590 ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
591 : mu_(mu) {
592 mu->WriterLockWhen(cond);
593 }
594
595 WriterMutexLock(const WriterMutexLock&) = delete;
596 WriterMutexLock(WriterMutexLock&&) = delete;
597 WriterMutexLock& operator=(const WriterMutexLock&) = delete;
598 WriterMutexLock& operator=(WriterMutexLock&&) = delete;
599
ABSL_UNLOCK_FUNCTION()600 ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
601
602 private:
603 Mutex *const mu_;
604 };
605
606 // -----------------------------------------------------------------------------
607 // Condition
608 // -----------------------------------------------------------------------------
609 //
610 // As noted above, `Mutex` contains a number of member functions which take a
611 // `Condition` as an argument; clients can wait for conditions to become `true`
612 // before attempting to acquire the mutex. These sections are known as
613 // "condition critical" sections. To use a `Condition`, you simply need to
614 // construct it, and use within an appropriate `Mutex` member function;
615 // everything else in the `Condition` class is an implementation detail.
616 //
617 // A `Condition` is specified as a function pointer which returns a boolean.
618 // `Condition` functions should be pure functions -- their results should depend
619 // only on passed arguments, should not consult any external state (such as
620 // clocks), and should have no side-effects, aside from debug logging. Any
621 // objects that the function may access should be limited to those which are
622 // constant while the mutex is blocked on the condition (e.g. a stack variable),
623 // or objects of state protected explicitly by the mutex.
624 //
625 // No matter which construction is used for `Condition`, the underlying
626 // function pointer / functor / callable must not throw any
627 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
628 // the face of a throwing `Condition`. (When Abseil is allowed to depend
629 // on C++17, these function pointers will be explicitly marked
630 // `noexcept`; until then this requirement cannot be enforced in the
631 // type system.)
632 //
633 // Note: to use a `Condition`, you need only construct it and pass it to a
634 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
635 // constructor of one of the scope guard classes.
636 //
637 // Example using LockWhen/Unlock:
638 //
639 // // assume count_ is not internal reference count
640 // int count_ ABSL_GUARDED_BY(mu_);
641 // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
642 //
643 // mu_.LockWhen(count_is_zero);
644 // // ...
645 // mu_.Unlock();
646 //
647 // Example using a scope guard:
648 //
649 // {
650 // MutexLock lock(&mu_, count_is_zero);
651 // // ...
652 // }
653 //
654 // When multiple threads are waiting on exactly the same condition, make sure
655 // that they are constructed with the same parameters (same pointer to function
656 // + arg, or same pointer to object + method), so that the mutex implementation
657 // can avoid redundantly evaluating the same condition for each thread.
658 class Condition {
659 public:
660 // A Condition that returns the result of "(*func)(arg)"
661 Condition(bool (*func)(void *), void *arg);
662
663 // Templated version for people who are averse to casts.
664 //
665 // To use a lambda, prepend it with unary plus, which converts the lambda
666 // into a function pointer:
667 // Condition(+[](T* t) { return ...; }, arg).
668 //
669 // Note: lambdas in this case must contain no bound variables.
670 //
671 // See class comment for performance advice.
672 template<typename T>
673 Condition(bool (*func)(T *), T *arg);
674
675 // Templated version for invoking a method that returns a `bool`.
676 //
677 // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
678 // `object->Method()`.
679 //
680 // Implementation Note: `absl::internal::identity` is used to allow methods to
681 // come from base classes. A simpler signature like
682 // `Condition(T*, bool (T::*)())` does not suffice.
683 template<typename T>
684 Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
685
686 // Same as above, for const members
687 template<typename T>
688 Condition(const T *object,
689 bool (absl::internal::identity<T>::type::* method)() const);
690
691 // A Condition that returns the value of `*cond`
692 explicit Condition(const bool *cond);
693
694 // Templated version for invoking a functor that returns a `bool`.
695 // This approach accepts pointers to non-mutable lambdas, `std::function`,
696 // the result of` std::bind` and user-defined functors that define
697 // `bool F::operator()() const`.
698 //
699 // Example:
700 //
701 // auto reached = [this, current]() {
702 // mu_.AssertReaderHeld(); // For annotalysis.
703 // return processed_ >= current;
704 // };
705 // mu_.Await(Condition(&reached));
706 //
707 // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
708 // the lambda as it may be called when the mutex is being unlocked from a
709 // scope holding only a reader lock, which will make the assertion not
710 // fulfilled and crash the binary.
711
712 // See class comment for performance advice. In particular, if there
713 // might be more than one waiter for the same condition, make sure
714 // that all waiters construct the condition with the same pointers.
715
716 // Implementation note: The second template parameter ensures that this
717 // constructor doesn't participate in overload resolution if T doesn't have
718 // `bool operator() const`.
719 template <typename T, typename E = decltype(
720 static_cast<bool (T::*)() const>(&T::operator()))>
Condition(const T * obj)721 explicit Condition(const T *obj)
722 : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
723
724 // A Condition that always returns `true`.
725 static const Condition kTrue;
726
727 // Evaluates the condition.
728 bool Eval() const;
729
730 // Returns `true` if the two conditions are guaranteed to return the same
731 // value if evaluated at the same time, `false` if the evaluation *may* return
732 // different results.
733 //
734 // Two `Condition` values are guaranteed equal if both their `func` and `arg`
735 // components are the same. A null pointer is equivalent to a `true`
736 // condition.
737 static bool GuaranteedEqual(const Condition *a, const Condition *b);
738
739 private:
740 typedef bool (*InternalFunctionType)(void * arg);
741 typedef bool (Condition::*InternalMethodType)();
742 typedef bool (*InternalMethodCallerType)(void * arg,
743 InternalMethodType internal_method);
744
745 bool (*eval_)(const Condition*); // Actual evaluator
746 InternalFunctionType function_; // function taking pointer returning bool
747 InternalMethodType method_; // method returning bool
748 void *arg_; // arg of function_ or object of method_
749
750 Condition(); // null constructor used only to create kTrue
751
752 // Various functions eval_ can point to:
753 static bool CallVoidPtrFunction(const Condition*);
754 template <typename T> static bool CastAndCallFunction(const Condition* c);
755 template <typename T> static bool CastAndCallMethod(const Condition* c);
756 };
757
758 // -----------------------------------------------------------------------------
759 // CondVar
760 // -----------------------------------------------------------------------------
761 //
762 // A condition variable, reflecting state evaluated separately outside of the
763 // `Mutex` object, which can be signaled to wake callers.
764 // This class is not normally needed; use `Mutex` member functions such as
765 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
766 // with many threads and many conditions, `CondVar` may be faster.
767 //
768 // The implementation may deliver signals to any condition variable at
769 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
770 // result, upon being awoken, you must check the logical condition you have
771 // been waiting upon.
772 //
773 // Examples:
774 //
775 // Usage for a thread waiting for some condition C protected by mutex mu:
776 // mu.Lock();
777 // while (!C) { cv->Wait(&mu); } // releases and reacquires mu
778 // // C holds; process data
779 // mu.Unlock();
780 //
781 // Usage to wake T is:
782 // mu.Lock();
783 // // process data, possibly establishing C
784 // if (C) { cv->Signal(); }
785 // mu.Unlock();
786 //
787 // If C may be useful to more than one waiter, use `SignalAll()` instead of
788 // `Signal()`.
789 //
790 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
791 // the locked region; this usage can make reasoning about your program easier.
792 //
793 class CondVar {
794 public:
795 // A `CondVar` allocated on the heap or on the stack can use the this
796 // constructor.
797 CondVar();
798 ~CondVar();
799
800 // CondVar::Wait()
801 //
802 // Atomically releases a `Mutex` and blocks on this condition variable.
803 // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
804 // spurious wakeup), then reacquires the `Mutex` and returns.
805 //
806 // Requires and ensures that the current thread holds the `Mutex`.
807 void Wait(Mutex *mu);
808
809 // CondVar::WaitWithTimeout()
810 //
811 // Atomically releases a `Mutex` and blocks on this condition variable.
812 // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
813 // spurious wakeup), or until the timeout has expired, then reacquires
814 // the `Mutex` and returns.
815 //
816 // Returns true if the timeout has expired without this `CondVar`
817 // being signalled in any manner. If both the timeout has expired
818 // and this `CondVar` has been signalled, the implementation is free
819 // to return `true` or `false`.
820 //
821 // Requires and ensures that the current thread holds the `Mutex`.
822 bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
823
824 // CondVar::WaitWithDeadline()
825 //
826 // Atomically releases a `Mutex` and blocks on this condition variable.
827 // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
828 // spurious wakeup), or until the deadline has passed, then reacquires
829 // the `Mutex` and returns.
830 //
831 // Deadlines in the past are equivalent to an immediate deadline.
832 //
833 // Returns true if the deadline has passed without this `CondVar`
834 // being signalled in any manner. If both the deadline has passed
835 // and this `CondVar` has been signalled, the implementation is free
836 // to return `true` or `false`.
837 //
838 // Requires and ensures that the current thread holds the `Mutex`.
839 bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
840
841 // CondVar::Signal()
842 //
843 // Signal this `CondVar`; wake at least one waiter if one exists.
844 void Signal();
845
846 // CondVar::SignalAll()
847 //
848 // Signal this `CondVar`; wake all waiters.
849 void SignalAll();
850
851 // CondVar::EnableDebugLog()
852 //
853 // Causes all subsequent uses of this `CondVar` to be logged via
854 // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
855 // Note: this method substantially reduces `CondVar` performance.
856 void EnableDebugLog(const char *name);
857
858 private:
859 bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
860 void Remove(base_internal::PerThreadSynch *s);
861 void Wakeup(base_internal::PerThreadSynch *w);
862 std::atomic<intptr_t> cv_; // Condition variable state.
863 CondVar(const CondVar&) = delete;
864 CondVar& operator=(const CondVar&) = delete;
865 };
866
867
868 // Variants of MutexLock.
869 //
870 // If you find yourself using one of these, consider instead using
871 // Mutex::Unlock() and/or if-statements for clarity.
872
873 // MutexLockMaybe
874 //
875 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
876 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
877 public:
MutexLockMaybe(Mutex * mu)878 explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
879 : mu_(mu) {
880 if (this->mu_ != nullptr) {
881 this->mu_->Lock();
882 }
883 }
884
MutexLockMaybe(Mutex * mu,const Condition & cond)885 explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
886 ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
887 : mu_(mu) {
888 if (this->mu_ != nullptr) {
889 this->mu_->LockWhen(cond);
890 }
891 }
892
ABSL_UNLOCK_FUNCTION()893 ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
894 if (this->mu_ != nullptr) { this->mu_->Unlock(); }
895 }
896
897 private:
898 Mutex *const mu_;
899 MutexLockMaybe(const MutexLockMaybe&) = delete;
900 MutexLockMaybe(MutexLockMaybe&&) = delete;
901 MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
902 MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
903 };
904
905 // ReleasableMutexLock
906 //
907 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
908 // mutex before destruction. `Release()` may be called at most once.
909 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
910 public:
ReleasableMutexLock(Mutex * mu)911 explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
912 : mu_(mu) {
913 this->mu_->Lock();
914 }
915
ReleasableMutexLock(Mutex * mu,const Condition & cond)916 explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
917 ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
918 : mu_(mu) {
919 this->mu_->LockWhen(cond);
920 }
921
ABSL_UNLOCK_FUNCTION()922 ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
923 if (this->mu_ != nullptr) { this->mu_->Unlock(); }
924 }
925
926 void Release() ABSL_UNLOCK_FUNCTION();
927
928 private:
929 Mutex *mu_;
930 ReleasableMutexLock(const ReleasableMutexLock&) = delete;
931 ReleasableMutexLock(ReleasableMutexLock&&) = delete;
932 ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
933 ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
934 };
935
Mutex()936 inline Mutex::Mutex() : mu_(0) {
937 ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
938 }
939
Mutex(absl::ConstInitType)940 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
941
CondVar()942 inline CondVar::CondVar() : cv_(0) {}
943
944 // static
945 template <typename T>
CastAndCallMethod(const Condition * c)946 bool Condition::CastAndCallMethod(const Condition *c) {
947 typedef bool (T::*MemberType)();
948 MemberType rm = reinterpret_cast<MemberType>(c->method_);
949 T *x = static_cast<T *>(c->arg_);
950 return (x->*rm)();
951 }
952
953 // static
954 template <typename T>
CastAndCallFunction(const Condition * c)955 bool Condition::CastAndCallFunction(const Condition *c) {
956 typedef bool (*FuncType)(T *);
957 FuncType fn = reinterpret_cast<FuncType>(c->function_);
958 T *x = static_cast<T *>(c->arg_);
959 return (*fn)(x);
960 }
961
962 template <typename T>
Condition(bool (* func)(T *),T * arg)963 inline Condition::Condition(bool (*func)(T *), T *arg)
964 : eval_(&CastAndCallFunction<T>),
965 function_(reinterpret_cast<InternalFunctionType>(func)),
966 method_(nullptr),
967 arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
968
969 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())970 inline Condition::Condition(T *object,
971 bool (absl::internal::identity<T>::type::*method)())
972 : eval_(&CastAndCallMethod<T>),
973 function_(nullptr),
974 method_(reinterpret_cast<InternalMethodType>(method)),
975 arg_(object) {}
976
977 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)978 inline Condition::Condition(const T *object,
979 bool (absl::internal::identity<T>::type::*method)()
980 const)
981 : eval_(&CastAndCallMethod<T>),
982 function_(nullptr),
983 method_(reinterpret_cast<InternalMethodType>(method)),
984 arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
985
986 // Register a hook for profiling support.
987 //
988 // The function pointer registered here will be called whenever a mutex is
989 // contended. The callback is given the absl/base/cycleclock.h timestamp when
990 // waiting began.
991 //
992 // Calls to this function do not race or block, but there is no ordering
993 // guaranteed between calls to this function and call to the provided hook.
994 // In particular, the previously registered hook may still be called for some
995 // time after this function returns.
996 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
997
998 // Register a hook for Mutex tracing.
999 //
1000 // The function pointer registered here will be called whenever a mutex is
1001 // contended. The callback is given an opaque handle to the contended mutex,
1002 // an event name, and the number of wait cycles (as measured by
1003 // //absl/base/internal/cycleclock.h, and which may not be real
1004 // "cycle" counts.)
1005 //
1006 // The only event name currently sent is "slow release".
1007 //
1008 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1009 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1010 int64_t wait_cycles));
1011
1012 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
1013 // into a single interface, since they are only ever called in pairs.
1014
1015 // Register a hook for CondVar tracing.
1016 //
1017 // The function pointer registered here will be called here on various CondVar
1018 // events. The callback is given an opaque handle to the CondVar object and
1019 // a string identifying the event. This is thread-safe, but only a single
1020 // tracer can be registered.
1021 //
1022 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1023 // "SignalAll wakeup".
1024 //
1025 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1026 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1027
1028 // Register a hook for symbolizing stack traces in deadlock detector reports.
1029 //
1030 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1031 // into, and 'out_size' is the size of the buffer. This function can return
1032 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1033 // to 'out.'
1034 //
1035 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1036 //
1037 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1038 // ability to register a different hook for symbolizing stack traces will be
1039 // removed on or after 2023-05-01.
1040 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1041 "on or after 2023-05-01")
1042 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1043
1044 // EnableMutexInvariantDebugging()
1045 //
1046 // Enable or disable global support for Mutex invariant debugging. If enabled,
1047 // then invariant predicates can be registered per-Mutex for debug checking.
1048 // See Mutex::EnableInvariantDebugging().
1049 void EnableMutexInvariantDebugging(bool enabled);
1050
1051 // When in debug mode, and when the feature has been enabled globally, the
1052 // implementation will keep track of lock ordering and complain (or optionally
1053 // crash) if a cycle is detected in the acquired-before graph.
1054
1055 // Possible modes of operation for the deadlock detector in debug mode.
1056 enum class OnDeadlockCycle {
1057 kIgnore, // Neither report on nor attempt to track cycles in lock ordering
1058 kReport, // Report lock cycles to stderr when detected
1059 kAbort, // Report lock cycles to stderr when detected, then abort
1060 };
1061
1062 // SetMutexDeadlockDetectionMode()
1063 //
1064 // Enable or disable global support for detection of potential deadlocks
1065 // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
1066 // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
1067 // will be maintained internally, and detected cycles will be reported in
1068 // the manner chosen here.
1069 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1070
1071 ABSL_NAMESPACE_END
1072 } // namespace absl
1073
1074 // In some build configurations we pass --detect-odr-violations to the
1075 // gold linker. This causes it to flag weak symbol overrides as ODR
1076 // violations. Because ODR only applies to C++ and not C,
1077 // --detect-odr-violations ignores symbols not mangled with C++ names.
1078 // By changing our extension points to be extern "C", we dodge this
1079 // check.
1080 extern "C" {
1081 void AbslInternalMutexYield();
1082 } // extern "C"
1083
1084 #endif // ABSL_SYNCHRONIZATION_MUTEX_H_
1085