• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
4
5.. module:: decimal
6   :synopsis: Implementation of the General Decimal Arithmetic  Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
18.. versionadded:: 2.4
19
20.. import modules for testing inline doctests with the Sphinx doctest builder
21.. testsetup:: *
22
23   import decimal
24   import math
25   from decimal import *
26   # make sure each group gets a fresh context
27   setcontext(Context())
28
29The :mod:`decimal` module provides support for decimal floating point
30arithmetic.  It offers several advantages over the :class:`float` datatype:
31
32* Decimal "is based on a floating-point model which was designed with people
33  in mind, and necessarily has a paramount guiding principle -- computers must
34  provide an arithmetic that works in the same way as the arithmetic that
35  people learn at school." -- excerpt from the decimal arithmetic specification.
36
37* Decimal numbers can be represented exactly.  In contrast, numbers like
38  :const:`1.1` and :const:`2.2` do not have exact representations in binary
39  floating point.  End users typically would not expect ``1.1 + 2.2`` to display
40  as :const:`3.3000000000000003` as it does with binary floating point.
41
42* The exactness carries over into arithmetic.  In decimal floating point, ``0.1
43  + 0.1 + 0.1 - 0.3`` is exactly equal to zero.  In binary floating point, the result
44  is :const:`5.5511151231257827e-017`.  While near to zero, the differences
45  prevent reliable equality testing and differences can accumulate. For this
46  reason, decimal is preferred in accounting applications which have strict
47  equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50  + 1.20`` is :const:`2.50`.  The trailing zero is kept to indicate significance.
51  This is the customary presentation for monetary applications. For
52  multiplication, the "schoolbook" approach uses all the figures in the
53  multiplicands.  For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54  1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
57  alterable precision (defaulting to 28 places) which can be as large as needed for
58  a given problem:
59
60     >>> from decimal import *
61     >>> getcontext().prec = 6
62     >>> Decimal(1) / Decimal(7)
63     Decimal('0.142857')
64     >>> getcontext().prec = 28
65     >>> Decimal(1) / Decimal(7)
66     Decimal('0.1428571428571428571428571429')
67
68* Both binary and decimal floating point are implemented in terms of published
69  standards.  While the built-in float type exposes only a modest portion of its
70  capabilities, the decimal module exposes all required parts of the standard.
71  When needed, the programmer has full control over rounding and signal handling.
72  This includes an option to enforce exact arithmetic by using exceptions
73  to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76  unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77  and rounded floating-point arithmetic."  -- excerpt from the decimal
78  arithmetic specification.
79
80The module design is centered around three concepts:  the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable.  It has a sign, coefficient digits, and an
84exponent.  To preserve significance, the coefficient digits do not truncate
85trailing zeros.  Decimals also include special values such as
86:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`.  The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions.  Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
94:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
95
96Signals are groups of exceptional conditions arising during the course of
97computation.  Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
101:const:`Overflow`, and :const:`Underflow`.
102
103For each signal there is a flag and a trap enabler.  When a signal is
104encountered, its flag is set to one, then, if the trap enabler is
105set to one, an exception is raised.  Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
111   * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
112     Specification <http://speleotrove.com/decimal/>`_.
113
114.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115
116
117.. _decimal-tutorial:
118
119Quick-start Tutorial
120--------------------
121
122The usual start to using decimals is importing the module, viewing the current
123context with :func:`getcontext` and, if necessary, setting new values for
124precision, rounding, or enabled traps::
125
126   >>> from decimal import *
127   >>> getcontext()
128   Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
129           capitals=1, flags=[], traps=[Overflow, DivisionByZero,
130           InvalidOperation])
131
132   >>> getcontext().prec = 7       # Set a new precision
133
134Decimal instances can be constructed from integers, strings, floats, or tuples.
135Construction from an integer or a float performs an exact conversion of the
136value of that integer or float.  Decimal numbers include special values such as
137:const:`NaN` which stands for "Not a number", positive and negative
138:const:`Infinity`, and :const:`-0`.
139
140   >>> getcontext().prec = 28
141   >>> Decimal(10)
142   Decimal('10')
143   >>> Decimal('3.14')
144   Decimal('3.14')
145   >>> Decimal(3.14)
146   Decimal('3.140000000000000124344978758017532527446746826171875')
147   >>> Decimal((0, (3, 1, 4), -2))
148   Decimal('3.14')
149   >>> Decimal(str(2.0 ** 0.5))
150   Decimal('1.41421356237')
151   >>> Decimal(2) ** Decimal('0.5')
152   Decimal('1.414213562373095048801688724')
153   >>> Decimal('NaN')
154   Decimal('NaN')
155   >>> Decimal('-Infinity')
156   Decimal('-Infinity')
157
158The significance of a new Decimal is determined solely by the number of digits
159input.  Context precision and rounding only come into play during arithmetic
160operations.
161
162.. doctest:: newcontext
163
164   >>> getcontext().prec = 6
165   >>> Decimal('3.0')
166   Decimal('3.0')
167   >>> Decimal('3.1415926535')
168   Decimal('3.1415926535')
169   >>> Decimal('3.1415926535') + Decimal('2.7182818285')
170   Decimal('5.85987')
171   >>> getcontext().rounding = ROUND_UP
172   >>> Decimal('3.1415926535') + Decimal('2.7182818285')
173   Decimal('5.85988')
174
175Decimals interact well with much of the rest of Python.  Here is a small decimal
176floating point flying circus:
177
178.. doctest::
179   :options: +NORMALIZE_WHITESPACE
180
181   >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
182   >>> max(data)
183   Decimal('9.25')
184   >>> min(data)
185   Decimal('0.03')
186   >>> sorted(data)
187   [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
188    Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
189   >>> sum(data)
190   Decimal('19.29')
191   >>> a,b,c = data[:3]
192   >>> str(a)
193   '1.34'
194   >>> float(a)
195   1.34
196   >>> round(a, 1)     # round() first converts to binary floating point
197   1.3
198   >>> int(a)
199   1
200   >>> a * 5
201   Decimal('6.70')
202   >>> a * b
203   Decimal('2.5058')
204   >>> c % a
205   Decimal('0.77')
206
207And some mathematical functions are also available to Decimal:
208
209   >>> getcontext().prec = 28
210   >>> Decimal(2).sqrt()
211   Decimal('1.414213562373095048801688724')
212   >>> Decimal(1).exp()
213   Decimal('2.718281828459045235360287471')
214   >>> Decimal('10').ln()
215   Decimal('2.302585092994045684017991455')
216   >>> Decimal('10').log10()
217   Decimal('1')
218
219The :meth:`quantize` method rounds a number to a fixed exponent.  This method is
220useful for monetary applications that often round results to a fixed number of
221places:
222
223   >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
224   Decimal('7.32')
225   >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
226   Decimal('8')
227
228As shown above, the :func:`getcontext` function accesses the current context and
229allows the settings to be changed.  This approach meets the needs of most
230applications.
231
232For more advanced work, it may be useful to create alternate contexts using the
233Context() constructor.  To make an alternate active, use the :func:`setcontext`
234function.
235
236In accordance with the standard, the :mod:`decimal` module provides two ready to
237use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
238former is especially useful for debugging because many of the traps are
239enabled:
240
241.. doctest:: newcontext
242   :options: +NORMALIZE_WHITESPACE
243
244   >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
245   >>> setcontext(myothercontext)
246   >>> Decimal(1) / Decimal(7)
247   Decimal('0.142857142857142857142857142857142857142857142857142857142857')
248
249   >>> ExtendedContext
250   Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
251           capitals=1, flags=[], traps=[])
252   >>> setcontext(ExtendedContext)
253   >>> Decimal(1) / Decimal(7)
254   Decimal('0.142857143')
255   >>> Decimal(42) / Decimal(0)
256   Decimal('Infinity')
257
258   >>> setcontext(BasicContext)
259   >>> Decimal(42) / Decimal(0)
260   Traceback (most recent call last):
261     File "<pyshell#143>", line 1, in -toplevel-
262       Decimal(42) / Decimal(0)
263   DivisionByZero: x / 0
264
265Contexts also have signal flags for monitoring exceptional conditions
266encountered during computations.  The flags remain set until explicitly cleared,
267so it is best to clear the flags before each set of monitored computations by
268using the :meth:`clear_flags` method. ::
269
270   >>> setcontext(ExtendedContext)
271   >>> getcontext().clear_flags()
272   >>> Decimal(355) / Decimal(113)
273   Decimal('3.14159292')
274   >>> getcontext()
275   Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
276           capitals=1, flags=[Rounded, Inexact], traps=[])
277
278The *flags* entry shows that the rational approximation to :const:`Pi` was
279rounded (digits beyond the context precision were thrown away) and that the
280result is inexact (some of the discarded digits were non-zero).
281
282Individual traps are set using the dictionary in the :attr:`traps` field of a
283context:
284
285.. doctest:: newcontext
286
287   >>> setcontext(ExtendedContext)
288   >>> Decimal(1) / Decimal(0)
289   Decimal('Infinity')
290   >>> getcontext().traps[DivisionByZero] = 1
291   >>> Decimal(1) / Decimal(0)
292   Traceback (most recent call last):
293     File "<pyshell#112>", line 1, in -toplevel-
294       Decimal(1) / Decimal(0)
295   DivisionByZero: x / 0
296
297Most programs adjust the current context only once, at the beginning of the
298program.  And, in many applications, data is converted to :class:`Decimal` with
299a single cast inside a loop.  With context set and decimals created, the bulk of
300the program manipulates the data no differently than with other Python numeric
301types.
302
303.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
304
305
306.. _decimal-decimal:
307
308Decimal objects
309---------------
310
311
312.. class:: Decimal([value [, context]])
313
314   Construct a new :class:`Decimal` object based from *value*.
315
316   *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
317   object. If no *value* is given, returns ``Decimal('0')``.  If *value* is a
318   string, it should conform to the decimal numeric string syntax after leading
319   and trailing whitespace characters are removed::
320
321      sign           ::=  '+' | '-'
322      digit          ::=  '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
323      indicator      ::=  'e' | 'E'
324      digits         ::=  digit [digit]...
325      decimal-part   ::=  digits '.' [digits] | ['.'] digits
326      exponent-part  ::=  indicator [sign] digits
327      infinity       ::=  'Infinity' | 'Inf'
328      nan            ::=  'NaN' [digits] | 'sNaN' [digits]
329      numeric-value  ::=  decimal-part [exponent-part] | infinity
330      numeric-string ::=  [sign] numeric-value | [sign] nan
331
332   If *value* is a unicode string then other Unicode decimal digits
333   are also permitted where ``digit`` appears above.  These include
334   decimal digits from various other alphabets (for example,
335   Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
336   ``u'\uff10'`` through ``u'\uff19'``.
337
338   If *value* is a :class:`tuple`, it should have three components, a sign
339   (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
340   digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
341   returns ``Decimal('1.414')``.
342
343   If *value* is a :class:`float`, the binary floating point value is losslessly
344   converted to its exact decimal equivalent.  This conversion can often require
345   53 or more digits of precision.  For example, ``Decimal(float('1.1'))``
346   converts to
347   ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
348
349   The *context* precision does not affect how many digits are stored. That is
350   determined exclusively by the number of digits in *value*. For example,
351   ``Decimal('3.00000')`` records all five zeros even if the context precision is
352   only three.
353
354   The purpose of the *context* argument is determining what to do if *value* is a
355   malformed string.  If the context traps :const:`InvalidOperation`, an exception
356   is raised; otherwise, the constructor returns a new Decimal with the value of
357   :const:`NaN`.
358
359   Once constructed, :class:`Decimal` objects are immutable.
360
361   .. versionchanged:: 2.6
362      leading and trailing whitespace characters are permitted when
363      creating a Decimal instance from a string.
364
365   .. versionchanged:: 2.7
366      The argument to the constructor is now permitted to be a :class:`float` instance.
367
368   Decimal floating point objects share many properties with the other built-in
369   numeric types such as :class:`float` and :class:`int`.  All of the usual math
370   operations and special methods apply.  Likewise, decimal objects can be
371   copied, pickled, printed, used as dictionary keys, used as set elements,
372   compared, sorted, and coerced to another type (such as :class:`float` or
373   :class:`long`).
374
375   There are some small differences between arithmetic on Decimal objects and
376   arithmetic on integers and floats.  When the remainder operator ``%`` is
377   applied to Decimal objects, the sign of the result is the sign of the
378   *dividend* rather than the sign of the divisor::
379
380      >>> (-7) % 4
381      1
382      >>> Decimal(-7) % Decimal(4)
383      Decimal('-3')
384
385   The integer division operator ``//`` behaves analogously, returning the
386   integer part of the true quotient (truncating towards zero) rather than its
387   floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
388
389      >>> -7 // 4
390      -2
391      >>> Decimal(-7) // Decimal(4)
392      Decimal('-1')
393
394   The ``%`` and ``//`` operators implement the ``remainder`` and
395   ``divide-integer`` operations (respectively) as described in the
396   specification.
397
398   Decimal objects cannot generally be combined with floats in
399   arithmetic operations: an attempt to add a :class:`Decimal` to a
400   :class:`float`, for example, will raise a :exc:`TypeError`.
401   There's one exception to this rule: it's possible to use Python's
402   comparison operators to compare a :class:`float` instance ``x``
403   with a :class:`Decimal` instance ``y``.  Without this exception,
404   comparisons between :class:`Decimal` and :class:`float` instances
405   would follow the general rules for comparing objects of different
406   types described in the :ref:`expressions` section of the reference
407   manual, leading to confusing results.
408
409   .. versionchanged:: 2.7
410      A comparison between a :class:`float` instance ``x`` and a
411      :class:`Decimal` instance ``y`` now returns a result based on
412      the values of ``x`` and ``y``.  In earlier versions ``x < y``
413      returned the same (arbitrary) result for any :class:`Decimal`
414      instance ``x`` and any :class:`float` instance ``y``.
415
416   In addition to the standard numeric properties, decimal floating point
417   objects also have a number of specialized methods:
418
419
420   .. method:: adjusted()
421
422      Return the adjusted exponent after shifting out the coefficient's
423      rightmost digits until only the lead digit remains:
424      ``Decimal('321e+5').adjusted()`` returns seven.  Used for determining the
425      position of the most significant digit with respect to the decimal point.
426
427
428   .. method:: as_tuple()
429
430      Return a :term:`named tuple` representation of the number:
431      ``DecimalTuple(sign, digits, exponent)``.
432
433      .. versionchanged:: 2.6
434         Use a named tuple.
435
436
437   .. method:: canonical()
438
439      Return the canonical encoding of the argument.  Currently, the encoding of
440      a :class:`Decimal` instance is always canonical, so this operation returns
441      its argument unchanged.
442
443      .. versionadded:: 2.6
444
445   .. method:: compare(other[, context])
446
447      Compare the values of two Decimal instances.  This operation behaves in
448      the same way as the usual comparison method :meth:`__cmp__`, except that
449      :meth:`compare` returns a Decimal instance rather than an integer, and if
450      either operand is a NaN then the result is a NaN::
451
452         a or b is a NaN ==> Decimal('NaN')
453         a < b           ==> Decimal('-1')
454         a == b          ==> Decimal('0')
455         a > b           ==> Decimal('1')
456
457   .. method:: compare_signal(other[, context])
458
459      This operation is identical to the :meth:`compare` method, except that all
460      NaNs signal.  That is, if neither operand is a signaling NaN then any
461      quiet NaN operand is treated as though it were a signaling NaN.
462
463      .. versionadded:: 2.6
464
465   .. method:: compare_total(other)
466
467      Compare two operands using their abstract representation rather than their
468      numerical value.  Similar to the :meth:`compare` method, but the result
469      gives a total ordering on :class:`Decimal` instances.  Two
470      :class:`Decimal` instances with the same numeric value but different
471      representations compare unequal in this ordering:
472
473         >>> Decimal('12.0').compare_total(Decimal('12'))
474         Decimal('-1')
475
476      Quiet and signaling NaNs are also included in the total ordering.  The
477      result of this function is ``Decimal('0')`` if both operands have the same
478      representation, ``Decimal('-1')`` if the first operand is lower in the
479      total order than the second, and ``Decimal('1')`` if the first operand is
480      higher in the total order than the second operand.  See the specification
481      for details of the total order.
482
483      .. versionadded:: 2.6
484
485   .. method:: compare_total_mag(other)
486
487      Compare two operands using their abstract representation rather than their
488      value as in :meth:`compare_total`, but ignoring the sign of each operand.
489      ``x.compare_total_mag(y)`` is equivalent to
490      ``x.copy_abs().compare_total(y.copy_abs())``.
491
492      .. versionadded:: 2.6
493
494   .. method:: conjugate()
495
496      Just returns self, this method is only to comply with the Decimal
497      Specification.
498
499      .. versionadded:: 2.6
500
501   .. method:: copy_abs()
502
503      Return the absolute value of the argument.  This operation is unaffected
504      by the context and is quiet: no flags are changed and no rounding is
505      performed.
506
507      .. versionadded:: 2.6
508
509   .. method:: copy_negate()
510
511      Return the negation of the argument.  This operation is unaffected by the
512      context and is quiet: no flags are changed and no rounding is performed.
513
514      .. versionadded:: 2.6
515
516   .. method:: copy_sign(other)
517
518      Return a copy of the first operand with the sign set to be the same as the
519      sign of the second operand.  For example:
520
521         >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
522         Decimal('-2.3')
523
524      This operation is unaffected by the context and is quiet: no flags are
525      changed and no rounding is performed.
526
527      .. versionadded:: 2.6
528
529   .. method:: exp([context])
530
531      Return the value of the (natural) exponential function ``e**x`` at the
532      given number.  The result is correctly rounded using the
533      :const:`ROUND_HALF_EVEN` rounding mode.
534
535      >>> Decimal(1).exp()
536      Decimal('2.718281828459045235360287471')
537      >>> Decimal(321).exp()
538      Decimal('2.561702493119680037517373933E+139')
539
540      .. versionadded:: 2.6
541
542   .. method:: from_float(f)
543
544      Classmethod that converts a float to a decimal number, exactly.
545
546      Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
547      Since 0.1 is not exactly representable in binary floating point, the
548      value is stored as the nearest representable value which is
549      `0x1.999999999999ap-4`.  That equivalent value in decimal is
550      `0.1000000000000000055511151231257827021181583404541015625`.
551
552      .. note:: From Python 2.7 onwards, a :class:`Decimal` instance
553         can also be constructed directly from a :class:`float`.
554
555      .. doctest::
556
557          >>> Decimal.from_float(0.1)
558          Decimal('0.1000000000000000055511151231257827021181583404541015625')
559          >>> Decimal.from_float(float('nan'))
560          Decimal('NaN')
561          >>> Decimal.from_float(float('inf'))
562          Decimal('Infinity')
563          >>> Decimal.from_float(float('-inf'))
564          Decimal('-Infinity')
565
566      .. versionadded:: 2.7
567
568   .. method:: fma(other, third[, context])
569
570      Fused multiply-add.  Return self*other+third with no rounding of the
571      intermediate product self*other.
572
573      >>> Decimal(2).fma(3, 5)
574      Decimal('11')
575
576      .. versionadded:: 2.6
577
578   .. method:: is_canonical()
579
580      Return :const:`True` if the argument is canonical and :const:`False`
581      otherwise.  Currently, a :class:`Decimal` instance is always canonical, so
582      this operation always returns :const:`True`.
583
584      .. versionadded:: 2.6
585
586   .. method:: is_finite()
587
588      Return :const:`True` if the argument is a finite number, and
589      :const:`False` if the argument is an infinity or a NaN.
590
591      .. versionadded:: 2.6
592
593   .. method:: is_infinite()
594
595      Return :const:`True` if the argument is either positive or negative
596      infinity and :const:`False` otherwise.
597
598      .. versionadded:: 2.6
599
600   .. method:: is_nan()
601
602      Return :const:`True` if the argument is a (quiet or signaling) NaN and
603      :const:`False` otherwise.
604
605      .. versionadded:: 2.6
606
607   .. method:: is_normal()
608
609      Return :const:`True` if the argument is a *normal* finite non-zero
610      number with an adjusted exponent greater than or equal to *Emin*.
611      Return :const:`False` if the argument is zero, subnormal, infinite or a
612      NaN.  Note, the term *normal* is used here in a different sense with
613      the :meth:`normalize` method which is used to create canonical values.
614
615      .. versionadded:: 2.6
616
617   .. method:: is_qnan()
618
619      Return :const:`True` if the argument is a quiet NaN, and
620      :const:`False` otherwise.
621
622      .. versionadded:: 2.6
623
624   .. method:: is_signed()
625
626      Return :const:`True` if the argument has a negative sign and
627      :const:`False` otherwise.  Note that zeros and NaNs can both carry signs.
628
629      .. versionadded:: 2.6
630
631   .. method:: is_snan()
632
633      Return :const:`True` if the argument is a signaling NaN and :const:`False`
634      otherwise.
635
636      .. versionadded:: 2.6
637
638   .. method:: is_subnormal()
639
640      Return :const:`True` if the argument is subnormal, and :const:`False`
641      otherwise. A number is subnormal is if it is nonzero, finite, and has an
642      adjusted exponent less than *Emin*.
643
644      .. versionadded:: 2.6
645
646   .. method:: is_zero()
647
648      Return :const:`True` if the argument is a (positive or negative) zero and
649      :const:`False` otherwise.
650
651      .. versionadded:: 2.6
652
653   .. method:: ln([context])
654
655      Return the natural (base e) logarithm of the operand.  The result is
656      correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
657
658      .. versionadded:: 2.6
659
660   .. method:: log10([context])
661
662      Return the base ten logarithm of the operand.  The result is correctly
663      rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
664
665      .. versionadded:: 2.6
666
667   .. method:: logb([context])
668
669      For a nonzero number, return the adjusted exponent of its operand as a
670      :class:`Decimal` instance.  If the operand is a zero then
671      ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
672      is raised.  If the operand is an infinity then ``Decimal('Infinity')`` is
673      returned.
674
675      .. versionadded:: 2.6
676
677   .. method:: logical_and(other[, context])
678
679      :meth:`logical_and` is a logical operation which takes two *logical
680      operands* (see :ref:`logical_operands_label`).  The result is the
681      digit-wise ``and`` of the two operands.
682
683      .. versionadded:: 2.6
684
685   .. method:: logical_invert([context])
686
687      :meth:`logical_invert` is a logical operation.  The
688      result is the digit-wise inversion of the operand.
689
690      .. versionadded:: 2.6
691
692   .. method:: logical_or(other[, context])
693
694      :meth:`logical_or` is a logical operation which takes two *logical
695      operands* (see :ref:`logical_operands_label`).  The result is the
696      digit-wise ``or`` of the two operands.
697
698      .. versionadded:: 2.6
699
700   .. method:: logical_xor(other[, context])
701
702      :meth:`logical_xor` is a logical operation which takes two *logical
703      operands* (see :ref:`logical_operands_label`).  The result is the
704      digit-wise exclusive or of the two operands.
705
706      .. versionadded:: 2.6
707
708   .. method:: max(other[, context])
709
710      Like ``max(self, other)`` except that the context rounding rule is applied
711      before returning and that :const:`NaN` values are either signaled or
712      ignored (depending on the context and whether they are signaling or
713      quiet).
714
715   .. method:: max_mag(other[, context])
716
717      Similar to the :meth:`.max` method, but the comparison is done using the
718      absolute values of the operands.
719
720      .. versionadded:: 2.6
721
722   .. method:: min(other[, context])
723
724      Like ``min(self, other)`` except that the context rounding rule is applied
725      before returning and that :const:`NaN` values are either signaled or
726      ignored (depending on the context and whether they are signaling or
727      quiet).
728
729   .. method:: min_mag(other[, context])
730
731      Similar to the :meth:`.min` method, but the comparison is done using the
732      absolute values of the operands.
733
734      .. versionadded:: 2.6
735
736   .. method:: next_minus([context])
737
738      Return the largest number representable in the given context (or in the
739      current thread's context if no context is given) that is smaller than the
740      given operand.
741
742      .. versionadded:: 2.6
743
744   .. method:: next_plus([context])
745
746      Return the smallest number representable in the given context (or in the
747      current thread's context if no context is given) that is larger than the
748      given operand.
749
750      .. versionadded:: 2.6
751
752   .. method:: next_toward(other[, context])
753
754      If the two operands are unequal, return the number closest to the first
755      operand in the direction of the second operand.  If both operands are
756      numerically equal, return a copy of the first operand with the sign set to
757      be the same as the sign of the second operand.
758
759      .. versionadded:: 2.6
760
761   .. method:: normalize([context])
762
763      Normalize the number by stripping the rightmost trailing zeros and
764      converting any result equal to :const:`Decimal('0')` to
765      :const:`Decimal('0e0')`. Used for producing canonical values for attributes
766      of an equivalence class. For example, ``Decimal('32.100')`` and
767      ``Decimal('0.321000e+2')`` both normalize to the equivalent value
768      ``Decimal('32.1')``.
769
770   .. method:: number_class([context])
771
772      Return a string describing the *class* of the operand.  The returned value
773      is one of the following ten strings.
774
775      * ``"-Infinity"``, indicating that the operand is negative infinity.
776      * ``"-Normal"``, indicating that the operand is a negative normal number.
777      * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
778      * ``"-Zero"``, indicating that the operand is a negative zero.
779      * ``"+Zero"``, indicating that the operand is a positive zero.
780      * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
781      * ``"+Normal"``, indicating that the operand is a positive normal number.
782      * ``"+Infinity"``, indicating that the operand is positive infinity.
783      * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
784      * ``"sNaN"``, indicating that the operand is a signaling NaN.
785
786      .. versionadded:: 2.6
787
788   .. method:: quantize(exp[, rounding[, context[, watchexp]]])
789
790      Return a value equal to the first operand after rounding and having the
791      exponent of the second operand.
792
793      >>> Decimal('1.41421356').quantize(Decimal('1.000'))
794      Decimal('1.414')
795
796      Unlike other operations, if the length of the coefficient after the
797      quantize operation would be greater than precision, then an
798      :const:`InvalidOperation` is signaled. This guarantees that, unless there
799      is an error condition, the quantized exponent is always equal to that of
800      the right-hand operand.
801
802      Also unlike other operations, quantize never signals Underflow, even if
803      the result is subnormal and inexact.
804
805      If the exponent of the second operand is larger than that of the first
806      then rounding may be necessary.  In this case, the rounding mode is
807      determined by the ``rounding`` argument if given, else by the given
808      ``context`` argument; if neither argument is given the rounding mode of
809      the current thread's context is used.
810
811      If *watchexp* is set (default), then an error is returned whenever the
812      resulting exponent is greater than :attr:`Emax` or less than
813      :attr:`Etiny`.
814
815   .. method:: radix()
816
817      Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
818      class does all its arithmetic.  Included for compatibility with the
819      specification.
820
821      .. versionadded:: 2.6
822
823   .. method:: remainder_near(other[, context])
824
825      Return the remainder from dividing *self* by *other*.  This differs from
826      ``self % other`` in that the sign of the remainder is chosen so as to
827      minimize its absolute value.  More precisely, the return value is
828      ``self - n * other`` where ``n`` is the integer nearest to the exact
829      value of ``self / other``, and if two integers are equally near then the
830      even one is chosen.
831
832      If the result is zero then its sign will be the sign of *self*.
833
834      >>> Decimal(18).remainder_near(Decimal(10))
835      Decimal('-2')
836      >>> Decimal(25).remainder_near(Decimal(10))
837      Decimal('5')
838      >>> Decimal(35).remainder_near(Decimal(10))
839      Decimal('-5')
840
841   .. method:: rotate(other[, context])
842
843      Return the result of rotating the digits of the first operand by an amount
844      specified by the second operand.  The second operand must be an integer in
845      the range -precision through precision.  The absolute value of the second
846      operand gives the number of places to rotate.  If the second operand is
847      positive then rotation is to the left; otherwise rotation is to the right.
848      The coefficient of the first operand is padded on the left with zeros to
849      length precision if necessary.  The sign and exponent of the first operand
850      are unchanged.
851
852      .. versionadded:: 2.6
853
854   .. method:: same_quantum(other[, context])
855
856      Test whether self and other have the same exponent or whether both are
857      :const:`NaN`.
858
859   .. method:: scaleb(other[, context])
860
861      Return the first operand with exponent adjusted by the second.
862      Equivalently, return the first operand multiplied by ``10**other``.  The
863      second operand must be an integer.
864
865      .. versionadded:: 2.6
866
867   .. method:: shift(other[, context])
868
869      Return the result of shifting the digits of the first operand by an amount
870      specified by the second operand.  The second operand must be an integer in
871      the range -precision through precision.  The absolute value of the second
872      operand gives the number of places to shift.  If the second operand is
873      positive then the shift is to the left; otherwise the shift is to the
874      right.  Digits shifted into the coefficient are zeros.  The sign and
875      exponent of the first operand are unchanged.
876
877      .. versionadded:: 2.6
878
879   .. method:: sqrt([context])
880
881      Return the square root of the argument to full precision.
882
883
884   .. method:: to_eng_string([context])
885
886      Convert to a string, using engineering notation if an exponent is needed.
887
888      Engineering notation has an exponent which is a multiple of 3.  This
889      can leave up to 3 digits to the left of the decimal place and may
890      require the addition of either one or two trailing zeros.
891
892      For example, this converts ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
893
894   .. method:: to_integral([rounding[, context]])
895
896      Identical to the :meth:`to_integral_value` method.  The ``to_integral``
897      name has been kept for compatibility with older versions.
898
899   .. method:: to_integral_exact([rounding[, context]])
900
901      Round to the nearest integer, signaling :const:`Inexact` or
902      :const:`Rounded` as appropriate if rounding occurs.  The rounding mode is
903      determined by the ``rounding`` parameter if given, else by the given
904      ``context``.  If neither parameter is given then the rounding mode of the
905      current context is used.
906
907      .. versionadded:: 2.6
908
909   .. method:: to_integral_value([rounding[, context]])
910
911      Round to the nearest integer without signaling :const:`Inexact` or
912      :const:`Rounded`.  If given, applies *rounding*; otherwise, uses the
913      rounding method in either the supplied *context* or the current context.
914
915      .. versionchanged:: 2.6
916         renamed from ``to_integral`` to ``to_integral_value``.  The old name
917         remains valid for compatibility.
918
919.. _logical_operands_label:
920
921Logical operands
922^^^^^^^^^^^^^^^^
923
924The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
925and :meth:`logical_xor` methods expect their arguments to be *logical
926operands*.  A *logical operand* is a :class:`Decimal` instance whose
927exponent and sign are both zero, and whose digits are all either
928:const:`0` or :const:`1`.
929
930.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
931
932
933.. _decimal-context:
934
935Context objects
936---------------
937
938Contexts are environments for arithmetic operations.  They govern precision, set
939rules for rounding, determine which signals are treated as exceptions, and limit
940the range for exponents.
941
942Each thread has its own current context which is accessed or changed using the
943:func:`getcontext` and :func:`setcontext` functions:
944
945
946.. function:: getcontext()
947
948   Return the current context for the active thread.
949
950
951.. function:: setcontext(c)
952
953   Set the current context for the active thread to *c*.
954
955Beginning with Python 2.5, you can also use the :keyword:`with` statement and
956the :func:`localcontext` function to temporarily change the active context.
957
958
959.. function:: localcontext([c])
960
961   Return a context manager that will set the current context for the active thread
962   to a copy of *c* on entry to the with-statement and restore the previous context
963   when exiting the with-statement. If no context is specified, a copy of the
964   current context is used.
965
966   .. versionadded:: 2.5
967
968   For example, the following code sets the current decimal precision to 42 places,
969   performs a calculation, and then automatically restores the previous context::
970
971      from decimal import localcontext
972
973      with localcontext() as ctx:
974          ctx.prec = 42   # Perform a high precision calculation
975          s = calculate_something()
976      s = +s  # Round the final result back to the default precision
977
978      with localcontext(BasicContext):      # temporarily use the BasicContext
979          print Decimal(1) / Decimal(7)
980          print Decimal(355) / Decimal(113)
981
982New contexts can also be created using the :class:`Context` constructor
983described below. In addition, the module provides three pre-made contexts:
984
985
986.. class:: BasicContext
987
988   This is a standard context defined by the General Decimal Arithmetic
989   Specification.  Precision is set to nine.  Rounding is set to
990   :const:`ROUND_HALF_UP`.  All flags are cleared.  All traps are enabled (treated
991   as exceptions) except :const:`Inexact`, :const:`Rounded`, and
992   :const:`Subnormal`.
993
994   Because many of the traps are enabled, this context is useful for debugging.
995
996
997.. class:: ExtendedContext
998
999   This is a standard context defined by the General Decimal Arithmetic
1000   Specification.  Precision is set to nine.  Rounding is set to
1001   :const:`ROUND_HALF_EVEN`.  All flags are cleared.  No traps are enabled (so that
1002   exceptions are not raised during computations).
1003
1004   Because the traps are disabled, this context is useful for applications that
1005   prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
1006   raising exceptions.  This allows an application to complete a run in the
1007   presence of conditions that would otherwise halt the program.
1008
1009
1010.. class:: DefaultContext
1011
1012   This context is used by the :class:`Context` constructor as a prototype for new
1013   contexts.  Changing a field (such a precision) has the effect of changing the
1014   default for new contexts created by the :class:`Context` constructor.
1015
1016   This context is most useful in multi-threaded environments.  Changing one of the
1017   fields before threads are started has the effect of setting system-wide
1018   defaults.  Changing the fields after threads have started is not recommended as
1019   it would require thread synchronization to prevent race conditions.
1020
1021   In single threaded environments, it is preferable to not use this context at
1022   all.  Instead, simply create contexts explicitly as described below.
1023
1024   The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
1025   for Overflow, InvalidOperation, and DivisionByZero.
1026
1027In addition to the three supplied contexts, new contexts can be created with the
1028:class:`Context` constructor.
1029
1030
1031.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
1032
1033   Creates a new context.  If a field is not specified or is :const:`None`, the
1034   default values are copied from the :const:`DefaultContext`.  If the *flags*
1035   field is not specified or is :const:`None`, all flags are cleared.
1036
1037   The *prec* field is a positive integer that sets the precision for arithmetic
1038   operations in the context.
1039
1040   The *rounding* option is one of:
1041
1042   * :const:`ROUND_CEILING` (towards :const:`Infinity`),
1043   * :const:`ROUND_DOWN` (towards zero),
1044   * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1045   * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1046   * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1047   * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1048   * :const:`ROUND_UP` (away from zero).
1049   * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
1050     would have been 0 or 5; otherwise towards zero)
1051
1052   The *traps* and *flags* fields list any signals to be set. Generally, new
1053   contexts should only set traps and leave the flags clear.
1054
1055   The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1056   for exponents.
1057
1058   The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1059   :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1060   lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1061
1062   .. versionchanged:: 2.6
1063      The :const:`ROUND_05UP` rounding mode was added.
1064
1065   The :class:`Context` class defines several general purpose methods as well as
1066   a large number of methods for doing arithmetic directly in a given context.
1067   In addition, for each of the :class:`Decimal` methods described above (with
1068   the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
1069   a corresponding :class:`Context` method.  For example, for a :class:`Context`
1070   instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1071   equivalent to ``x.exp(context=C)``.  Each :class:`Context` method accepts a
1072   Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1073   Decimal instance is accepted.
1074
1075
1076   .. method:: clear_flags()
1077
1078      Resets all of the flags to :const:`0`.
1079
1080   .. method:: copy()
1081
1082      Return a duplicate of the context.
1083
1084   .. method:: copy_decimal(num)
1085
1086      Return a copy of the Decimal instance num.
1087
1088   .. method:: create_decimal(num)
1089
1090      Creates a new Decimal instance from *num* but using *self* as
1091      context. Unlike the :class:`Decimal` constructor, the context precision,
1092      rounding method, flags, and traps are applied to the conversion.
1093
1094      This is useful because constants are often given to a greater precision
1095      than is needed by the application.  Another benefit is that rounding
1096      immediately eliminates unintended effects from digits beyond the current
1097      precision. In the following example, using unrounded inputs means that
1098      adding zero to a sum can change the result:
1099
1100      .. doctest:: newcontext
1101
1102         >>> getcontext().prec = 3
1103         >>> Decimal('3.4445') + Decimal('1.0023')
1104         Decimal('4.45')
1105         >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1106         Decimal('4.44')
1107
1108      This method implements the to-number operation of the IBM specification.
1109      If the argument is a string, no leading or trailing whitespace is
1110      permitted.
1111
1112   .. method:: create_decimal_from_float(f)
1113
1114      Creates a new Decimal instance from a float *f* but rounding using *self*
1115      as the context.  Unlike the :meth:`Decimal.from_float` class method,
1116      the context precision, rounding method, flags, and traps are applied to
1117      the conversion.
1118
1119      .. doctest::
1120
1121         >>> context = Context(prec=5, rounding=ROUND_DOWN)
1122         >>> context.create_decimal_from_float(math.pi)
1123         Decimal('3.1415')
1124         >>> context = Context(prec=5, traps=[Inexact])
1125         >>> context.create_decimal_from_float(math.pi)
1126         Traceback (most recent call last):
1127             ...
1128         Inexact: None
1129
1130      .. versionadded:: 2.7
1131
1132   .. method:: Etiny()
1133
1134      Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1135      value for subnormal results.  When underflow occurs, the exponent is set
1136      to :const:`Etiny`.
1137
1138
1139   .. method:: Etop()
1140
1141      Returns a value equal to ``Emax - prec + 1``.
1142
1143   The usual approach to working with decimals is to create :class:`Decimal`
1144   instances and then apply arithmetic operations which take place within the
1145   current context for the active thread.  An alternative approach is to use
1146   context methods for calculating within a specific context.  The methods are
1147   similar to those for the :class:`Decimal` class and are only briefly
1148   recounted here.
1149
1150
1151   .. method:: abs(x)
1152
1153      Returns the absolute value of *x*.
1154
1155
1156   .. method:: add(x, y)
1157
1158      Return the sum of *x* and *y*.
1159
1160
1161   .. method:: canonical(x)
1162
1163      Returns the same Decimal object *x*.
1164
1165
1166   .. method:: compare(x, y)
1167
1168      Compares *x* and *y* numerically.
1169
1170
1171   .. method:: compare_signal(x, y)
1172
1173      Compares the values of the two operands numerically.
1174
1175
1176   .. method:: compare_total(x, y)
1177
1178      Compares two operands using their abstract representation.
1179
1180
1181   .. method:: compare_total_mag(x, y)
1182
1183      Compares two operands using their abstract representation, ignoring sign.
1184
1185
1186   .. method:: copy_abs(x)
1187
1188      Returns a copy of *x* with the sign set to 0.
1189
1190
1191   .. method:: copy_negate(x)
1192
1193      Returns a copy of *x* with the sign inverted.
1194
1195
1196   .. method:: copy_sign(x, y)
1197
1198      Copies the sign from *y* to *x*.
1199
1200
1201   .. method:: divide(x, y)
1202
1203      Return *x* divided by *y*.
1204
1205
1206   .. method:: divide_int(x, y)
1207
1208      Return *x* divided by *y*, truncated to an integer.
1209
1210
1211   .. method:: divmod(x, y)
1212
1213      Divides two numbers and returns the integer part of the result.
1214
1215
1216   .. method:: exp(x)
1217
1218      Returns `e ** x`.
1219
1220
1221   .. method:: fma(x, y, z)
1222
1223      Returns *x* multiplied by *y*, plus *z*.
1224
1225
1226   .. method:: is_canonical(x)
1227
1228      Returns ``True`` if *x* is canonical; otherwise returns ``False``.
1229
1230
1231   .. method:: is_finite(x)
1232
1233      Returns ``True`` if *x* is finite; otherwise returns ``False``.
1234
1235
1236   .. method:: is_infinite(x)
1237
1238      Returns ``True`` if *x* is infinite; otherwise returns ``False``.
1239
1240
1241   .. method:: is_nan(x)
1242
1243      Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
1244
1245
1246   .. method:: is_normal(x)
1247
1248      Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
1249
1250
1251   .. method:: is_qnan(x)
1252
1253      Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
1254
1255
1256   .. method:: is_signed(x)
1257
1258      Returns ``True`` if *x* is negative; otherwise returns ``False``.
1259
1260
1261   .. method:: is_snan(x)
1262
1263      Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
1264
1265
1266   .. method:: is_subnormal(x)
1267
1268      Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
1269
1270
1271   .. method:: is_zero(x)
1272
1273      Returns ``True`` if *x* is a zero; otherwise returns ``False``.
1274
1275
1276   .. method:: ln(x)
1277
1278      Returns the natural (base e) logarithm of *x*.
1279
1280
1281   .. method:: log10(x)
1282
1283      Returns the base 10 logarithm of *x*.
1284
1285
1286   .. method:: logb(x)
1287
1288       Returns the exponent of the magnitude of the operand's MSD.
1289
1290
1291   .. method:: logical_and(x, y)
1292
1293      Applies the logical operation *and* between each operand's digits.
1294
1295
1296   .. method:: logical_invert(x)
1297
1298      Invert all the digits in *x*.
1299
1300
1301   .. method:: logical_or(x, y)
1302
1303      Applies the logical operation *or* between each operand's digits.
1304
1305
1306   .. method:: logical_xor(x, y)
1307
1308      Applies the logical operation *xor* between each operand's digits.
1309
1310
1311   .. method:: max(x, y)
1312
1313      Compares two values numerically and returns the maximum.
1314
1315
1316   .. method:: max_mag(x, y)
1317
1318      Compares the values numerically with their sign ignored.
1319
1320
1321   .. method:: min(x, y)
1322
1323      Compares two values numerically and returns the minimum.
1324
1325
1326   .. method:: min_mag(x, y)
1327
1328      Compares the values numerically with their sign ignored.
1329
1330
1331   .. method:: minus(x)
1332
1333      Minus corresponds to the unary prefix minus operator in Python.
1334
1335
1336   .. method:: multiply(x, y)
1337
1338      Return the product of *x* and *y*.
1339
1340
1341   .. method:: next_minus(x)
1342
1343      Returns the largest representable number smaller than *x*.
1344
1345
1346   .. method:: next_plus(x)
1347
1348      Returns the smallest representable number larger than *x*.
1349
1350
1351   .. method:: next_toward(x, y)
1352
1353      Returns the number closest to *x*, in direction towards *y*.
1354
1355
1356   .. method:: normalize(x)
1357
1358      Reduces *x* to its simplest form.
1359
1360
1361   .. method:: number_class(x)
1362
1363      Returns an indication of the class of *x*.
1364
1365
1366   .. method:: plus(x)
1367
1368      Plus corresponds to the unary prefix plus operator in Python.  This
1369      operation applies the context precision and rounding, so it is *not* an
1370      identity operation.
1371
1372
1373   .. method:: power(x, y[, modulo])
1374
1375      Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
1376
1377      With two arguments, compute ``x**y``.  If ``x`` is negative then ``y``
1378      must be integral.  The result will be inexact unless ``y`` is integral and
1379      the result is finite and can be expressed exactly in 'precision' digits.
1380      The result should always be correctly rounded, using the rounding mode of
1381      the current thread's context.
1382
1383      With three arguments, compute ``(x**y) % modulo``.  For the three argument
1384      form, the following restrictions on the arguments hold:
1385
1386         - all three arguments must be integral
1387         - ``y`` must be nonnegative
1388         - at least one of ``x`` or ``y`` must be nonzero
1389         - ``modulo`` must be nonzero and have at most 'precision' digits
1390
1391      The value resulting from ``Context.power(x, y, modulo)`` is
1392      equal to the value that would be obtained by computing ``(x**y)
1393      % modulo`` with unbounded precision, but is computed more
1394      efficiently.  The exponent of the result is zero, regardless of
1395      the exponents of ``x``, ``y`` and ``modulo``.  The result is
1396      always exact.
1397
1398      .. versionchanged:: 2.6
1399         ``y`` may now be nonintegral in ``x**y``.
1400         Stricter requirements for the three-argument version.
1401
1402
1403   .. method:: quantize(x, y)
1404
1405      Returns a value equal to *x* (rounded), having the exponent of *y*.
1406
1407
1408   .. method:: radix()
1409
1410      Just returns 10, as this is Decimal, :)
1411
1412
1413   .. method:: remainder(x, y)
1414
1415      Returns the remainder from integer division.
1416
1417      The sign of the result, if non-zero, is the same as that of the original
1418      dividend.
1419
1420   .. method:: remainder_near(x, y)
1421
1422      Returns ``x - y * n``, where *n* is the integer nearest the exact value
1423      of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
1424
1425
1426   .. method:: rotate(x, y)
1427
1428      Returns a rotated copy of *x*, *y* times.
1429
1430
1431   .. method:: same_quantum(x, y)
1432
1433      Returns ``True`` if the two operands have the same exponent.
1434
1435
1436   .. method:: scaleb (x, y)
1437
1438      Returns the first operand after adding the second value its exp.
1439
1440
1441   .. method:: shift(x, y)
1442
1443      Returns a shifted copy of *x*, *y* times.
1444
1445
1446   .. method:: sqrt(x)
1447
1448      Square root of a non-negative number to context precision.
1449
1450
1451   .. method:: subtract(x, y)
1452
1453      Return the difference between *x* and *y*.
1454
1455
1456   .. method:: to_eng_string(x)
1457
1458      Convert to a string, using engineering notation if an exponent is needed.
1459
1460      Engineering notation has an exponent which is a multiple of 3.  This
1461      can leave up to 3 digits to the left of the decimal place and may
1462      require the addition of either one or two trailing zeros.
1463
1464
1465   .. method:: to_integral_exact(x)
1466
1467      Rounds to an integer.
1468
1469
1470   .. method:: to_sci_string(x)
1471
1472      Converts a number to a string using scientific notation.
1473
1474.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1475
1476
1477.. _decimal-signals:
1478
1479Signals
1480-------
1481
1482Signals represent conditions that arise during computation. Each corresponds to
1483one context flag and one context trap enabler.
1484
1485The context flag is set whenever the condition is encountered. After the
1486computation, flags may be checked for informational purposes (for instance, to
1487determine whether a computation was exact). After checking the flags, be sure to
1488clear all flags before starting the next computation.
1489
1490If the context's trap enabler is set for the signal, then the condition causes a
1491Python exception to be raised.  For example, if the :class:`DivisionByZero` trap
1492is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1493condition.
1494
1495
1496.. class:: Clamped
1497
1498   Altered an exponent to fit representation constraints.
1499
1500   Typically, clamping occurs when an exponent falls outside the context's
1501   :attr:`Emin` and :attr:`Emax` limits.  If possible, the exponent is reduced to
1502   fit by adding zeros to the coefficient.
1503
1504
1505.. class:: DecimalException
1506
1507   Base class for other signals and a subclass of :exc:`ArithmeticError`.
1508
1509
1510.. class:: DivisionByZero
1511
1512   Signals the division of a non-infinite number by zero.
1513
1514   Can occur with division, modulo division, or when raising a number to a negative
1515   power.  If this signal is not trapped, returns :const:`Infinity` or
1516   :const:`-Infinity` with the sign determined by the inputs to the calculation.
1517
1518
1519.. class:: Inexact
1520
1521   Indicates that rounding occurred and the result is not exact.
1522
1523   Signals when non-zero digits were discarded during rounding. The rounded result
1524   is returned.  The signal flag or trap is used to detect when results are
1525   inexact.
1526
1527
1528.. class:: InvalidOperation
1529
1530   An invalid operation was performed.
1531
1532   Indicates that an operation was requested that does not make sense. If not
1533   trapped, returns :const:`NaN`.  Possible causes include::
1534
1535      Infinity - Infinity
1536      0 * Infinity
1537      Infinity / Infinity
1538      x % 0
1539      Infinity % x
1540      x._rescale( non-integer )
1541      sqrt(-x) and x > 0
1542      0 ** 0
1543      x ** (non-integer)
1544      x ** Infinity
1545
1546
1547.. class:: Overflow
1548
1549   Numerical overflow.
1550
1551   Indicates the exponent is larger than :attr:`Emax` after rounding has
1552   occurred.  If not trapped, the result depends on the rounding mode, either
1553   pulling inward to the largest representable finite number or rounding outward
1554   to :const:`Infinity`.  In either case, :class:`Inexact` and :class:`Rounded`
1555   are also signaled.
1556
1557
1558.. class:: Rounded
1559
1560   Rounding occurred though possibly no information was lost.
1561
1562   Signaled whenever rounding discards digits; even if those digits are zero
1563   (such as rounding :const:`5.00` to :const:`5.0`).  If not trapped, returns
1564   the result unchanged.  This signal is used to detect loss of significant
1565   digits.
1566
1567
1568.. class:: Subnormal
1569
1570   Exponent was lower than :attr:`Emin` prior to rounding.
1571
1572   Occurs when an operation result is subnormal (the exponent is too small). If
1573   not trapped, returns the result unchanged.
1574
1575
1576.. class:: Underflow
1577
1578   Numerical underflow with result rounded to zero.
1579
1580   Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1581   and :class:`Subnormal` are also signaled.
1582
1583The following table summarizes the hierarchy of signals::
1584
1585   exceptions.ArithmeticError(exceptions.StandardError)
1586       DecimalException
1587           Clamped
1588           DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1589           Inexact
1590               Overflow(Inexact, Rounded)
1591               Underflow(Inexact, Rounded, Subnormal)
1592           InvalidOperation
1593           Rounded
1594           Subnormal
1595
1596.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1597
1598
1599.. _decimal-notes:
1600
1601Floating Point Notes
1602--------------------
1603
1604
1605Mitigating round-off error with increased precision
1606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1607
1608The use of decimal floating point eliminates decimal representation error
1609(making it possible to represent :const:`0.1` exactly); however, some operations
1610can still incur round-off error when non-zero digits exceed the fixed precision.
1611
1612The effects of round-off error can be amplified by the addition or subtraction
1613of nearly offsetting quantities resulting in loss of significance.  Knuth
1614provides two instructive examples where rounded floating point arithmetic with
1615insufficient precision causes the breakdown of the associative and distributive
1616properties of addition:
1617
1618.. doctest:: newcontext
1619
1620   # Examples from Seminumerical Algorithms, Section 4.2.2.
1621   >>> from decimal import Decimal, getcontext
1622   >>> getcontext().prec = 8
1623
1624   >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1625   >>> (u + v) + w
1626   Decimal('9.5111111')
1627   >>> u + (v + w)
1628   Decimal('10')
1629
1630   >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1631   >>> (u*v) + (u*w)
1632   Decimal('0.01')
1633   >>> u * (v+w)
1634   Decimal('0.0060000')
1635
1636The :mod:`decimal` module makes it possible to restore the identities by
1637expanding the precision sufficiently to avoid loss of significance:
1638
1639.. doctest:: newcontext
1640
1641   >>> getcontext().prec = 20
1642   >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1643   >>> (u + v) + w
1644   Decimal('9.51111111')
1645   >>> u + (v + w)
1646   Decimal('9.51111111')
1647   >>>
1648   >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1649   >>> (u*v) + (u*w)
1650   Decimal('0.0060000')
1651   >>> u * (v+w)
1652   Decimal('0.0060000')
1653
1654
1655Special values
1656^^^^^^^^^^^^^^
1657
1658The number system for the :mod:`decimal` module provides special values
1659including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
1660and two zeros, :const:`+0` and :const:`-0`.
1661
1662Infinities can be constructed directly with:  ``Decimal('Infinity')``. Also,
1663they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1664not trapped.  Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1665can result from rounding beyond the limits of the largest representable number.
1666
1667The infinities are signed (affine) and can be used in arithmetic operations
1668where they get treated as very large, indeterminate numbers.  For instance,
1669adding a constant to infinity gives another infinite result.
1670
1671Some operations are indeterminate and return :const:`NaN`, or if the
1672:exc:`InvalidOperation` signal is trapped, raise an exception.  For example,
1673``0/0`` returns :const:`NaN` which means "not a number".  This variety of
1674:const:`NaN` is quiet and, once created, will flow through other computations
1675always resulting in another :const:`NaN`.  This behavior can be useful for a
1676series of computations that occasionally have missing inputs --- it allows the
1677calculation to proceed while flagging specific results as invalid.
1678
1679A variant is :const:`sNaN` which signals rather than remaining quiet after every
1680operation.  This is a useful return value when an invalid result needs to
1681interrupt a calculation for special handling.
1682
1683The behavior of Python's comparison operators can be a little surprising where a
1684:const:`NaN` is involved.  A test for equality where one of the operands is a
1685quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1686``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1687:const:`True`.  An attempt to compare two Decimals using any of the ``<``,
1688``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1689if either operand is a :const:`NaN`, and return :const:`False` if this signal is
1690not trapped.  Note that the General Decimal Arithmetic specification does not
1691specify the behavior of direct comparisons; these rules for comparisons
1692involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1693section 5.7).  To ensure strict standards-compliance, use the :meth:`compare`
1694and :meth:`compare-signal` methods instead.
1695
1696The signed zeros can result from calculations that underflow. They keep the sign
1697that would have resulted if the calculation had been carried out to greater
1698precision.  Since their magnitude is zero, both positive and negative zeros are
1699treated as equal and their sign is informational.
1700
1701In addition to the two signed zeros which are distinct yet equal, there are
1702various representations of zero with differing precisions yet equivalent in
1703value.  This takes a bit of getting used to.  For an eye accustomed to
1704normalized floating point representations, it is not immediately obvious that
1705the following calculation returns a value equal to zero:
1706
1707   >>> 1 / Decimal('Infinity')
1708   Decimal('0E-1000000026')
1709
1710.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1711
1712
1713.. _decimal-threads:
1714
1715Working with threads
1716--------------------
1717
1718The :func:`getcontext` function accesses a different :class:`Context` object for
1719each thread.  Having separate thread contexts means that threads may make
1720changes (such as ``getcontext.prec=10``) without interfering with other threads.
1721
1722Likewise, the :func:`setcontext` function automatically assigns its target to
1723the current thread.
1724
1725If :func:`setcontext` has not been called before :func:`getcontext`, then
1726:func:`getcontext` will automatically create a new context for use in the
1727current thread.
1728
1729The new context is copied from a prototype context called *DefaultContext*. To
1730control the defaults so that each thread will use the same values throughout the
1731application, directly modify the *DefaultContext* object. This should be done
1732*before* any threads are started so that there won't be a race condition between
1733threads calling :func:`getcontext`. For example::
1734
1735   # Set applicationwide defaults for all threads about to be launched
1736   DefaultContext.prec = 12
1737   DefaultContext.rounding = ROUND_DOWN
1738   DefaultContext.traps = ExtendedContext.traps.copy()
1739   DefaultContext.traps[InvalidOperation] = 1
1740   setcontext(DefaultContext)
1741
1742   # Afterwards, the threads can be started
1743   t1.start()
1744   t2.start()
1745   t3.start()
1746    . . .
1747
1748.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1749
1750
1751.. _decimal-recipes:
1752
1753Recipes
1754-------
1755
1756Here are a few recipes that serve as utility functions and that demonstrate ways
1757to work with the :class:`Decimal` class::
1758
1759   def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1760                pos='', neg='-', trailneg=''):
1761       """Convert Decimal to a money formatted string.
1762
1763       places:  required number of places after the decimal point
1764       curr:    optional currency symbol before the sign (may be blank)
1765       sep:     optional grouping separator (comma, period, space, or blank)
1766       dp:      decimal point indicator (comma or period)
1767                only specify as blank when places is zero
1768       pos:     optional sign for positive numbers: '+', space or blank
1769       neg:     optional sign for negative numbers: '-', '(', space or blank
1770       trailneg:optional trailing minus indicator:  '-', ')', space or blank
1771
1772       >>> d = Decimal('-1234567.8901')
1773       >>> moneyfmt(d, curr='$')
1774       '-$1,234,567.89'
1775       >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1776       '1.234.568-'
1777       >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1778       '($1,234,567.89)'
1779       >>> moneyfmt(Decimal(123456789), sep=' ')
1780       '123 456 789.00'
1781       >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
1782       '<0.02>'
1783
1784       """
1785       q = Decimal(10) ** -places      # 2 places --> '0.01'
1786       sign, digits, exp = value.quantize(q).as_tuple()
1787       result = []
1788       digits = map(str, digits)
1789       build, next = result.append, digits.pop
1790       if sign:
1791           build(trailneg)
1792       for i in range(places):
1793           build(next() if digits else '0')
1794       build(dp)
1795       if not digits:
1796           build('0')
1797       i = 0
1798       while digits:
1799           build(next())
1800           i += 1
1801           if i == 3 and digits:
1802               i = 0
1803               build(sep)
1804       build(curr)
1805       build(neg if sign else pos)
1806       return ''.join(reversed(result))
1807
1808   def pi():
1809       """Compute Pi to the current precision.
1810
1811       >>> print pi()
1812       3.141592653589793238462643383
1813
1814       """
1815       getcontext().prec += 2  # extra digits for intermediate steps
1816       three = Decimal(3)      # substitute "three=3.0" for regular floats
1817       lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1818       while s != lasts:
1819           lasts = s
1820           n, na = n+na, na+8
1821           d, da = d+da, da+32
1822           t = (t * n) / d
1823           s += t
1824       getcontext().prec -= 2
1825       return +s               # unary plus applies the new precision
1826
1827   def exp(x):
1828       """Return e raised to the power of x.  Result type matches input type.
1829
1830       >>> print exp(Decimal(1))
1831       2.718281828459045235360287471
1832       >>> print exp(Decimal(2))
1833       7.389056098930650227230427461
1834       >>> print exp(2.0)
1835       7.38905609893
1836       >>> print exp(2+0j)
1837       (7.38905609893+0j)
1838
1839       """
1840       getcontext().prec += 2
1841       i, lasts, s, fact, num = 0, 0, 1, 1, 1
1842       while s != lasts:
1843           lasts = s
1844           i += 1
1845           fact *= i
1846           num *= x
1847           s += num / fact
1848       getcontext().prec -= 2
1849       return +s
1850
1851   def cos(x):
1852       """Return the cosine of x as measured in radians.
1853
1854       >>> print cos(Decimal('0.5'))
1855       0.8775825618903727161162815826
1856       >>> print cos(0.5)
1857       0.87758256189
1858       >>> print cos(0.5+0j)
1859       (0.87758256189+0j)
1860
1861       """
1862       getcontext().prec += 2
1863       i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1864       while s != lasts:
1865           lasts = s
1866           i += 2
1867           fact *= i * (i-1)
1868           num *= x * x
1869           sign *= -1
1870           s += num / fact * sign
1871       getcontext().prec -= 2
1872       return +s
1873
1874   def sin(x):
1875       """Return the sine of x as measured in radians.
1876
1877       >>> print sin(Decimal('0.5'))
1878       0.4794255386042030002732879352
1879       >>> print sin(0.5)
1880       0.479425538604
1881       >>> print sin(0.5+0j)
1882       (0.479425538604+0j)
1883
1884       """
1885       getcontext().prec += 2
1886       i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1887       while s != lasts:
1888           lasts = s
1889           i += 2
1890           fact *= i * (i-1)
1891           num *= x * x
1892           sign *= -1
1893           s += num / fact * sign
1894       getcontext().prec -= 2
1895       return +s
1896
1897
1898.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1899
1900
1901.. _decimal-faq:
1902
1903Decimal FAQ
1904-----------
1905
1906Q. It is cumbersome to type ``decimal.Decimal('1234.5')``.  Is there a way to
1907minimize typing when using the interactive interpreter?
1908
1909A. Some users abbreviate the constructor to just a single letter:
1910
1911   >>> D = decimal.Decimal
1912   >>> D('1.23') + D('3.45')
1913   Decimal('4.68')
1914
1915Q. In a fixed-point application with two decimal places, some inputs have many
1916places and need to be rounded.  Others are not supposed to have excess digits
1917and need to be validated.  What methods should be used?
1918
1919A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
1920the :const:`Inexact` trap is set, it is also useful for validation:
1921
1922   >>> TWOPLACES = Decimal(10) ** -2       # same as Decimal('0.01')
1923
1924   >>> # Round to two places
1925   >>> Decimal('3.214').quantize(TWOPLACES)
1926   Decimal('3.21')
1927
1928   >>> # Validate that a number does not exceed two places
1929   >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1930   Decimal('3.21')
1931
1932   >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1933   Traceback (most recent call last):
1934      ...
1935   Inexact: None
1936
1937Q. Once I have valid two place inputs, how do I maintain that invariant
1938throughout an application?
1939
1940A. Some operations like addition, subtraction, and multiplication by an integer
1941will automatically preserve fixed point.  Others operations, like division and
1942non-integer multiplication, will change the number of decimal places and need to
1943be followed-up with a :meth:`quantize` step:
1944
1945    >>> a = Decimal('102.72')           # Initial fixed-point values
1946    >>> b = Decimal('3.17')
1947    >>> a + b                           # Addition preserves fixed-point
1948    Decimal('105.89')
1949    >>> a - b
1950    Decimal('99.55')
1951    >>> a * 42                          # So does integer multiplication
1952    Decimal('4314.24')
1953    >>> (a * b).quantize(TWOPLACES)     # Must quantize non-integer multiplication
1954    Decimal('325.62')
1955    >>> (b / a).quantize(TWOPLACES)     # And quantize division
1956    Decimal('0.03')
1957
1958In developing fixed-point applications, it is convenient to define functions
1959to handle the :meth:`quantize` step:
1960
1961    >>> def mul(x, y, fp=TWOPLACES):
1962    ...     return (x * y).quantize(fp)
1963    >>> def div(x, y, fp=TWOPLACES):
1964    ...     return (x / y).quantize(fp)
1965
1966    >>> mul(a, b)                       # Automatically preserve fixed-point
1967    Decimal('325.62')
1968    >>> div(b, a)
1969    Decimal('0.03')
1970
1971Q. There are many ways to express the same value.  The numbers :const:`200`,
1972:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1973various precisions. Is there a way to transform them to a single recognizable
1974canonical value?
1975
1976A. The :meth:`normalize` method maps all equivalent values to a single
1977representative:
1978
1979   >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1980   >>> [v.normalize() for v in values]
1981   [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
1982
1983Q. Some decimal values always print with exponential notation.  Is there a way
1984to get a non-exponential representation?
1985
1986A. For some values, exponential notation is the only way to express the number
1987of significant places in the coefficient.  For example, expressing
1988:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1989original's two-place significance.
1990
1991If an application does not care about tracking significance, it is easy to
1992remove the exponent and trailing zeros, losing significance, but keeping the
1993value unchanged::
1994
1995    def remove_exponent(d):
1996        '''Remove exponent and trailing zeros.
1997
1998        >>> remove_exponent(Decimal('5E+3'))
1999        Decimal('5000')
2000
2001        '''
2002        return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2003
2004Q. Is there a way to convert a regular float to a :class:`Decimal`?
2005
2006A. Yes, any binary floating point number can be exactly expressed as a
2007Decimal though an exact conversion may take more precision than intuition would
2008suggest:
2009
2010.. doctest::
2011
2012    >>> Decimal(math.pi)
2013    Decimal('3.141592653589793115997963468544185161590576171875')
2014
2015Q. Within a complex calculation, how can I make sure that I haven't gotten a
2016spurious result because of insufficient precision or rounding anomalies.
2017
2018A. The decimal module makes it easy to test results.  A best practice is to
2019re-run calculations using greater precision and with various rounding modes.
2020Widely differing results indicate insufficient precision, rounding mode issues,
2021ill-conditioned inputs, or a numerically unstable algorithm.
2022
2023Q. I noticed that context precision is applied to the results of operations but
2024not to the inputs.  Is there anything to watch out for when mixing values of
2025different precisions?
2026
2027A. Yes.  The principle is that all values are considered to be exact and so is
2028the arithmetic on those values.  Only the results are rounded.  The advantage
2029for inputs is that "what you type is what you get".  A disadvantage is that the
2030results can look odd if you forget that the inputs haven't been rounded:
2031
2032.. doctest:: newcontext
2033
2034   >>> getcontext().prec = 3
2035   >>> Decimal('3.104') + Decimal('2.104')
2036   Decimal('5.21')
2037   >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
2038   Decimal('5.20')
2039
2040The solution is either to increase precision or to force rounding of inputs
2041using the unary plus operation:
2042
2043.. doctest:: newcontext
2044
2045   >>> getcontext().prec = 3
2046   >>> +Decimal('1.23456789')      # unary plus triggers rounding
2047   Decimal('1.23')
2048
2049Alternatively, inputs can be rounded upon creation using the
2050:meth:`Context.create_decimal` method:
2051
2052   >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
2053   Decimal('1.2345')
2054
2055