• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1"""
2Module difflib -- helpers for computing deltas between objects.
3
4Function get_close_matches(word, possibilities, n=3, cutoff=0.6):
5    Use SequenceMatcher to return list of the best "good enough" matches.
6
7Function context_diff(a, b):
8    For two lists of strings, return a delta in context diff format.
9
10Function ndiff(a, b):
11    Return a delta: the difference between `a` and `b` (lists of strings).
12
13Function restore(delta, which):
14    Return one of the two sequences that generated an ndiff delta.
15
16Function unified_diff(a, b):
17    For two lists of strings, return a delta in unified diff format.
18
19Class SequenceMatcher:
20    A flexible class for comparing pairs of sequences of any type.
21
22Class Differ:
23    For producing human-readable deltas from sequences of lines of text.
24
25Class HtmlDiff:
26    For producing HTML side by side comparison with change highlights.
27"""
28
29__all__ = ['get_close_matches', 'ndiff', 'restore', 'SequenceMatcher',
30           'Differ','IS_CHARACTER_JUNK', 'IS_LINE_JUNK', 'context_diff',
31           'unified_diff', 'diff_bytes', 'HtmlDiff', 'Match']
32
33from heapq import nlargest as _nlargest
34from collections import namedtuple as _namedtuple
35from types import GenericAlias
36
37Match = _namedtuple('Match', 'a b size')
38
39def _calculate_ratio(matches, length):
40    if length:
41        return 2.0 * matches / length
42    return 1.0
43
44class SequenceMatcher:
45
46    """
47    SequenceMatcher is a flexible class for comparing pairs of sequences of
48    any type, so long as the sequence elements are hashable.  The basic
49    algorithm predates, and is a little fancier than, an algorithm
50    published in the late 1980's by Ratcliff and Obershelp under the
51    hyperbolic name "gestalt pattern matching".  The basic idea is to find
52    the longest contiguous matching subsequence that contains no "junk"
53    elements (R-O doesn't address junk).  The same idea is then applied
54    recursively to the pieces of the sequences to the left and to the right
55    of the matching subsequence.  This does not yield minimal edit
56    sequences, but does tend to yield matches that "look right" to people.
57
58    SequenceMatcher tries to compute a "human-friendly diff" between two
59    sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
60    longest *contiguous* & junk-free matching subsequence.  That's what
61    catches peoples' eyes.  The Windows(tm) windiff has another interesting
62    notion, pairing up elements that appear uniquely in each sequence.
63    That, and the method here, appear to yield more intuitive difference
64    reports than does diff.  This method appears to be the least vulnerable
65    to syncing up on blocks of "junk lines", though (like blank lines in
66    ordinary text files, or maybe "<P>" lines in HTML files).  That may be
67    because this is the only method of the 3 that has a *concept* of
68    "junk" <wink>.
69
70    Example, comparing two strings, and considering blanks to be "junk":
71
72    >>> s = SequenceMatcher(lambda x: x == " ",
73    ...                     "private Thread currentThread;",
74    ...                     "private volatile Thread currentThread;")
75    >>>
76
77    .ratio() returns a float in [0, 1], measuring the "similarity" of the
78    sequences.  As a rule of thumb, a .ratio() value over 0.6 means the
79    sequences are close matches:
80
81    >>> print(round(s.ratio(), 3))
82    0.866
83    >>>
84
85    If you're only interested in where the sequences match,
86    .get_matching_blocks() is handy:
87
88    >>> for block in s.get_matching_blocks():
89    ...     print("a[%d] and b[%d] match for %d elements" % block)
90    a[0] and b[0] match for 8 elements
91    a[8] and b[17] match for 21 elements
92    a[29] and b[38] match for 0 elements
93
94    Note that the last tuple returned by .get_matching_blocks() is always a
95    dummy, (len(a), len(b), 0), and this is the only case in which the last
96    tuple element (number of elements matched) is 0.
97
98    If you want to know how to change the first sequence into the second,
99    use .get_opcodes():
100
101    >>> for opcode in s.get_opcodes():
102    ...     print("%6s a[%d:%d] b[%d:%d]" % opcode)
103     equal a[0:8] b[0:8]
104    insert a[8:8] b[8:17]
105     equal a[8:29] b[17:38]
106
107    See the Differ class for a fancy human-friendly file differencer, which
108    uses SequenceMatcher both to compare sequences of lines, and to compare
109    sequences of characters within similar (near-matching) lines.
110
111    See also function get_close_matches() in this module, which shows how
112    simple code building on SequenceMatcher can be used to do useful work.
113
114    Timing:  Basic R-O is cubic time worst case and quadratic time expected
115    case.  SequenceMatcher is quadratic time for the worst case and has
116    expected-case behavior dependent in a complicated way on how many
117    elements the sequences have in common; best case time is linear.
118    """
119
120    def __init__(self, isjunk=None, a='', b='', autojunk=True):
121        """Construct a SequenceMatcher.
122
123        Optional arg isjunk is None (the default), or a one-argument
124        function that takes a sequence element and returns true iff the
125        element is junk.  None is equivalent to passing "lambda x: 0", i.e.
126        no elements are considered to be junk.  For example, pass
127            lambda x: x in " \\t"
128        if you're comparing lines as sequences of characters, and don't
129        want to synch up on blanks or hard tabs.
130
131        Optional arg a is the first of two sequences to be compared.  By
132        default, an empty string.  The elements of a must be hashable.  See
133        also .set_seqs() and .set_seq1().
134
135        Optional arg b is the second of two sequences to be compared.  By
136        default, an empty string.  The elements of b must be hashable. See
137        also .set_seqs() and .set_seq2().
138
139        Optional arg autojunk should be set to False to disable the
140        "automatic junk heuristic" that treats popular elements as junk
141        (see module documentation for more information).
142        """
143
144        # Members:
145        # a
146        #      first sequence
147        # b
148        #      second sequence; differences are computed as "what do
149        #      we need to do to 'a' to change it into 'b'?"
150        # b2j
151        #      for x in b, b2j[x] is a list of the indices (into b)
152        #      at which x appears; junk and popular elements do not appear
153        # fullbcount
154        #      for x in b, fullbcount[x] == the number of times x
155        #      appears in b; only materialized if really needed (used
156        #      only for computing quick_ratio())
157        # matching_blocks
158        #      a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
159        #      ascending & non-overlapping in i and in j; terminated by
160        #      a dummy (len(a), len(b), 0) sentinel
161        # opcodes
162        #      a list of (tag, i1, i2, j1, j2) tuples, where tag is
163        #      one of
164        #          'replace'   a[i1:i2] should be replaced by b[j1:j2]
165        #          'delete'    a[i1:i2] should be deleted
166        #          'insert'    b[j1:j2] should be inserted
167        #          'equal'     a[i1:i2] == b[j1:j2]
168        # isjunk
169        #      a user-supplied function taking a sequence element and
170        #      returning true iff the element is "junk" -- this has
171        #      subtle but helpful effects on the algorithm, which I'll
172        #      get around to writing up someday <0.9 wink>.
173        #      DON'T USE!  Only __chain_b uses this.  Use "in self.bjunk".
174        # bjunk
175        #      the items in b for which isjunk is True.
176        # bpopular
177        #      nonjunk items in b treated as junk by the heuristic (if used).
178
179        self.isjunk = isjunk
180        self.a = self.b = None
181        self.autojunk = autojunk
182        self.set_seqs(a, b)
183
184    def set_seqs(self, a, b):
185        """Set the two sequences to be compared.
186
187        >>> s = SequenceMatcher()
188        >>> s.set_seqs("abcd", "bcde")
189        >>> s.ratio()
190        0.75
191        """
192
193        self.set_seq1(a)
194        self.set_seq2(b)
195
196    def set_seq1(self, a):
197        """Set the first sequence to be compared.
198
199        The second sequence to be compared is not changed.
200
201        >>> s = SequenceMatcher(None, "abcd", "bcde")
202        >>> s.ratio()
203        0.75
204        >>> s.set_seq1("bcde")
205        >>> s.ratio()
206        1.0
207        >>>
208
209        SequenceMatcher computes and caches detailed information about the
210        second sequence, so if you want to compare one sequence S against
211        many sequences, use .set_seq2(S) once and call .set_seq1(x)
212        repeatedly for each of the other sequences.
213
214        See also set_seqs() and set_seq2().
215        """
216
217        if a is self.a:
218            return
219        self.a = a
220        self.matching_blocks = self.opcodes = None
221
222    def set_seq2(self, b):
223        """Set the second sequence to be compared.
224
225        The first sequence to be compared is not changed.
226
227        >>> s = SequenceMatcher(None, "abcd", "bcde")
228        >>> s.ratio()
229        0.75
230        >>> s.set_seq2("abcd")
231        >>> s.ratio()
232        1.0
233        >>>
234
235        SequenceMatcher computes and caches detailed information about the
236        second sequence, so if you want to compare one sequence S against
237        many sequences, use .set_seq2(S) once and call .set_seq1(x)
238        repeatedly for each of the other sequences.
239
240        See also set_seqs() and set_seq1().
241        """
242
243        if b is self.b:
244            return
245        self.b = b
246        self.matching_blocks = self.opcodes = None
247        self.fullbcount = None
248        self.__chain_b()
249
250    # For each element x in b, set b2j[x] to a list of the indices in
251    # b where x appears; the indices are in increasing order; note that
252    # the number of times x appears in b is len(b2j[x]) ...
253    # when self.isjunk is defined, junk elements don't show up in this
254    # map at all, which stops the central find_longest_match method
255    # from starting any matching block at a junk element ...
256    # b2j also does not contain entries for "popular" elements, meaning
257    # elements that account for more than 1 + 1% of the total elements, and
258    # when the sequence is reasonably large (>= 200 elements); this can
259    # be viewed as an adaptive notion of semi-junk, and yields an enormous
260    # speedup when, e.g., comparing program files with hundreds of
261    # instances of "return NULL;" ...
262    # note that this is only called when b changes; so for cross-product
263    # kinds of matches, it's best to call set_seq2 once, then set_seq1
264    # repeatedly
265
266    def __chain_b(self):
267        # Because isjunk is a user-defined (not C) function, and we test
268        # for junk a LOT, it's important to minimize the number of calls.
269        # Before the tricks described here, __chain_b was by far the most
270        # time-consuming routine in the whole module!  If anyone sees
271        # Jim Roskind, thank him again for profile.py -- I never would
272        # have guessed that.
273        # The first trick is to build b2j ignoring the possibility
274        # of junk.  I.e., we don't call isjunk at all yet.  Throwing
275        # out the junk later is much cheaper than building b2j "right"
276        # from the start.
277        b = self.b
278        self.b2j = b2j = {}
279
280        for i, elt in enumerate(b):
281            indices = b2j.setdefault(elt, [])
282            indices.append(i)
283
284        # Purge junk elements
285        self.bjunk = junk = set()
286        isjunk = self.isjunk
287        if isjunk:
288            for elt in b2j.keys():
289                if isjunk(elt):
290                    junk.add(elt)
291            for elt in junk: # separate loop avoids separate list of keys
292                del b2j[elt]
293
294        # Purge popular elements that are not junk
295        self.bpopular = popular = set()
296        n = len(b)
297        if self.autojunk and n >= 200:
298            ntest = n // 100 + 1
299            for elt, idxs in b2j.items():
300                if len(idxs) > ntest:
301                    popular.add(elt)
302            for elt in popular: # ditto; as fast for 1% deletion
303                del b2j[elt]
304
305    def find_longest_match(self, alo=0, ahi=None, blo=0, bhi=None):
306        """Find longest matching block in a[alo:ahi] and b[blo:bhi].
307
308        By default it will find the longest match in the entirety of a and b.
309
310        If isjunk is not defined:
311
312        Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
313            alo <= i <= i+k <= ahi
314            blo <= j <= j+k <= bhi
315        and for all (i',j',k') meeting those conditions,
316            k >= k'
317            i <= i'
318            and if i == i', j <= j'
319
320        In other words, of all maximal matching blocks, return one that
321        starts earliest in a, and of all those maximal matching blocks that
322        start earliest in a, return the one that starts earliest in b.
323
324        >>> s = SequenceMatcher(None, " abcd", "abcd abcd")
325        >>> s.find_longest_match(0, 5, 0, 9)
326        Match(a=0, b=4, size=5)
327
328        If isjunk is defined, first the longest matching block is
329        determined as above, but with the additional restriction that no
330        junk element appears in the block.  Then that block is extended as
331        far as possible by matching (only) junk elements on both sides.  So
332        the resulting block never matches on junk except as identical junk
333        happens to be adjacent to an "interesting" match.
334
335        Here's the same example as before, but considering blanks to be
336        junk.  That prevents " abcd" from matching the " abcd" at the tail
337        end of the second sequence directly.  Instead only the "abcd" can
338        match, and matches the leftmost "abcd" in the second sequence:
339
340        >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
341        >>> s.find_longest_match(0, 5, 0, 9)
342        Match(a=1, b=0, size=4)
343
344        If no blocks match, return (alo, blo, 0).
345
346        >>> s = SequenceMatcher(None, "ab", "c")
347        >>> s.find_longest_match(0, 2, 0, 1)
348        Match(a=0, b=0, size=0)
349        """
350
351        # CAUTION:  stripping common prefix or suffix would be incorrect.
352        # E.g.,
353        #    ab
354        #    acab
355        # Longest matching block is "ab", but if common prefix is
356        # stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
357        # strip, so ends up claiming that ab is changed to acab by
358        # inserting "ca" in the middle.  That's minimal but unintuitive:
359        # "it's obvious" that someone inserted "ac" at the front.
360        # Windiff ends up at the same place as diff, but by pairing up
361        # the unique 'b's and then matching the first two 'a's.
362
363        a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.bjunk.__contains__
364        if ahi is None:
365            ahi = len(a)
366        if bhi is None:
367            bhi = len(b)
368        besti, bestj, bestsize = alo, blo, 0
369        # find longest junk-free match
370        # during an iteration of the loop, j2len[j] = length of longest
371        # junk-free match ending with a[i-1] and b[j]
372        j2len = {}
373        nothing = []
374        for i in range(alo, ahi):
375            # look at all instances of a[i] in b; note that because
376            # b2j has no junk keys, the loop is skipped if a[i] is junk
377            j2lenget = j2len.get
378            newj2len = {}
379            for j in b2j.get(a[i], nothing):
380                # a[i] matches b[j]
381                if j < blo:
382                    continue
383                if j >= bhi:
384                    break
385                k = newj2len[j] = j2lenget(j-1, 0) + 1
386                if k > bestsize:
387                    besti, bestj, bestsize = i-k+1, j-k+1, k
388            j2len = newj2len
389
390        # Extend the best by non-junk elements on each end.  In particular,
391        # "popular" non-junk elements aren't in b2j, which greatly speeds
392        # the inner loop above, but also means "the best" match so far
393        # doesn't contain any junk *or* popular non-junk elements.
394        while besti > alo and bestj > blo and \
395              not isbjunk(b[bestj-1]) and \
396              a[besti-1] == b[bestj-1]:
397            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
398        while besti+bestsize < ahi and bestj+bestsize < bhi and \
399              not isbjunk(b[bestj+bestsize]) and \
400              a[besti+bestsize] == b[bestj+bestsize]:
401            bestsize += 1
402
403        # Now that we have a wholly interesting match (albeit possibly
404        # empty!), we may as well suck up the matching junk on each
405        # side of it too.  Can't think of a good reason not to, and it
406        # saves post-processing the (possibly considerable) expense of
407        # figuring out what to do with it.  In the case of an empty
408        # interesting match, this is clearly the right thing to do,
409        # because no other kind of match is possible in the regions.
410        while besti > alo and bestj > blo and \
411              isbjunk(b[bestj-1]) and \
412              a[besti-1] == b[bestj-1]:
413            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
414        while besti+bestsize < ahi and bestj+bestsize < bhi and \
415              isbjunk(b[bestj+bestsize]) and \
416              a[besti+bestsize] == b[bestj+bestsize]:
417            bestsize = bestsize + 1
418
419        return Match(besti, bestj, bestsize)
420
421    def get_matching_blocks(self):
422        """Return list of triples describing matching subsequences.
423
424        Each triple is of the form (i, j, n), and means that
425        a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
426        i and in j.  New in Python 2.5, it's also guaranteed that if
427        (i, j, n) and (i', j', n') are adjacent triples in the list, and
428        the second is not the last triple in the list, then i+n != i' or
429        j+n != j'.  IOW, adjacent triples never describe adjacent equal
430        blocks.
431
432        The last triple is a dummy, (len(a), len(b), 0), and is the only
433        triple with n==0.
434
435        >>> s = SequenceMatcher(None, "abxcd", "abcd")
436        >>> list(s.get_matching_blocks())
437        [Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]
438        """
439
440        if self.matching_blocks is not None:
441            return self.matching_blocks
442        la, lb = len(self.a), len(self.b)
443
444        # This is most naturally expressed as a recursive algorithm, but
445        # at least one user bumped into extreme use cases that exceeded
446        # the recursion limit on their box.  So, now we maintain a list
447        # ('queue`) of blocks we still need to look at, and append partial
448        # results to `matching_blocks` in a loop; the matches are sorted
449        # at the end.
450        queue = [(0, la, 0, lb)]
451        matching_blocks = []
452        while queue:
453            alo, ahi, blo, bhi = queue.pop()
454            i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
455            # a[alo:i] vs b[blo:j] unknown
456            # a[i:i+k] same as b[j:j+k]
457            # a[i+k:ahi] vs b[j+k:bhi] unknown
458            if k:   # if k is 0, there was no matching block
459                matching_blocks.append(x)
460                if alo < i and blo < j:
461                    queue.append((alo, i, blo, j))
462                if i+k < ahi and j+k < bhi:
463                    queue.append((i+k, ahi, j+k, bhi))
464        matching_blocks.sort()
465
466        # It's possible that we have adjacent equal blocks in the
467        # matching_blocks list now.  Starting with 2.5, this code was added
468        # to collapse them.
469        i1 = j1 = k1 = 0
470        non_adjacent = []
471        for i2, j2, k2 in matching_blocks:
472            # Is this block adjacent to i1, j1, k1?
473            if i1 + k1 == i2 and j1 + k1 == j2:
474                # Yes, so collapse them -- this just increases the length of
475                # the first block by the length of the second, and the first
476                # block so lengthened remains the block to compare against.
477                k1 += k2
478            else:
479                # Not adjacent.  Remember the first block (k1==0 means it's
480                # the dummy we started with), and make the second block the
481                # new block to compare against.
482                if k1:
483                    non_adjacent.append((i1, j1, k1))
484                i1, j1, k1 = i2, j2, k2
485        if k1:
486            non_adjacent.append((i1, j1, k1))
487
488        non_adjacent.append( (la, lb, 0) )
489        self.matching_blocks = list(map(Match._make, non_adjacent))
490        return self.matching_blocks
491
492    def get_opcodes(self):
493        """Return list of 5-tuples describing how to turn a into b.
494
495        Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
496        has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
497        tuple preceding it, and likewise for j1 == the previous j2.
498
499        The tags are strings, with these meanings:
500
501        'replace':  a[i1:i2] should be replaced by b[j1:j2]
502        'delete':   a[i1:i2] should be deleted.
503                    Note that j1==j2 in this case.
504        'insert':   b[j1:j2] should be inserted at a[i1:i1].
505                    Note that i1==i2 in this case.
506        'equal':    a[i1:i2] == b[j1:j2]
507
508        >>> a = "qabxcd"
509        >>> b = "abycdf"
510        >>> s = SequenceMatcher(None, a, b)
511        >>> for tag, i1, i2, j1, j2 in s.get_opcodes():
512        ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
513        ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
514         delete a[0:1] (q) b[0:0] ()
515          equal a[1:3] (ab) b[0:2] (ab)
516        replace a[3:4] (x) b[2:3] (y)
517          equal a[4:6] (cd) b[3:5] (cd)
518         insert a[6:6] () b[5:6] (f)
519        """
520
521        if self.opcodes is not None:
522            return self.opcodes
523        i = j = 0
524        self.opcodes = answer = []
525        for ai, bj, size in self.get_matching_blocks():
526            # invariant:  we've pumped out correct diffs to change
527            # a[:i] into b[:j], and the next matching block is
528            # a[ai:ai+size] == b[bj:bj+size].  So we need to pump
529            # out a diff to change a[i:ai] into b[j:bj], pump out
530            # the matching block, and move (i,j) beyond the match
531            tag = ''
532            if i < ai and j < bj:
533                tag = 'replace'
534            elif i < ai:
535                tag = 'delete'
536            elif j < bj:
537                tag = 'insert'
538            if tag:
539                answer.append( (tag, i, ai, j, bj) )
540            i, j = ai+size, bj+size
541            # the list of matching blocks is terminated by a
542            # sentinel with size 0
543            if size:
544                answer.append( ('equal', ai, i, bj, j) )
545        return answer
546
547    def get_grouped_opcodes(self, n=3):
548        """ Isolate change clusters by eliminating ranges with no changes.
549
550        Return a generator of groups with up to n lines of context.
551        Each group is in the same format as returned by get_opcodes().
552
553        >>> from pprint import pprint
554        >>> a = list(map(str, range(1,40)))
555        >>> b = a[:]
556        >>> b[8:8] = ['i']     # Make an insertion
557        >>> b[20] += 'x'       # Make a replacement
558        >>> b[23:28] = []      # Make a deletion
559        >>> b[30] += 'y'       # Make another replacement
560        >>> pprint(list(SequenceMatcher(None,a,b).get_grouped_opcodes()))
561        [[('equal', 5, 8, 5, 8), ('insert', 8, 8, 8, 9), ('equal', 8, 11, 9, 12)],
562         [('equal', 16, 19, 17, 20),
563          ('replace', 19, 20, 20, 21),
564          ('equal', 20, 22, 21, 23),
565          ('delete', 22, 27, 23, 23),
566          ('equal', 27, 30, 23, 26)],
567         [('equal', 31, 34, 27, 30),
568          ('replace', 34, 35, 30, 31),
569          ('equal', 35, 38, 31, 34)]]
570        """
571
572        codes = self.get_opcodes()
573        if not codes:
574            codes = [("equal", 0, 1, 0, 1)]
575        # Fixup leading and trailing groups if they show no changes.
576        if codes[0][0] == 'equal':
577            tag, i1, i2, j1, j2 = codes[0]
578            codes[0] = tag, max(i1, i2-n), i2, max(j1, j2-n), j2
579        if codes[-1][0] == 'equal':
580            tag, i1, i2, j1, j2 = codes[-1]
581            codes[-1] = tag, i1, min(i2, i1+n), j1, min(j2, j1+n)
582
583        nn = n + n
584        group = []
585        for tag, i1, i2, j1, j2 in codes:
586            # End the current group and start a new one whenever
587            # there is a large range with no changes.
588            if tag == 'equal' and i2-i1 > nn:
589                group.append((tag, i1, min(i2, i1+n), j1, min(j2, j1+n)))
590                yield group
591                group = []
592                i1, j1 = max(i1, i2-n), max(j1, j2-n)
593            group.append((tag, i1, i2, j1 ,j2))
594        if group and not (len(group)==1 and group[0][0] == 'equal'):
595            yield group
596
597    def ratio(self):
598        """Return a measure of the sequences' similarity (float in [0,1]).
599
600        Where T is the total number of elements in both sequences, and
601        M is the number of matches, this is 2.0*M / T.
602        Note that this is 1 if the sequences are identical, and 0 if
603        they have nothing in common.
604
605        .ratio() is expensive to compute if you haven't already computed
606        .get_matching_blocks() or .get_opcodes(), in which case you may
607        want to try .quick_ratio() or .real_quick_ratio() first to get an
608        upper bound.
609
610        >>> s = SequenceMatcher(None, "abcd", "bcde")
611        >>> s.ratio()
612        0.75
613        >>> s.quick_ratio()
614        0.75
615        >>> s.real_quick_ratio()
616        1.0
617        """
618
619        matches = sum(triple[-1] for triple in self.get_matching_blocks())
620        return _calculate_ratio(matches, len(self.a) + len(self.b))
621
622    def quick_ratio(self):
623        """Return an upper bound on ratio() relatively quickly.
624
625        This isn't defined beyond that it is an upper bound on .ratio(), and
626        is faster to compute.
627        """
628
629        # viewing a and b as multisets, set matches to the cardinality
630        # of their intersection; this counts the number of matches
631        # without regard to order, so is clearly an upper bound
632        if self.fullbcount is None:
633            self.fullbcount = fullbcount = {}
634            for elt in self.b:
635                fullbcount[elt] = fullbcount.get(elt, 0) + 1
636        fullbcount = self.fullbcount
637        # avail[x] is the number of times x appears in 'b' less the
638        # number of times we've seen it in 'a' so far ... kinda
639        avail = {}
640        availhas, matches = avail.__contains__, 0
641        for elt in self.a:
642            if availhas(elt):
643                numb = avail[elt]
644            else:
645                numb = fullbcount.get(elt, 0)
646            avail[elt] = numb - 1
647            if numb > 0:
648                matches = matches + 1
649        return _calculate_ratio(matches, len(self.a) + len(self.b))
650
651    def real_quick_ratio(self):
652        """Return an upper bound on ratio() very quickly.
653
654        This isn't defined beyond that it is an upper bound on .ratio(), and
655        is faster to compute than either .ratio() or .quick_ratio().
656        """
657
658        la, lb = len(self.a), len(self.b)
659        # can't have more matches than the number of elements in the
660        # shorter sequence
661        return _calculate_ratio(min(la, lb), la + lb)
662
663    __class_getitem__ = classmethod(GenericAlias)
664
665
666def get_close_matches(word, possibilities, n=3, cutoff=0.6):
667    """Use SequenceMatcher to return list of the best "good enough" matches.
668
669    word is a sequence for which close matches are desired (typically a
670    string).
671
672    possibilities is a list of sequences against which to match word
673    (typically a list of strings).
674
675    Optional arg n (default 3) is the maximum number of close matches to
676    return.  n must be > 0.
677
678    Optional arg cutoff (default 0.6) is a float in [0, 1].  Possibilities
679    that don't score at least that similar to word are ignored.
680
681    The best (no more than n) matches among the possibilities are returned
682    in a list, sorted by similarity score, most similar first.
683
684    >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
685    ['apple', 'ape']
686    >>> import keyword as _keyword
687    >>> get_close_matches("wheel", _keyword.kwlist)
688    ['while']
689    >>> get_close_matches("Apple", _keyword.kwlist)
690    []
691    >>> get_close_matches("accept", _keyword.kwlist)
692    ['except']
693    """
694
695    if not n >  0:
696        raise ValueError("n must be > 0: %r" % (n,))
697    if not 0.0 <= cutoff <= 1.0:
698        raise ValueError("cutoff must be in [0.0, 1.0]: %r" % (cutoff,))
699    result = []
700    s = SequenceMatcher()
701    s.set_seq2(word)
702    for x in possibilities:
703        s.set_seq1(x)
704        if s.real_quick_ratio() >= cutoff and \
705           s.quick_ratio() >= cutoff and \
706           s.ratio() >= cutoff:
707            result.append((s.ratio(), x))
708
709    # Move the best scorers to head of list
710    result = _nlargest(n, result)
711    # Strip scores for the best n matches
712    return [x for score, x in result]
713
714
715def _keep_original_ws(s, tag_s):
716    """Replace whitespace with the original whitespace characters in `s`"""
717    return ''.join(
718        c if tag_c == " " and c.isspace() else tag_c
719        for c, tag_c in zip(s, tag_s)
720    )
721
722
723
724class Differ:
725    r"""
726    Differ is a class for comparing sequences of lines of text, and
727    producing human-readable differences or deltas.  Differ uses
728    SequenceMatcher both to compare sequences of lines, and to compare
729    sequences of characters within similar (near-matching) lines.
730
731    Each line of a Differ delta begins with a two-letter code:
732
733        '- '    line unique to sequence 1
734        '+ '    line unique to sequence 2
735        '  '    line common to both sequences
736        '? '    line not present in either input sequence
737
738    Lines beginning with '? ' attempt to guide the eye to intraline
739    differences, and were not present in either input sequence.  These lines
740    can be confusing if the sequences contain tab characters.
741
742    Note that Differ makes no claim to produce a *minimal* diff.  To the
743    contrary, minimal diffs are often counter-intuitive, because they synch
744    up anywhere possible, sometimes accidental matches 100 pages apart.
745    Restricting synch points to contiguous matches preserves some notion of
746    locality, at the occasional cost of producing a longer diff.
747
748    Example: Comparing two texts.
749
750    First we set up the texts, sequences of individual single-line strings
751    ending with newlines (such sequences can also be obtained from the
752    `readlines()` method of file-like objects):
753
754    >>> text1 = '''  1. Beautiful is better than ugly.
755    ...   2. Explicit is better than implicit.
756    ...   3. Simple is better than complex.
757    ...   4. Complex is better than complicated.
758    ... '''.splitlines(keepends=True)
759    >>> len(text1)
760    4
761    >>> text1[0][-1]
762    '\n'
763    >>> text2 = '''  1. Beautiful is better than ugly.
764    ...   3.   Simple is better than complex.
765    ...   4. Complicated is better than complex.
766    ...   5. Flat is better than nested.
767    ... '''.splitlines(keepends=True)
768
769    Next we instantiate a Differ object:
770
771    >>> d = Differ()
772
773    Note that when instantiating a Differ object we may pass functions to
774    filter out line and character 'junk'.  See Differ.__init__ for details.
775
776    Finally, we compare the two:
777
778    >>> result = list(d.compare(text1, text2))
779
780    'result' is a list of strings, so let's pretty-print it:
781
782    >>> from pprint import pprint as _pprint
783    >>> _pprint(result)
784    ['    1. Beautiful is better than ugly.\n',
785     '-   2. Explicit is better than implicit.\n',
786     '-   3. Simple is better than complex.\n',
787     '+   3.   Simple is better than complex.\n',
788     '?     ++\n',
789     '-   4. Complex is better than complicated.\n',
790     '?            ^                     ---- ^\n',
791     '+   4. Complicated is better than complex.\n',
792     '?           ++++ ^                      ^\n',
793     '+   5. Flat is better than nested.\n']
794
795    As a single multi-line string it looks like this:
796
797    >>> print(''.join(result), end="")
798        1. Beautiful is better than ugly.
799    -   2. Explicit is better than implicit.
800    -   3. Simple is better than complex.
801    +   3.   Simple is better than complex.
802    ?     ++
803    -   4. Complex is better than complicated.
804    ?            ^                     ---- ^
805    +   4. Complicated is better than complex.
806    ?           ++++ ^                      ^
807    +   5. Flat is better than nested.
808    """
809
810    def __init__(self, linejunk=None, charjunk=None):
811        """
812        Construct a text differencer, with optional filters.
813
814        The two optional keyword parameters are for filter functions:
815
816        - `linejunk`: A function that should accept a single string argument,
817          and return true iff the string is junk. The module-level function
818          `IS_LINE_JUNK` may be used to filter out lines without visible
819          characters, except for at most one splat ('#').  It is recommended
820          to leave linejunk None; the underlying SequenceMatcher class has
821          an adaptive notion of "noise" lines that's better than any static
822          definition the author has ever been able to craft.
823
824        - `charjunk`: A function that should accept a string of length 1. The
825          module-level function `IS_CHARACTER_JUNK` may be used to filter out
826          whitespace characters (a blank or tab; **note**: bad idea to include
827          newline in this!).  Use of IS_CHARACTER_JUNK is recommended.
828        """
829
830        self.linejunk = linejunk
831        self.charjunk = charjunk
832
833    def compare(self, a, b):
834        r"""
835        Compare two sequences of lines; generate the resulting delta.
836
837        Each sequence must contain individual single-line strings ending with
838        newlines. Such sequences can be obtained from the `readlines()` method
839        of file-like objects.  The delta generated also consists of newline-
840        terminated strings, ready to be printed as-is via the writeline()
841        method of a file-like object.
842
843        Example:
844
845        >>> print(''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(True),
846        ...                                'ore\ntree\nemu\n'.splitlines(True))),
847        ...       end="")
848        - one
849        ?  ^
850        + ore
851        ?  ^
852        - two
853        - three
854        ?  -
855        + tree
856        + emu
857        """
858
859        cruncher = SequenceMatcher(self.linejunk, a, b)
860        for tag, alo, ahi, blo, bhi in cruncher.get_opcodes():
861            if tag == 'replace':
862                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
863            elif tag == 'delete':
864                g = self._dump('-', a, alo, ahi)
865            elif tag == 'insert':
866                g = self._dump('+', b, blo, bhi)
867            elif tag == 'equal':
868                g = self._dump(' ', a, alo, ahi)
869            else:
870                raise ValueError('unknown tag %r' % (tag,))
871
872            yield from g
873
874    def _dump(self, tag, x, lo, hi):
875        """Generate comparison results for a same-tagged range."""
876        for i in range(lo, hi):
877            yield '%s %s' % (tag, x[i])
878
879    def _plain_replace(self, a, alo, ahi, b, blo, bhi):
880        assert alo < ahi and blo < bhi
881        # dump the shorter block first -- reduces the burden on short-term
882        # memory if the blocks are of very different sizes
883        if bhi - blo < ahi - alo:
884            first  = self._dump('+', b, blo, bhi)
885            second = self._dump('-', a, alo, ahi)
886        else:
887            first  = self._dump('-', a, alo, ahi)
888            second = self._dump('+', b, blo, bhi)
889
890        for g in first, second:
891            yield from g
892
893    def _fancy_replace(self, a, alo, ahi, b, blo, bhi):
894        r"""
895        When replacing one block of lines with another, search the blocks
896        for *similar* lines; the best-matching pair (if any) is used as a
897        synch point, and intraline difference marking is done on the
898        similar pair. Lots of work, but often worth it.
899
900        Example:
901
902        >>> d = Differ()
903        >>> results = d._fancy_replace(['abcDefghiJkl\n'], 0, 1,
904        ...                            ['abcdefGhijkl\n'], 0, 1)
905        >>> print(''.join(results), end="")
906        - abcDefghiJkl
907        ?    ^  ^  ^
908        + abcdefGhijkl
909        ?    ^  ^  ^
910        """
911
912        # don't synch up unless the lines have a similarity score of at
913        # least cutoff; best_ratio tracks the best score seen so far
914        best_ratio, cutoff = 0.74, 0.75
915        cruncher = SequenceMatcher(self.charjunk)
916        eqi, eqj = None, None   # 1st indices of equal lines (if any)
917
918        # search for the pair that matches best without being identical
919        # (identical lines must be junk lines, & we don't want to synch up
920        # on junk -- unless we have to)
921        for j in range(blo, bhi):
922            bj = b[j]
923            cruncher.set_seq2(bj)
924            for i in range(alo, ahi):
925                ai = a[i]
926                if ai == bj:
927                    if eqi is None:
928                        eqi, eqj = i, j
929                    continue
930                cruncher.set_seq1(ai)
931                # computing similarity is expensive, so use the quick
932                # upper bounds first -- have seen this speed up messy
933                # compares by a factor of 3.
934                # note that ratio() is only expensive to compute the first
935                # time it's called on a sequence pair; the expensive part
936                # of the computation is cached by cruncher
937                if cruncher.real_quick_ratio() > best_ratio and \
938                      cruncher.quick_ratio() > best_ratio and \
939                      cruncher.ratio() > best_ratio:
940                    best_ratio, best_i, best_j = cruncher.ratio(), i, j
941        if best_ratio < cutoff:
942            # no non-identical "pretty close" pair
943            if eqi is None:
944                # no identical pair either -- treat it as a straight replace
945                yield from self._plain_replace(a, alo, ahi, b, blo, bhi)
946                return
947            # no close pair, but an identical pair -- synch up on that
948            best_i, best_j, best_ratio = eqi, eqj, 1.0
949        else:
950            # there's a close pair, so forget the identical pair (if any)
951            eqi = None
952
953        # a[best_i] very similar to b[best_j]; eqi is None iff they're not
954        # identical
955
956        # pump out diffs from before the synch point
957        yield from self._fancy_helper(a, alo, best_i, b, blo, best_j)
958
959        # do intraline marking on the synch pair
960        aelt, belt = a[best_i], b[best_j]
961        if eqi is None:
962            # pump out a '-', '?', '+', '?' quad for the synched lines
963            atags = btags = ""
964            cruncher.set_seqs(aelt, belt)
965            for tag, ai1, ai2, bj1, bj2 in cruncher.get_opcodes():
966                la, lb = ai2 - ai1, bj2 - bj1
967                if tag == 'replace':
968                    atags += '^' * la
969                    btags += '^' * lb
970                elif tag == 'delete':
971                    atags += '-' * la
972                elif tag == 'insert':
973                    btags += '+' * lb
974                elif tag == 'equal':
975                    atags += ' ' * la
976                    btags += ' ' * lb
977                else:
978                    raise ValueError('unknown tag %r' % (tag,))
979            yield from self._qformat(aelt, belt, atags, btags)
980        else:
981            # the synch pair is identical
982            yield '  ' + aelt
983
984        # pump out diffs from after the synch point
985        yield from self._fancy_helper(a, best_i+1, ahi, b, best_j+1, bhi)
986
987    def _fancy_helper(self, a, alo, ahi, b, blo, bhi):
988        g = []
989        if alo < ahi:
990            if blo < bhi:
991                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
992            else:
993                g = self._dump('-', a, alo, ahi)
994        elif blo < bhi:
995            g = self._dump('+', b, blo, bhi)
996
997        yield from g
998
999    def _qformat(self, aline, bline, atags, btags):
1000        r"""
1001        Format "?" output and deal with tabs.
1002
1003        Example:
1004
1005        >>> d = Differ()
1006        >>> results = d._qformat('\tabcDefghiJkl\n', '\tabcdefGhijkl\n',
1007        ...                      '  ^ ^  ^      ', '  ^ ^  ^      ')
1008        >>> for line in results: print(repr(line))
1009        ...
1010        '- \tabcDefghiJkl\n'
1011        '? \t ^ ^  ^\n'
1012        '+ \tabcdefGhijkl\n'
1013        '? \t ^ ^  ^\n'
1014        """
1015        atags = _keep_original_ws(aline, atags).rstrip()
1016        btags = _keep_original_ws(bline, btags).rstrip()
1017
1018        yield "- " + aline
1019        if atags:
1020            yield f"? {atags}\n"
1021
1022        yield "+ " + bline
1023        if btags:
1024            yield f"? {btags}\n"
1025
1026# With respect to junk, an earlier version of ndiff simply refused to
1027# *start* a match with a junk element.  The result was cases like this:
1028#     before: private Thread currentThread;
1029#     after:  private volatile Thread currentThread;
1030# If you consider whitespace to be junk, the longest contiguous match
1031# not starting with junk is "e Thread currentThread".  So ndiff reported
1032# that "e volatil" was inserted between the 't' and the 'e' in "private".
1033# While an accurate view, to people that's absurd.  The current version
1034# looks for matching blocks that are entirely junk-free, then extends the
1035# longest one of those as far as possible but only with matching junk.
1036# So now "currentThread" is matched, then extended to suck up the
1037# preceding blank; then "private" is matched, and extended to suck up the
1038# following blank; then "Thread" is matched; and finally ndiff reports
1039# that "volatile " was inserted before "Thread".  The only quibble
1040# remaining is that perhaps it was really the case that " volatile"
1041# was inserted after "private".  I can live with that <wink>.
1042
1043import re
1044
1045def IS_LINE_JUNK(line, pat=re.compile(r"\s*(?:#\s*)?$").match):
1046    r"""
1047    Return True for ignorable line: iff `line` is blank or contains a single '#'.
1048
1049    Examples:
1050
1051    >>> IS_LINE_JUNK('\n')
1052    True
1053    >>> IS_LINE_JUNK('  #   \n')
1054    True
1055    >>> IS_LINE_JUNK('hello\n')
1056    False
1057    """
1058
1059    return pat(line) is not None
1060
1061def IS_CHARACTER_JUNK(ch, ws=" \t"):
1062    r"""
1063    Return True for ignorable character: iff `ch` is a space or tab.
1064
1065    Examples:
1066
1067    >>> IS_CHARACTER_JUNK(' ')
1068    True
1069    >>> IS_CHARACTER_JUNK('\t')
1070    True
1071    >>> IS_CHARACTER_JUNK('\n')
1072    False
1073    >>> IS_CHARACTER_JUNK('x')
1074    False
1075    """
1076
1077    return ch in ws
1078
1079
1080########################################################################
1081###  Unified Diff
1082########################################################################
1083
1084def _format_range_unified(start, stop):
1085    'Convert range to the "ed" format'
1086    # Per the diff spec at http://www.unix.org/single_unix_specification/
1087    beginning = start + 1     # lines start numbering with one
1088    length = stop - start
1089    if length == 1:
1090        return '{}'.format(beginning)
1091    if not length:
1092        beginning -= 1        # empty ranges begin at line just before the range
1093    return '{},{}'.format(beginning, length)
1094
1095def unified_diff(a, b, fromfile='', tofile='', fromfiledate='',
1096                 tofiledate='', n=3, lineterm='\n'):
1097    r"""
1098    Compare two sequences of lines; generate the delta as a unified diff.
1099
1100    Unified diffs are a compact way of showing line changes and a few
1101    lines of context.  The number of context lines is set by 'n' which
1102    defaults to three.
1103
1104    By default, the diff control lines (those with ---, +++, or @@) are
1105    created with a trailing newline.  This is helpful so that inputs
1106    created from file.readlines() result in diffs that are suitable for
1107    file.writelines() since both the inputs and outputs have trailing
1108    newlines.
1109
1110    For inputs that do not have trailing newlines, set the lineterm
1111    argument to "" so that the output will be uniformly newline free.
1112
1113    The unidiff format normally has a header for filenames and modification
1114    times.  Any or all of these may be specified using strings for
1115    'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
1116    The modification times are normally expressed in the ISO 8601 format.
1117
1118    Example:
1119
1120    >>> for line in unified_diff('one two three four'.split(),
1121    ...             'zero one tree four'.split(), 'Original', 'Current',
1122    ...             '2005-01-26 23:30:50', '2010-04-02 10:20:52',
1123    ...             lineterm=''):
1124    ...     print(line)                 # doctest: +NORMALIZE_WHITESPACE
1125    --- Original        2005-01-26 23:30:50
1126    +++ Current         2010-04-02 10:20:52
1127    @@ -1,4 +1,4 @@
1128    +zero
1129     one
1130    -two
1131    -three
1132    +tree
1133     four
1134    """
1135
1136    _check_types(a, b, fromfile, tofile, fromfiledate, tofiledate, lineterm)
1137    started = False
1138    for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n):
1139        if not started:
1140            started = True
1141            fromdate = '\t{}'.format(fromfiledate) if fromfiledate else ''
1142            todate = '\t{}'.format(tofiledate) if tofiledate else ''
1143            yield '--- {}{}{}'.format(fromfile, fromdate, lineterm)
1144            yield '+++ {}{}{}'.format(tofile, todate, lineterm)
1145
1146        first, last = group[0], group[-1]
1147        file1_range = _format_range_unified(first[1], last[2])
1148        file2_range = _format_range_unified(first[3], last[4])
1149        yield '@@ -{} +{} @@{}'.format(file1_range, file2_range, lineterm)
1150
1151        for tag, i1, i2, j1, j2 in group:
1152            if tag == 'equal':
1153                for line in a[i1:i2]:
1154                    yield ' ' + line
1155                continue
1156            if tag in {'replace', 'delete'}:
1157                for line in a[i1:i2]:
1158                    yield '-' + line
1159            if tag in {'replace', 'insert'}:
1160                for line in b[j1:j2]:
1161                    yield '+' + line
1162
1163
1164########################################################################
1165###  Context Diff
1166########################################################################
1167
1168def _format_range_context(start, stop):
1169    'Convert range to the "ed" format'
1170    # Per the diff spec at http://www.unix.org/single_unix_specification/
1171    beginning = start + 1     # lines start numbering with one
1172    length = stop - start
1173    if not length:
1174        beginning -= 1        # empty ranges begin at line just before the range
1175    if length <= 1:
1176        return '{}'.format(beginning)
1177    return '{},{}'.format(beginning, beginning + length - 1)
1178
1179# See http://www.unix.org/single_unix_specification/
1180def context_diff(a, b, fromfile='', tofile='',
1181                 fromfiledate='', tofiledate='', n=3, lineterm='\n'):
1182    r"""
1183    Compare two sequences of lines; generate the delta as a context diff.
1184
1185    Context diffs are a compact way of showing line changes and a few
1186    lines of context.  The number of context lines is set by 'n' which
1187    defaults to three.
1188
1189    By default, the diff control lines (those with *** or ---) are
1190    created with a trailing newline.  This is helpful so that inputs
1191    created from file.readlines() result in diffs that are suitable for
1192    file.writelines() since both the inputs and outputs have trailing
1193    newlines.
1194
1195    For inputs that do not have trailing newlines, set the lineterm
1196    argument to "" so that the output will be uniformly newline free.
1197
1198    The context diff format normally has a header for filenames and
1199    modification times.  Any or all of these may be specified using
1200    strings for 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
1201    The modification times are normally expressed in the ISO 8601 format.
1202    If not specified, the strings default to blanks.
1203
1204    Example:
1205
1206    >>> print(''.join(context_diff('one\ntwo\nthree\nfour\n'.splitlines(True),
1207    ...       'zero\none\ntree\nfour\n'.splitlines(True), 'Original', 'Current')),
1208    ...       end="")
1209    *** Original
1210    --- Current
1211    ***************
1212    *** 1,4 ****
1213      one
1214    ! two
1215    ! three
1216      four
1217    --- 1,4 ----
1218    + zero
1219      one
1220    ! tree
1221      four
1222    """
1223
1224    _check_types(a, b, fromfile, tofile, fromfiledate, tofiledate, lineterm)
1225    prefix = dict(insert='+ ', delete='- ', replace='! ', equal='  ')
1226    started = False
1227    for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n):
1228        if not started:
1229            started = True
1230            fromdate = '\t{}'.format(fromfiledate) if fromfiledate else ''
1231            todate = '\t{}'.format(tofiledate) if tofiledate else ''
1232            yield '*** {}{}{}'.format(fromfile, fromdate, lineterm)
1233            yield '--- {}{}{}'.format(tofile, todate, lineterm)
1234
1235        first, last = group[0], group[-1]
1236        yield '***************' + lineterm
1237
1238        file1_range = _format_range_context(first[1], last[2])
1239        yield '*** {} ****{}'.format(file1_range, lineterm)
1240
1241        if any(tag in {'replace', 'delete'} for tag, _, _, _, _ in group):
1242            for tag, i1, i2, _, _ in group:
1243                if tag != 'insert':
1244                    for line in a[i1:i2]:
1245                        yield prefix[tag] + line
1246
1247        file2_range = _format_range_context(first[3], last[4])
1248        yield '--- {} ----{}'.format(file2_range, lineterm)
1249
1250        if any(tag in {'replace', 'insert'} for tag, _, _, _, _ in group):
1251            for tag, _, _, j1, j2 in group:
1252                if tag != 'delete':
1253                    for line in b[j1:j2]:
1254                        yield prefix[tag] + line
1255
1256def _check_types(a, b, *args):
1257    # Checking types is weird, but the alternative is garbled output when
1258    # someone passes mixed bytes and str to {unified,context}_diff(). E.g.
1259    # without this check, passing filenames as bytes results in output like
1260    #   --- b'oldfile.txt'
1261    #   +++ b'newfile.txt'
1262    # because of how str.format() incorporates bytes objects.
1263    if a and not isinstance(a[0], str):
1264        raise TypeError('lines to compare must be str, not %s (%r)' %
1265                        (type(a[0]).__name__, a[0]))
1266    if b and not isinstance(b[0], str):
1267        raise TypeError('lines to compare must be str, not %s (%r)' %
1268                        (type(b[0]).__name__, b[0]))
1269    for arg in args:
1270        if not isinstance(arg, str):
1271            raise TypeError('all arguments must be str, not: %r' % (arg,))
1272
1273def diff_bytes(dfunc, a, b, fromfile=b'', tofile=b'',
1274               fromfiledate=b'', tofiledate=b'', n=3, lineterm=b'\n'):
1275    r"""
1276    Compare `a` and `b`, two sequences of lines represented as bytes rather
1277    than str. This is a wrapper for `dfunc`, which is typically either
1278    unified_diff() or context_diff(). Inputs are losslessly converted to
1279    strings so that `dfunc` only has to worry about strings, and encoded
1280    back to bytes on return. This is necessary to compare files with
1281    unknown or inconsistent encoding. All other inputs (except `n`) must be
1282    bytes rather than str.
1283    """
1284    def decode(s):
1285        try:
1286            return s.decode('ascii', 'surrogateescape')
1287        except AttributeError as err:
1288            msg = ('all arguments must be bytes, not %s (%r)' %
1289                   (type(s).__name__, s))
1290            raise TypeError(msg) from err
1291    a = list(map(decode, a))
1292    b = list(map(decode, b))
1293    fromfile = decode(fromfile)
1294    tofile = decode(tofile)
1295    fromfiledate = decode(fromfiledate)
1296    tofiledate = decode(tofiledate)
1297    lineterm = decode(lineterm)
1298
1299    lines = dfunc(a, b, fromfile, tofile, fromfiledate, tofiledate, n, lineterm)
1300    for line in lines:
1301        yield line.encode('ascii', 'surrogateescape')
1302
1303def ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK):
1304    r"""
1305    Compare `a` and `b` (lists of strings); return a `Differ`-style delta.
1306
1307    Optional keyword parameters `linejunk` and `charjunk` are for filter
1308    functions, or can be None:
1309
1310    - linejunk: A function that should accept a single string argument and
1311      return true iff the string is junk.  The default is None, and is
1312      recommended; the underlying SequenceMatcher class has an adaptive
1313      notion of "noise" lines.
1314
1315    - charjunk: A function that accepts a character (string of length
1316      1), and returns true iff the character is junk. The default is
1317      the module-level function IS_CHARACTER_JUNK, which filters out
1318      whitespace characters (a blank or tab; note: it's a bad idea to
1319      include newline in this!).
1320
1321    Tools/scripts/ndiff.py is a command-line front-end to this function.
1322
1323    Example:
1324
1325    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
1326    ...              'ore\ntree\nemu\n'.splitlines(keepends=True))
1327    >>> print(''.join(diff), end="")
1328    - one
1329    ?  ^
1330    + ore
1331    ?  ^
1332    - two
1333    - three
1334    ?  -
1335    + tree
1336    + emu
1337    """
1338    return Differ(linejunk, charjunk).compare(a, b)
1339
1340def _mdiff(fromlines, tolines, context=None, linejunk=None,
1341           charjunk=IS_CHARACTER_JUNK):
1342    r"""Returns generator yielding marked up from/to side by side differences.
1343
1344    Arguments:
1345    fromlines -- list of text lines to compared to tolines
1346    tolines -- list of text lines to be compared to fromlines
1347    context -- number of context lines to display on each side of difference,
1348               if None, all from/to text lines will be generated.
1349    linejunk -- passed on to ndiff (see ndiff documentation)
1350    charjunk -- passed on to ndiff (see ndiff documentation)
1351
1352    This function returns an iterator which returns a tuple:
1353    (from line tuple, to line tuple, boolean flag)
1354
1355    from/to line tuple -- (line num, line text)
1356        line num -- integer or None (to indicate a context separation)
1357        line text -- original line text with following markers inserted:
1358            '\0+' -- marks start of added text
1359            '\0-' -- marks start of deleted text
1360            '\0^' -- marks start of changed text
1361            '\1' -- marks end of added/deleted/changed text
1362
1363    boolean flag -- None indicates context separation, True indicates
1364        either "from" or "to" line contains a change, otherwise False.
1365
1366    This function/iterator was originally developed to generate side by side
1367    file difference for making HTML pages (see HtmlDiff class for example
1368    usage).
1369
1370    Note, this function utilizes the ndiff function to generate the side by
1371    side difference markup.  Optional ndiff arguments may be passed to this
1372    function and they in turn will be passed to ndiff.
1373    """
1374    import re
1375
1376    # regular expression for finding intraline change indices
1377    change_re = re.compile(r'(\++|\-+|\^+)')
1378
1379    # create the difference iterator to generate the differences
1380    diff_lines_iterator = ndiff(fromlines,tolines,linejunk,charjunk)
1381
1382    def _make_line(lines, format_key, side, num_lines=[0,0]):
1383        """Returns line of text with user's change markup and line formatting.
1384
1385        lines -- list of lines from the ndiff generator to produce a line of
1386                 text from.  When producing the line of text to return, the
1387                 lines used are removed from this list.
1388        format_key -- '+' return first line in list with "add" markup around
1389                          the entire line.
1390                      '-' return first line in list with "delete" markup around
1391                          the entire line.
1392                      '?' return first line in list with add/delete/change
1393                          intraline markup (indices obtained from second line)
1394                      None return first line in list with no markup
1395        side -- indice into the num_lines list (0=from,1=to)
1396        num_lines -- from/to current line number.  This is NOT intended to be a
1397                     passed parameter.  It is present as a keyword argument to
1398                     maintain memory of the current line numbers between calls
1399                     of this function.
1400
1401        Note, this function is purposefully not defined at the module scope so
1402        that data it needs from its parent function (within whose context it
1403        is defined) does not need to be of module scope.
1404        """
1405        num_lines[side] += 1
1406        # Handle case where no user markup is to be added, just return line of
1407        # text with user's line format to allow for usage of the line number.
1408        if format_key is None:
1409            return (num_lines[side],lines.pop(0)[2:])
1410        # Handle case of intraline changes
1411        if format_key == '?':
1412            text, markers = lines.pop(0), lines.pop(0)
1413            # find intraline changes (store change type and indices in tuples)
1414            sub_info = []
1415            def record_sub_info(match_object,sub_info=sub_info):
1416                sub_info.append([match_object.group(1)[0],match_object.span()])
1417                return match_object.group(1)
1418            change_re.sub(record_sub_info,markers)
1419            # process each tuple inserting our special marks that won't be
1420            # noticed by an xml/html escaper.
1421            for key,(begin,end) in reversed(sub_info):
1422                text = text[0:begin]+'\0'+key+text[begin:end]+'\1'+text[end:]
1423            text = text[2:]
1424        # Handle case of add/delete entire line
1425        else:
1426            text = lines.pop(0)[2:]
1427            # if line of text is just a newline, insert a space so there is
1428            # something for the user to highlight and see.
1429            if not text:
1430                text = ' '
1431            # insert marks that won't be noticed by an xml/html escaper.
1432            text = '\0' + format_key + text + '\1'
1433        # Return line of text, first allow user's line formatter to do its
1434        # thing (such as adding the line number) then replace the special
1435        # marks with what the user's change markup.
1436        return (num_lines[side],text)
1437
1438    def _line_iterator():
1439        """Yields from/to lines of text with a change indication.
1440
1441        This function is an iterator.  It itself pulls lines from a
1442        differencing iterator, processes them and yields them.  When it can
1443        it yields both a "from" and a "to" line, otherwise it will yield one
1444        or the other.  In addition to yielding the lines of from/to text, a
1445        boolean flag is yielded to indicate if the text line(s) have
1446        differences in them.
1447
1448        Note, this function is purposefully not defined at the module scope so
1449        that data it needs from its parent function (within whose context it
1450        is defined) does not need to be of module scope.
1451        """
1452        lines = []
1453        num_blanks_pending, num_blanks_to_yield = 0, 0
1454        while True:
1455            # Load up next 4 lines so we can look ahead, create strings which
1456            # are a concatenation of the first character of each of the 4 lines
1457            # so we can do some very readable comparisons.
1458            while len(lines) < 4:
1459                lines.append(next(diff_lines_iterator, 'X'))
1460            s = ''.join([line[0] for line in lines])
1461            if s.startswith('X'):
1462                # When no more lines, pump out any remaining blank lines so the
1463                # corresponding add/delete lines get a matching blank line so
1464                # all line pairs get yielded at the next level.
1465                num_blanks_to_yield = num_blanks_pending
1466            elif s.startswith('-?+?'):
1467                # simple intraline change
1468                yield _make_line(lines,'?',0), _make_line(lines,'?',1), True
1469                continue
1470            elif s.startswith('--++'):
1471                # in delete block, add block coming: we do NOT want to get
1472                # caught up on blank lines yet, just process the delete line
1473                num_blanks_pending -= 1
1474                yield _make_line(lines,'-',0), None, True
1475                continue
1476            elif s.startswith(('--?+', '--+', '- ')):
1477                # in delete block and see an intraline change or unchanged line
1478                # coming: yield the delete line and then blanks
1479                from_line,to_line = _make_line(lines,'-',0), None
1480                num_blanks_to_yield,num_blanks_pending = num_blanks_pending-1,0
1481            elif s.startswith('-+?'):
1482                # intraline change
1483                yield _make_line(lines,None,0), _make_line(lines,'?',1), True
1484                continue
1485            elif s.startswith('-?+'):
1486                # intraline change
1487                yield _make_line(lines,'?',0), _make_line(lines,None,1), True
1488                continue
1489            elif s.startswith('-'):
1490                # delete FROM line
1491                num_blanks_pending -= 1
1492                yield _make_line(lines,'-',0), None, True
1493                continue
1494            elif s.startswith('+--'):
1495                # in add block, delete block coming: we do NOT want to get
1496                # caught up on blank lines yet, just process the add line
1497                num_blanks_pending += 1
1498                yield None, _make_line(lines,'+',1), True
1499                continue
1500            elif s.startswith(('+ ', '+-')):
1501                # will be leaving an add block: yield blanks then add line
1502                from_line, to_line = None, _make_line(lines,'+',1)
1503                num_blanks_to_yield,num_blanks_pending = num_blanks_pending+1,0
1504            elif s.startswith('+'):
1505                # inside an add block, yield the add line
1506                num_blanks_pending += 1
1507                yield None, _make_line(lines,'+',1), True
1508                continue
1509            elif s.startswith(' '):
1510                # unchanged text, yield it to both sides
1511                yield _make_line(lines[:],None,0),_make_line(lines,None,1),False
1512                continue
1513            # Catch up on the blank lines so when we yield the next from/to
1514            # pair, they are lined up.
1515            while(num_blanks_to_yield < 0):
1516                num_blanks_to_yield += 1
1517                yield None,('','\n'),True
1518            while(num_blanks_to_yield > 0):
1519                num_blanks_to_yield -= 1
1520                yield ('','\n'),None,True
1521            if s.startswith('X'):
1522                return
1523            else:
1524                yield from_line,to_line,True
1525
1526    def _line_pair_iterator():
1527        """Yields from/to lines of text with a change indication.
1528
1529        This function is an iterator.  It itself pulls lines from the line
1530        iterator.  Its difference from that iterator is that this function
1531        always yields a pair of from/to text lines (with the change
1532        indication).  If necessary it will collect single from/to lines
1533        until it has a matching pair from/to pair to yield.
1534
1535        Note, this function is purposefully not defined at the module scope so
1536        that data it needs from its parent function (within whose context it
1537        is defined) does not need to be of module scope.
1538        """
1539        line_iterator = _line_iterator()
1540        fromlines,tolines=[],[]
1541        while True:
1542            # Collecting lines of text until we have a from/to pair
1543            while (len(fromlines)==0 or len(tolines)==0):
1544                try:
1545                    from_line, to_line, found_diff = next(line_iterator)
1546                except StopIteration:
1547                    return
1548                if from_line is not None:
1549                    fromlines.append((from_line,found_diff))
1550                if to_line is not None:
1551                    tolines.append((to_line,found_diff))
1552            # Once we have a pair, remove them from the collection and yield it
1553            from_line, fromDiff = fromlines.pop(0)
1554            to_line, to_diff = tolines.pop(0)
1555            yield (from_line,to_line,fromDiff or to_diff)
1556
1557    # Handle case where user does not want context differencing, just yield
1558    # them up without doing anything else with them.
1559    line_pair_iterator = _line_pair_iterator()
1560    if context is None:
1561        yield from line_pair_iterator
1562    # Handle case where user wants context differencing.  We must do some
1563    # storage of lines until we know for sure that they are to be yielded.
1564    else:
1565        context += 1
1566        lines_to_write = 0
1567        while True:
1568            # Store lines up until we find a difference, note use of a
1569            # circular queue because we only need to keep around what
1570            # we need for context.
1571            index, contextLines = 0, [None]*(context)
1572            found_diff = False
1573            while(found_diff is False):
1574                try:
1575                    from_line, to_line, found_diff = next(line_pair_iterator)
1576                except StopIteration:
1577                    return
1578                i = index % context
1579                contextLines[i] = (from_line, to_line, found_diff)
1580                index += 1
1581            # Yield lines that we have collected so far, but first yield
1582            # the user's separator.
1583            if index > context:
1584                yield None, None, None
1585                lines_to_write = context
1586            else:
1587                lines_to_write = index
1588                index = 0
1589            while(lines_to_write):
1590                i = index % context
1591                index += 1
1592                yield contextLines[i]
1593                lines_to_write -= 1
1594            # Now yield the context lines after the change
1595            lines_to_write = context-1
1596            try:
1597                while(lines_to_write):
1598                    from_line, to_line, found_diff = next(line_pair_iterator)
1599                    # If another change within the context, extend the context
1600                    if found_diff:
1601                        lines_to_write = context-1
1602                    else:
1603                        lines_to_write -= 1
1604                    yield from_line, to_line, found_diff
1605            except StopIteration:
1606                # Catch exception from next() and return normally
1607                return
1608
1609
1610_file_template = """
1611<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
1612          "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
1613
1614<html>
1615
1616<head>
1617    <meta http-equiv="Content-Type"
1618          content="text/html; charset=%(charset)s" />
1619    <title></title>
1620    <style type="text/css">%(styles)s
1621    </style>
1622</head>
1623
1624<body>
1625    %(table)s%(legend)s
1626</body>
1627
1628</html>"""
1629
1630_styles = """
1631        table.diff {font-family:Courier; border:medium;}
1632        .diff_header {background-color:#e0e0e0}
1633        td.diff_header {text-align:right}
1634        .diff_next {background-color:#c0c0c0}
1635        .diff_add {background-color:#aaffaa}
1636        .diff_chg {background-color:#ffff77}
1637        .diff_sub {background-color:#ffaaaa}"""
1638
1639_table_template = """
1640    <table class="diff" id="difflib_chg_%(prefix)s_top"
1641           cellspacing="0" cellpadding="0" rules="groups" >
1642        <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup>
1643        <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup>
1644        %(header_row)s
1645        <tbody>
1646%(data_rows)s        </tbody>
1647    </table>"""
1648
1649_legend = """
1650    <table class="diff" summary="Legends">
1651        <tr> <th colspan="2"> Legends </th> </tr>
1652        <tr> <td> <table border="" summary="Colors">
1653                      <tr><th> Colors </th> </tr>
1654                      <tr><td class="diff_add">&nbsp;Added&nbsp;</td></tr>
1655                      <tr><td class="diff_chg">Changed</td> </tr>
1656                      <tr><td class="diff_sub">Deleted</td> </tr>
1657                  </table></td>
1658             <td> <table border="" summary="Links">
1659                      <tr><th colspan="2"> Links </th> </tr>
1660                      <tr><td>(f)irst change</td> </tr>
1661                      <tr><td>(n)ext change</td> </tr>
1662                      <tr><td>(t)op</td> </tr>
1663                  </table></td> </tr>
1664    </table>"""
1665
1666class HtmlDiff(object):
1667    """For producing HTML side by side comparison with change highlights.
1668
1669    This class can be used to create an HTML table (or a complete HTML file
1670    containing the table) showing a side by side, line by line comparison
1671    of text with inter-line and intra-line change highlights.  The table can
1672    be generated in either full or contextual difference mode.
1673
1674    The following methods are provided for HTML generation:
1675
1676    make_table -- generates HTML for a single side by side table
1677    make_file -- generates complete HTML file with a single side by side table
1678
1679    See tools/scripts/diff.py for an example usage of this class.
1680    """
1681
1682    _file_template = _file_template
1683    _styles = _styles
1684    _table_template = _table_template
1685    _legend = _legend
1686    _default_prefix = 0
1687
1688    def __init__(self,tabsize=8,wrapcolumn=None,linejunk=None,
1689                 charjunk=IS_CHARACTER_JUNK):
1690        """HtmlDiff instance initializer
1691
1692        Arguments:
1693        tabsize -- tab stop spacing, defaults to 8.
1694        wrapcolumn -- column number where lines are broken and wrapped,
1695            defaults to None where lines are not wrapped.
1696        linejunk,charjunk -- keyword arguments passed into ndiff() (used by
1697            HtmlDiff() to generate the side by side HTML differences).  See
1698            ndiff() documentation for argument default values and descriptions.
1699        """
1700        self._tabsize = tabsize
1701        self._wrapcolumn = wrapcolumn
1702        self._linejunk = linejunk
1703        self._charjunk = charjunk
1704
1705    def make_file(self, fromlines, tolines, fromdesc='', todesc='',
1706                  context=False, numlines=5, *, charset='utf-8'):
1707        """Returns HTML file of side by side comparison with change highlights
1708
1709        Arguments:
1710        fromlines -- list of "from" lines
1711        tolines -- list of "to" lines
1712        fromdesc -- "from" file column header string
1713        todesc -- "to" file column header string
1714        context -- set to True for contextual differences (defaults to False
1715            which shows full differences).
1716        numlines -- number of context lines.  When context is set True,
1717            controls number of lines displayed before and after the change.
1718            When context is False, controls the number of lines to place
1719            the "next" link anchors before the next change (so click of
1720            "next" link jumps to just before the change).
1721        charset -- charset of the HTML document
1722        """
1723
1724        return (self._file_template % dict(
1725            styles=self._styles,
1726            legend=self._legend,
1727            table=self.make_table(fromlines, tolines, fromdesc, todesc,
1728                                  context=context, numlines=numlines),
1729            charset=charset
1730        )).encode(charset, 'xmlcharrefreplace').decode(charset)
1731
1732    def _tab_newline_replace(self,fromlines,tolines):
1733        """Returns from/to line lists with tabs expanded and newlines removed.
1734
1735        Instead of tab characters being replaced by the number of spaces
1736        needed to fill in to the next tab stop, this function will fill
1737        the space with tab characters.  This is done so that the difference
1738        algorithms can identify changes in a file when tabs are replaced by
1739        spaces and vice versa.  At the end of the HTML generation, the tab
1740        characters will be replaced with a nonbreakable space.
1741        """
1742        def expand_tabs(line):
1743            # hide real spaces
1744            line = line.replace(' ','\0')
1745            # expand tabs into spaces
1746            line = line.expandtabs(self._tabsize)
1747            # replace spaces from expanded tabs back into tab characters
1748            # (we'll replace them with markup after we do differencing)
1749            line = line.replace(' ','\t')
1750            return line.replace('\0',' ').rstrip('\n')
1751        fromlines = [expand_tabs(line) for line in fromlines]
1752        tolines = [expand_tabs(line) for line in tolines]
1753        return fromlines,tolines
1754
1755    def _split_line(self,data_list,line_num,text):
1756        """Builds list of text lines by splitting text lines at wrap point
1757
1758        This function will determine if the input text line needs to be
1759        wrapped (split) into separate lines.  If so, the first wrap point
1760        will be determined and the first line appended to the output
1761        text line list.  This function is used recursively to handle
1762        the second part of the split line to further split it.
1763        """
1764        # if blank line or context separator, just add it to the output list
1765        if not line_num:
1766            data_list.append((line_num,text))
1767            return
1768
1769        # if line text doesn't need wrapping, just add it to the output list
1770        size = len(text)
1771        max = self._wrapcolumn
1772        if (size <= max) or ((size -(text.count('\0')*3)) <= max):
1773            data_list.append((line_num,text))
1774            return
1775
1776        # scan text looking for the wrap point, keeping track if the wrap
1777        # point is inside markers
1778        i = 0
1779        n = 0
1780        mark = ''
1781        while n < max and i < size:
1782            if text[i] == '\0':
1783                i += 1
1784                mark = text[i]
1785                i += 1
1786            elif text[i] == '\1':
1787                i += 1
1788                mark = ''
1789            else:
1790                i += 1
1791                n += 1
1792
1793        # wrap point is inside text, break it up into separate lines
1794        line1 = text[:i]
1795        line2 = text[i:]
1796
1797        # if wrap point is inside markers, place end marker at end of first
1798        # line and start marker at beginning of second line because each
1799        # line will have its own table tag markup around it.
1800        if mark:
1801            line1 = line1 + '\1'
1802            line2 = '\0' + mark + line2
1803
1804        # tack on first line onto the output list
1805        data_list.append((line_num,line1))
1806
1807        # use this routine again to wrap the remaining text
1808        self._split_line(data_list,'>',line2)
1809
1810    def _line_wrapper(self,diffs):
1811        """Returns iterator that splits (wraps) mdiff text lines"""
1812
1813        # pull from/to data and flags from mdiff iterator
1814        for fromdata,todata,flag in diffs:
1815            # check for context separators and pass them through
1816            if flag is None:
1817                yield fromdata,todata,flag
1818                continue
1819            (fromline,fromtext),(toline,totext) = fromdata,todata
1820            # for each from/to line split it at the wrap column to form
1821            # list of text lines.
1822            fromlist,tolist = [],[]
1823            self._split_line(fromlist,fromline,fromtext)
1824            self._split_line(tolist,toline,totext)
1825            # yield from/to line in pairs inserting blank lines as
1826            # necessary when one side has more wrapped lines
1827            while fromlist or tolist:
1828                if fromlist:
1829                    fromdata = fromlist.pop(0)
1830                else:
1831                    fromdata = ('',' ')
1832                if tolist:
1833                    todata = tolist.pop(0)
1834                else:
1835                    todata = ('',' ')
1836                yield fromdata,todata,flag
1837
1838    def _collect_lines(self,diffs):
1839        """Collects mdiff output into separate lists
1840
1841        Before storing the mdiff from/to data into a list, it is converted
1842        into a single line of text with HTML markup.
1843        """
1844
1845        fromlist,tolist,flaglist = [],[],[]
1846        # pull from/to data and flags from mdiff style iterator
1847        for fromdata,todata,flag in diffs:
1848            try:
1849                # store HTML markup of the lines into the lists
1850                fromlist.append(self._format_line(0,flag,*fromdata))
1851                tolist.append(self._format_line(1,flag,*todata))
1852            except TypeError:
1853                # exceptions occur for lines where context separators go
1854                fromlist.append(None)
1855                tolist.append(None)
1856            flaglist.append(flag)
1857        return fromlist,tolist,flaglist
1858
1859    def _format_line(self,side,flag,linenum,text):
1860        """Returns HTML markup of "from" / "to" text lines
1861
1862        side -- 0 or 1 indicating "from" or "to" text
1863        flag -- indicates if difference on line
1864        linenum -- line number (used for line number column)
1865        text -- line text to be marked up
1866        """
1867        try:
1868            linenum = '%d' % linenum
1869            id = ' id="%s%s"' % (self._prefix[side],linenum)
1870        except TypeError:
1871            # handle blank lines where linenum is '>' or ''
1872            id = ''
1873        # replace those things that would get confused with HTML symbols
1874        text=text.replace("&","&amp;").replace(">","&gt;").replace("<","&lt;")
1875
1876        # make space non-breakable so they don't get compressed or line wrapped
1877        text = text.replace(' ','&nbsp;').rstrip()
1878
1879        return '<td class="diff_header"%s>%s</td><td nowrap="nowrap">%s</td>' \
1880               % (id,linenum,text)
1881
1882    def _make_prefix(self):
1883        """Create unique anchor prefixes"""
1884
1885        # Generate a unique anchor prefix so multiple tables
1886        # can exist on the same HTML page without conflicts.
1887        fromprefix = "from%d_" % HtmlDiff._default_prefix
1888        toprefix = "to%d_" % HtmlDiff._default_prefix
1889        HtmlDiff._default_prefix += 1
1890        # store prefixes so line format method has access
1891        self._prefix = [fromprefix,toprefix]
1892
1893    def _convert_flags(self,fromlist,tolist,flaglist,context,numlines):
1894        """Makes list of "next" links"""
1895
1896        # all anchor names will be generated using the unique "to" prefix
1897        toprefix = self._prefix[1]
1898
1899        # process change flags, generating middle column of next anchors/links
1900        next_id = ['']*len(flaglist)
1901        next_href = ['']*len(flaglist)
1902        num_chg, in_change = 0, False
1903        last = 0
1904        for i,flag in enumerate(flaglist):
1905            if flag:
1906                if not in_change:
1907                    in_change = True
1908                    last = i
1909                    # at the beginning of a change, drop an anchor a few lines
1910                    # (the context lines) before the change for the previous
1911                    # link
1912                    i = max([0,i-numlines])
1913                    next_id[i] = ' id="difflib_chg_%s_%d"' % (toprefix,num_chg)
1914                    # at the beginning of a change, drop a link to the next
1915                    # change
1916                    num_chg += 1
1917                    next_href[last] = '<a href="#difflib_chg_%s_%d">n</a>' % (
1918                         toprefix,num_chg)
1919            else:
1920                in_change = False
1921        # check for cases where there is no content to avoid exceptions
1922        if not flaglist:
1923            flaglist = [False]
1924            next_id = ['']
1925            next_href = ['']
1926            last = 0
1927            if context:
1928                fromlist = ['<td></td><td>&nbsp;No Differences Found&nbsp;</td>']
1929                tolist = fromlist
1930            else:
1931                fromlist = tolist = ['<td></td><td>&nbsp;Empty File&nbsp;</td>']
1932        # if not a change on first line, drop a link
1933        if not flaglist[0]:
1934            next_href[0] = '<a href="#difflib_chg_%s_0">f</a>' % toprefix
1935        # redo the last link to link to the top
1936        next_href[last] = '<a href="#difflib_chg_%s_top">t</a>' % (toprefix)
1937
1938        return fromlist,tolist,flaglist,next_href,next_id
1939
1940    def make_table(self,fromlines,tolines,fromdesc='',todesc='',context=False,
1941                   numlines=5):
1942        """Returns HTML table of side by side comparison with change highlights
1943
1944        Arguments:
1945        fromlines -- list of "from" lines
1946        tolines -- list of "to" lines
1947        fromdesc -- "from" file column header string
1948        todesc -- "to" file column header string
1949        context -- set to True for contextual differences (defaults to False
1950            which shows full differences).
1951        numlines -- number of context lines.  When context is set True,
1952            controls number of lines displayed before and after the change.
1953            When context is False, controls the number of lines to place
1954            the "next" link anchors before the next change (so click of
1955            "next" link jumps to just before the change).
1956        """
1957
1958        # make unique anchor prefixes so that multiple tables may exist
1959        # on the same page without conflict.
1960        self._make_prefix()
1961
1962        # change tabs to spaces before it gets more difficult after we insert
1963        # markup
1964        fromlines,tolines = self._tab_newline_replace(fromlines,tolines)
1965
1966        # create diffs iterator which generates side by side from/to data
1967        if context:
1968            context_lines = numlines
1969        else:
1970            context_lines = None
1971        diffs = _mdiff(fromlines,tolines,context_lines,linejunk=self._linejunk,
1972                      charjunk=self._charjunk)
1973
1974        # set up iterator to wrap lines that exceed desired width
1975        if self._wrapcolumn:
1976            diffs = self._line_wrapper(diffs)
1977
1978        # collect up from/to lines and flags into lists (also format the lines)
1979        fromlist,tolist,flaglist = self._collect_lines(diffs)
1980
1981        # process change flags, generating middle column of next anchors/links
1982        fromlist,tolist,flaglist,next_href,next_id = self._convert_flags(
1983            fromlist,tolist,flaglist,context,numlines)
1984
1985        s = []
1986        fmt = '            <tr><td class="diff_next"%s>%s</td>%s' + \
1987              '<td class="diff_next">%s</td>%s</tr>\n'
1988        for i in range(len(flaglist)):
1989            if flaglist[i] is None:
1990                # mdiff yields None on separator lines skip the bogus ones
1991                # generated for the first line
1992                if i > 0:
1993                    s.append('        </tbody>        \n        <tbody>\n')
1994            else:
1995                s.append( fmt % (next_id[i],next_href[i],fromlist[i],
1996                                           next_href[i],tolist[i]))
1997        if fromdesc or todesc:
1998            header_row = '<thead><tr>%s%s%s%s</tr></thead>' % (
1999                '<th class="diff_next"><br /></th>',
2000                '<th colspan="2" class="diff_header">%s</th>' % fromdesc,
2001                '<th class="diff_next"><br /></th>',
2002                '<th colspan="2" class="diff_header">%s</th>' % todesc)
2003        else:
2004            header_row = ''
2005
2006        table = self._table_template % dict(
2007            data_rows=''.join(s),
2008            header_row=header_row,
2009            prefix=self._prefix[1])
2010
2011        return table.replace('\0+','<span class="diff_add">'). \
2012                     replace('\0-','<span class="diff_sub">'). \
2013                     replace('\0^','<span class="diff_chg">'). \
2014                     replace('\1','</span>'). \
2015                     replace('\t','&nbsp;')
2016
2017del re
2018
2019def restore(delta, which):
2020    r"""
2021    Generate one of the two sequences that generated a delta.
2022
2023    Given a `delta` produced by `Differ.compare()` or `ndiff()`, extract
2024    lines originating from file 1 or 2 (parameter `which`), stripping off line
2025    prefixes.
2026
2027    Examples:
2028
2029    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
2030    ...              'ore\ntree\nemu\n'.splitlines(keepends=True))
2031    >>> diff = list(diff)
2032    >>> print(''.join(restore(diff, 1)), end="")
2033    one
2034    two
2035    three
2036    >>> print(''.join(restore(diff, 2)), end="")
2037    ore
2038    tree
2039    emu
2040    """
2041    try:
2042        tag = {1: "- ", 2: "+ "}[int(which)]
2043    except KeyError:
2044        raise ValueError('unknown delta choice (must be 1 or 2): %r'
2045                           % which) from None
2046    prefixes = ("  ", tag)
2047    for line in delta:
2048        if line[:2] in prefixes:
2049            yield line[2:]
2050
2051def _test():
2052    import doctest, difflib
2053    return doctest.testmod(difflib)
2054
2055if __name__ == "__main__":
2056    _test()
2057