1 use core::iter::{FromIterator, Iterator};
2 use core::mem::{self, ManuallyDrop, MaybeUninit};
3 use core::ops::{Deref, DerefMut};
4 use core::ptr::{self, NonNull};
5 use core::{cmp, fmt, hash, isize, slice, usize};
6
7 use alloc::{
8 borrow::{Borrow, BorrowMut},
9 boxed::Box,
10 string::String,
11 vec,
12 vec::Vec,
13 };
14
15 use crate::buf::{IntoIter, UninitSlice};
16 use crate::bytes::Vtable;
17 #[allow(unused)]
18 use crate::loom::sync::atomic::AtomicMut;
19 use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
20 use crate::{Buf, BufMut, Bytes};
21
22 /// A unique reference to a contiguous slice of memory.
23 ///
24 /// `BytesMut` represents a unique view into a potentially shared memory region.
25 /// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
26 /// mutate the memory.
27 ///
28 /// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
29 /// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
30 /// same `buf` overlaps with its slice. That guarantee means that a write lock
31 /// is not required.
32 ///
33 /// # Growth
34 ///
35 /// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
36 /// necessary. However, explicitly reserving the required space up-front before
37 /// a series of inserts will be more efficient.
38 ///
39 /// # Examples
40 ///
41 /// ```
42 /// use bytes::{BytesMut, BufMut};
43 ///
44 /// let mut buf = BytesMut::with_capacity(64);
45 ///
46 /// buf.put_u8(b'h');
47 /// buf.put_u8(b'e');
48 /// buf.put(&b"llo"[..]);
49 ///
50 /// assert_eq!(&buf[..], b"hello");
51 ///
52 /// // Freeze the buffer so that it can be shared
53 /// let a = buf.freeze();
54 ///
55 /// // This does not allocate, instead `b` points to the same memory.
56 /// let b = a.clone();
57 ///
58 /// assert_eq!(&a[..], b"hello");
59 /// assert_eq!(&b[..], b"hello");
60 /// ```
61 pub struct BytesMut {
62 ptr: NonNull<u8>,
63 len: usize,
64 cap: usize,
65 data: *mut Shared,
66 }
67
68 // Thread-safe reference-counted container for the shared storage. This mostly
69 // the same as `core::sync::Arc` but without the weak counter. The ref counting
70 // fns are based on the ones found in `std`.
71 //
72 // The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
73 // up making the overall code simpler and easier to reason about. This is due to
74 // some of the logic around setting `Inner::arc` and other ways the `arc` field
75 // is used. Using `Arc` ended up requiring a number of funky transmutes and
76 // other shenanigans to make it work.
77 struct Shared {
78 vec: Vec<u8>,
79 original_capacity_repr: usize,
80 ref_count: AtomicUsize,
81 }
82
83 // Buffer storage strategy flags.
84 const KIND_ARC: usize = 0b0;
85 const KIND_VEC: usize = 0b1;
86 const KIND_MASK: usize = 0b1;
87
88 // The max original capacity value. Any `Bytes` allocated with a greater initial
89 // capacity will default to this.
90 const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
91 // The original capacity algorithm will not take effect unless the originally
92 // allocated capacity was at least 1kb in size.
93 const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
94 // The original capacity is stored in powers of 2 starting at 1kb to a max of
95 // 64kb. Representing it as such requires only 3 bits of storage.
96 const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
97 const ORIGINAL_CAPACITY_OFFSET: usize = 2;
98
99 // When the storage is in the `Vec` representation, the pointer can be advanced
100 // at most this value. This is due to the amount of storage available to track
101 // the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
102 // bits.
103 const VEC_POS_OFFSET: usize = 5;
104 const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
105 const NOT_VEC_POS_MASK: usize = 0b11111;
106
107 #[cfg(target_pointer_width = "64")]
108 const PTR_WIDTH: usize = 64;
109 #[cfg(target_pointer_width = "32")]
110 const PTR_WIDTH: usize = 32;
111
112 /*
113 *
114 * ===== BytesMut =====
115 *
116 */
117
118 impl BytesMut {
119 /// Creates a new `BytesMut` with the specified capacity.
120 ///
121 /// The returned `BytesMut` will be able to hold at least `capacity` bytes
122 /// without reallocating.
123 ///
124 /// It is important to note that this function does not specify the length
125 /// of the returned `BytesMut`, but only the capacity.
126 ///
127 /// # Examples
128 ///
129 /// ```
130 /// use bytes::{BytesMut, BufMut};
131 ///
132 /// let mut bytes = BytesMut::with_capacity(64);
133 ///
134 /// // `bytes` contains no data, even though there is capacity
135 /// assert_eq!(bytes.len(), 0);
136 ///
137 /// bytes.put(&b"hello world"[..]);
138 ///
139 /// assert_eq!(&bytes[..], b"hello world");
140 /// ```
141 #[inline]
with_capacity(capacity: usize) -> BytesMut142 pub fn with_capacity(capacity: usize) -> BytesMut {
143 BytesMut::from_vec(Vec::with_capacity(capacity))
144 }
145
146 /// Creates a new `BytesMut` with default capacity.
147 ///
148 /// Resulting object has length 0 and unspecified capacity.
149 /// This function does not allocate.
150 ///
151 /// # Examples
152 ///
153 /// ```
154 /// use bytes::{BytesMut, BufMut};
155 ///
156 /// let mut bytes = BytesMut::new();
157 ///
158 /// assert_eq!(0, bytes.len());
159 ///
160 /// bytes.reserve(2);
161 /// bytes.put_slice(b"xy");
162 ///
163 /// assert_eq!(&b"xy"[..], &bytes[..]);
164 /// ```
165 #[inline]
new() -> BytesMut166 pub fn new() -> BytesMut {
167 BytesMut::with_capacity(0)
168 }
169
170 /// Returns the number of bytes contained in this `BytesMut`.
171 ///
172 /// # Examples
173 ///
174 /// ```
175 /// use bytes::BytesMut;
176 ///
177 /// let b = BytesMut::from(&b"hello"[..]);
178 /// assert_eq!(b.len(), 5);
179 /// ```
180 #[inline]
len(&self) -> usize181 pub fn len(&self) -> usize {
182 self.len
183 }
184
185 /// Returns true if the `BytesMut` has a length of 0.
186 ///
187 /// # Examples
188 ///
189 /// ```
190 /// use bytes::BytesMut;
191 ///
192 /// let b = BytesMut::with_capacity(64);
193 /// assert!(b.is_empty());
194 /// ```
195 #[inline]
is_empty(&self) -> bool196 pub fn is_empty(&self) -> bool {
197 self.len == 0
198 }
199
200 /// Returns the number of bytes the `BytesMut` can hold without reallocating.
201 ///
202 /// # Examples
203 ///
204 /// ```
205 /// use bytes::BytesMut;
206 ///
207 /// let b = BytesMut::with_capacity(64);
208 /// assert_eq!(b.capacity(), 64);
209 /// ```
210 #[inline]
capacity(&self) -> usize211 pub fn capacity(&self) -> usize {
212 self.cap
213 }
214
215 /// Converts `self` into an immutable `Bytes`.
216 ///
217 /// The conversion is zero cost and is used to indicate that the slice
218 /// referenced by the handle will no longer be mutated. Once the conversion
219 /// is done, the handle can be cloned and shared across threads.
220 ///
221 /// # Examples
222 ///
223 /// ```
224 /// use bytes::{BytesMut, BufMut};
225 /// use std::thread;
226 ///
227 /// let mut b = BytesMut::with_capacity(64);
228 /// b.put(&b"hello world"[..]);
229 /// let b1 = b.freeze();
230 /// let b2 = b1.clone();
231 ///
232 /// let th = thread::spawn(move || {
233 /// assert_eq!(&b1[..], b"hello world");
234 /// });
235 ///
236 /// assert_eq!(&b2[..], b"hello world");
237 /// th.join().unwrap();
238 /// ```
239 #[inline]
freeze(mut self) -> Bytes240 pub fn freeze(mut self) -> Bytes {
241 if self.kind() == KIND_VEC {
242 // Just re-use `Bytes` internal Vec vtable
243 unsafe {
244 let (off, _) = self.get_vec_pos();
245 let vec = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
246 mem::forget(self);
247 let mut b: Bytes = vec.into();
248 b.advance(off);
249 b
250 }
251 } else {
252 debug_assert_eq!(self.kind(), KIND_ARC);
253
254 let ptr = self.ptr.as_ptr();
255 let len = self.len;
256 let data = AtomicPtr::new(self.data.cast());
257 mem::forget(self);
258 unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
259 }
260 }
261
262 /// Creates a new `BytesMut`, which is initialized with zero.
263 ///
264 /// # Examples
265 ///
266 /// ```
267 /// use bytes::BytesMut;
268 ///
269 /// let zeros = BytesMut::zeroed(42);
270 ///
271 /// assert_eq!(zeros.len(), 42);
272 /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
273 /// ```
zeroed(len: usize) -> BytesMut274 pub fn zeroed(len: usize) -> BytesMut {
275 BytesMut::from_vec(vec![0; len])
276 }
277
278 /// Splits the bytes into two at the given index.
279 ///
280 /// Afterwards `self` contains elements `[0, at)`, and the returned
281 /// `BytesMut` contains elements `[at, capacity)`.
282 ///
283 /// This is an `O(1)` operation that just increases the reference count
284 /// and sets a few indices.
285 ///
286 /// # Examples
287 ///
288 /// ```
289 /// use bytes::BytesMut;
290 ///
291 /// let mut a = BytesMut::from(&b"hello world"[..]);
292 /// let mut b = a.split_off(5);
293 ///
294 /// a[0] = b'j';
295 /// b[0] = b'!';
296 ///
297 /// assert_eq!(&a[..], b"jello");
298 /// assert_eq!(&b[..], b"!world");
299 /// ```
300 ///
301 /// # Panics
302 ///
303 /// Panics if `at > capacity`.
304 #[must_use = "consider BytesMut::truncate if you don't need the other half"]
split_off(&mut self, at: usize) -> BytesMut305 pub fn split_off(&mut self, at: usize) -> BytesMut {
306 assert!(
307 at <= self.capacity(),
308 "split_off out of bounds: {:?} <= {:?}",
309 at,
310 self.capacity(),
311 );
312 unsafe {
313 let mut other = self.shallow_clone();
314 other.set_start(at);
315 self.set_end(at);
316 other
317 }
318 }
319
320 /// Removes the bytes from the current view, returning them in a new
321 /// `BytesMut` handle.
322 ///
323 /// Afterwards, `self` will be empty, but will retain any additional
324 /// capacity that it had before the operation. This is identical to
325 /// `self.split_to(self.len())`.
326 ///
327 /// This is an `O(1)` operation that just increases the reference count and
328 /// sets a few indices.
329 ///
330 /// # Examples
331 ///
332 /// ```
333 /// use bytes::{BytesMut, BufMut};
334 ///
335 /// let mut buf = BytesMut::with_capacity(1024);
336 /// buf.put(&b"hello world"[..]);
337 ///
338 /// let other = buf.split();
339 ///
340 /// assert!(buf.is_empty());
341 /// assert_eq!(1013, buf.capacity());
342 ///
343 /// assert_eq!(other, b"hello world"[..]);
344 /// ```
345 #[must_use = "consider BytesMut::advance(len()) if you don't need the other half"]
split(&mut self) -> BytesMut346 pub fn split(&mut self) -> BytesMut {
347 let len = self.len();
348 self.split_to(len)
349 }
350
351 /// Splits the buffer into two at the given index.
352 ///
353 /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
354 /// contains elements `[0, at)`.
355 ///
356 /// This is an `O(1)` operation that just increases the reference count and
357 /// sets a few indices.
358 ///
359 /// # Examples
360 ///
361 /// ```
362 /// use bytes::BytesMut;
363 ///
364 /// let mut a = BytesMut::from(&b"hello world"[..]);
365 /// let mut b = a.split_to(5);
366 ///
367 /// a[0] = b'!';
368 /// b[0] = b'j';
369 ///
370 /// assert_eq!(&a[..], b"!world");
371 /// assert_eq!(&b[..], b"jello");
372 /// ```
373 ///
374 /// # Panics
375 ///
376 /// Panics if `at > len`.
377 #[must_use = "consider BytesMut::advance if you don't need the other half"]
split_to(&mut self, at: usize) -> BytesMut378 pub fn split_to(&mut self, at: usize) -> BytesMut {
379 assert!(
380 at <= self.len(),
381 "split_to out of bounds: {:?} <= {:?}",
382 at,
383 self.len(),
384 );
385
386 unsafe {
387 let mut other = self.shallow_clone();
388 other.set_end(at);
389 self.set_start(at);
390 other
391 }
392 }
393
394 /// Shortens the buffer, keeping the first `len` bytes and dropping the
395 /// rest.
396 ///
397 /// If `len` is greater than the buffer's current length, this has no
398 /// effect.
399 ///
400 /// Existing underlying capacity is preserved.
401 ///
402 /// The [`split_off`] method can emulate `truncate`, but this causes the
403 /// excess bytes to be returned instead of dropped.
404 ///
405 /// # Examples
406 ///
407 /// ```
408 /// use bytes::BytesMut;
409 ///
410 /// let mut buf = BytesMut::from(&b"hello world"[..]);
411 /// buf.truncate(5);
412 /// assert_eq!(buf, b"hello"[..]);
413 /// ```
414 ///
415 /// [`split_off`]: #method.split_off
truncate(&mut self, len: usize)416 pub fn truncate(&mut self, len: usize) {
417 if len <= self.len() {
418 unsafe {
419 self.set_len(len);
420 }
421 }
422 }
423
424 /// Clears the buffer, removing all data. Existing capacity is preserved.
425 ///
426 /// # Examples
427 ///
428 /// ```
429 /// use bytes::BytesMut;
430 ///
431 /// let mut buf = BytesMut::from(&b"hello world"[..]);
432 /// buf.clear();
433 /// assert!(buf.is_empty());
434 /// ```
clear(&mut self)435 pub fn clear(&mut self) {
436 self.truncate(0);
437 }
438
439 /// Resizes the buffer so that `len` is equal to `new_len`.
440 ///
441 /// If `new_len` is greater than `len`, the buffer is extended by the
442 /// difference with each additional byte set to `value`. If `new_len` is
443 /// less than `len`, the buffer is simply truncated.
444 ///
445 /// # Examples
446 ///
447 /// ```
448 /// use bytes::BytesMut;
449 ///
450 /// let mut buf = BytesMut::new();
451 ///
452 /// buf.resize(3, 0x1);
453 /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
454 ///
455 /// buf.resize(2, 0x2);
456 /// assert_eq!(&buf[..], &[0x1, 0x1]);
457 ///
458 /// buf.resize(4, 0x3);
459 /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
460 /// ```
resize(&mut self, new_len: usize, value: u8)461 pub fn resize(&mut self, new_len: usize, value: u8) {
462 let len = self.len();
463 if new_len > len {
464 let additional = new_len - len;
465 self.reserve(additional);
466 unsafe {
467 let dst = self.chunk_mut().as_mut_ptr();
468 ptr::write_bytes(dst, value, additional);
469 self.set_len(new_len);
470 }
471 } else {
472 self.truncate(new_len);
473 }
474 }
475
476 /// Sets the length of the buffer.
477 ///
478 /// This will explicitly set the size of the buffer without actually
479 /// modifying the data, so it is up to the caller to ensure that the data
480 /// has been initialized.
481 ///
482 /// # Examples
483 ///
484 /// ```
485 /// use bytes::BytesMut;
486 ///
487 /// let mut b = BytesMut::from(&b"hello world"[..]);
488 ///
489 /// unsafe {
490 /// b.set_len(5);
491 /// }
492 ///
493 /// assert_eq!(&b[..], b"hello");
494 ///
495 /// unsafe {
496 /// b.set_len(11);
497 /// }
498 ///
499 /// assert_eq!(&b[..], b"hello world");
500 /// ```
501 #[inline]
set_len(&mut self, len: usize)502 pub unsafe fn set_len(&mut self, len: usize) {
503 debug_assert!(len <= self.cap, "set_len out of bounds");
504 self.len = len;
505 }
506
507 /// Reserves capacity for at least `additional` more bytes to be inserted
508 /// into the given `BytesMut`.
509 ///
510 /// More than `additional` bytes may be reserved in order to avoid frequent
511 /// reallocations. A call to `reserve` may result in an allocation.
512 ///
513 /// Before allocating new buffer space, the function will attempt to reclaim
514 /// space in the existing buffer. If the current handle references a view
515 /// into a larger original buffer, and all other handles referencing part
516 /// of the same original buffer have been dropped, then the current view
517 /// can be copied/shifted to the front of the buffer and the handle can take
518 /// ownership of the full buffer, provided that the full buffer is large
519 /// enough to fit the requested additional capacity.
520 ///
521 /// This optimization will only happen if shifting the data from the current
522 /// view to the front of the buffer is not too expensive in terms of the
523 /// (amortized) time required. The precise condition is subject to change;
524 /// as of now, the length of the data being shifted needs to be at least as
525 /// large as the distance that it's shifted by. If the current view is empty
526 /// and the original buffer is large enough to fit the requested additional
527 /// capacity, then reallocations will never happen.
528 ///
529 /// # Examples
530 ///
531 /// In the following example, a new buffer is allocated.
532 ///
533 /// ```
534 /// use bytes::BytesMut;
535 ///
536 /// let mut buf = BytesMut::from(&b"hello"[..]);
537 /// buf.reserve(64);
538 /// assert!(buf.capacity() >= 69);
539 /// ```
540 ///
541 /// In the following example, the existing buffer is reclaimed.
542 ///
543 /// ```
544 /// use bytes::{BytesMut, BufMut};
545 ///
546 /// let mut buf = BytesMut::with_capacity(128);
547 /// buf.put(&[0; 64][..]);
548 ///
549 /// let ptr = buf.as_ptr();
550 /// let other = buf.split();
551 ///
552 /// assert!(buf.is_empty());
553 /// assert_eq!(buf.capacity(), 64);
554 ///
555 /// drop(other);
556 /// buf.reserve(128);
557 ///
558 /// assert_eq!(buf.capacity(), 128);
559 /// assert_eq!(buf.as_ptr(), ptr);
560 /// ```
561 ///
562 /// # Panics
563 ///
564 /// Panics if the new capacity overflows `usize`.
565 #[inline]
reserve(&mut self, additional: usize)566 pub fn reserve(&mut self, additional: usize) {
567 let len = self.len();
568 let rem = self.capacity() - len;
569
570 if additional <= rem {
571 // The handle can already store at least `additional` more bytes, so
572 // there is no further work needed to be done.
573 return;
574 }
575
576 self.reserve_inner(additional);
577 }
578
579 // In separate function to allow the short-circuits in `reserve` to
580 // be inline-able. Significant helps performance.
reserve_inner(&mut self, additional: usize)581 fn reserve_inner(&mut self, additional: usize) {
582 let len = self.len();
583 let kind = self.kind();
584
585 if kind == KIND_VEC {
586 // If there's enough free space before the start of the buffer, then
587 // just copy the data backwards and reuse the already-allocated
588 // space.
589 //
590 // Otherwise, since backed by a vector, use `Vec::reserve`
591 //
592 // We need to make sure that this optimization does not kill the
593 // amortized runtimes of BytesMut's operations.
594 unsafe {
595 let (off, prev) = self.get_vec_pos();
596
597 // Only reuse space if we can satisfy the requested additional space.
598 //
599 // Also check if the value of `off` suggests that enough bytes
600 // have been read to account for the overhead of shifting all
601 // the data (in an amortized analysis).
602 // Hence the condition `off >= self.len()`.
603 //
604 // This condition also already implies that the buffer is going
605 // to be (at least) half-empty in the end; so we do not break
606 // the (amortized) runtime with future resizes of the underlying
607 // `Vec`.
608 //
609 // [For more details check issue #524, and PR #525.]
610 if self.capacity() - self.len() + off >= additional && off >= self.len() {
611 // There's enough space, and it's not too much overhead:
612 // reuse the space!
613 //
614 // Just move the pointer back to the start after copying
615 // data back.
616 let base_ptr = self.ptr.as_ptr().offset(-(off as isize));
617 // Since `off >= self.len()`, the two regions don't overlap.
618 ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
619 self.ptr = vptr(base_ptr);
620 self.set_vec_pos(0, prev);
621
622 // Length stays constant, but since we moved backwards we
623 // can gain capacity back.
624 self.cap += off;
625 } else {
626 // Not enough space, or reusing might be too much overhead:
627 // allocate more space!
628 let mut v =
629 ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
630 v.reserve(additional);
631
632 // Update the info
633 self.ptr = vptr(v.as_mut_ptr().add(off));
634 self.len = v.len() - off;
635 self.cap = v.capacity() - off;
636 }
637
638 return;
639 }
640 }
641
642 debug_assert_eq!(kind, KIND_ARC);
643 let shared: *mut Shared = self.data;
644
645 // Reserving involves abandoning the currently shared buffer and
646 // allocating a new vector with the requested capacity.
647 //
648 // Compute the new capacity
649 let mut new_cap = len.checked_add(additional).expect("overflow");
650
651 let original_capacity;
652 let original_capacity_repr;
653
654 unsafe {
655 original_capacity_repr = (*shared).original_capacity_repr;
656 original_capacity = original_capacity_from_repr(original_capacity_repr);
657
658 // First, try to reclaim the buffer. This is possible if the current
659 // handle is the only outstanding handle pointing to the buffer.
660 if (*shared).is_unique() {
661 // This is the only handle to the buffer. It can be reclaimed.
662 // However, before doing the work of copying data, check to make
663 // sure that the vector has enough capacity.
664 let v = &mut (*shared).vec;
665
666 let v_capacity = v.capacity();
667 let ptr = v.as_mut_ptr();
668
669 let offset = offset_from(self.ptr.as_ptr(), ptr);
670
671 // Compare the condition in the `kind == KIND_VEC` case above
672 // for more details.
673 if v_capacity >= new_cap + offset {
674 self.cap = new_cap;
675 // no copy is necessary
676 } else if v_capacity >= new_cap && offset >= len {
677 // The capacity is sufficient, and copying is not too much
678 // overhead: reclaim the buffer!
679
680 // `offset >= len` means: no overlap
681 ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
682
683 self.ptr = vptr(ptr);
684 self.cap = v.capacity();
685 } else {
686 // calculate offset
687 let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
688
689 // new_cap is calculated in terms of `BytesMut`, not the underlying
690 // `Vec`, so it does not take the offset into account.
691 //
692 // Thus we have to manually add it here.
693 new_cap = new_cap.checked_add(off).expect("overflow");
694
695 // The vector capacity is not sufficient. The reserve request is
696 // asking for more than the initial buffer capacity. Allocate more
697 // than requested if `new_cap` is not much bigger than the current
698 // capacity.
699 //
700 // There are some situations, using `reserve_exact` that the
701 // buffer capacity could be below `original_capacity`, so do a
702 // check.
703 let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
704
705 new_cap = cmp::max(double, new_cap);
706
707 // No space - allocate more
708 //
709 // The length field of `Shared::vec` is not used by the `BytesMut`;
710 // instead we use the `len` field in the `BytesMut` itself. However,
711 // when calling `reserve`, it doesn't guarantee that data stored in
712 // the unused capacity of the vector is copied over to the new
713 // allocation, so we need to ensure that we don't have any data we
714 // care about in the unused capacity before calling `reserve`.
715 debug_assert!(off + len <= v.capacity());
716 v.set_len(off + len);
717 v.reserve(new_cap - v.len());
718
719 // Update the info
720 self.ptr = vptr(v.as_mut_ptr().add(off));
721 self.cap = v.capacity() - off;
722 }
723
724 return;
725 } else {
726 new_cap = cmp::max(new_cap, original_capacity);
727 }
728 }
729
730 // Create a new vector to store the data
731 let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
732
733 // Copy the bytes
734 v.extend_from_slice(self.as_ref());
735
736 // Release the shared handle. This must be done *after* the bytes are
737 // copied.
738 unsafe { release_shared(shared) };
739
740 // Update self
741 let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
742 self.data = invalid_ptr(data);
743 self.ptr = vptr(v.as_mut_ptr());
744 self.len = v.len();
745 self.cap = v.capacity();
746 }
747
748 /// Appends given bytes to this `BytesMut`.
749 ///
750 /// If this `BytesMut` object does not have enough capacity, it is resized
751 /// first.
752 ///
753 /// # Examples
754 ///
755 /// ```
756 /// use bytes::BytesMut;
757 ///
758 /// let mut buf = BytesMut::with_capacity(0);
759 /// buf.extend_from_slice(b"aaabbb");
760 /// buf.extend_from_slice(b"cccddd");
761 ///
762 /// assert_eq!(b"aaabbbcccddd", &buf[..]);
763 /// ```
extend_from_slice(&mut self, extend: &[u8])764 pub fn extend_from_slice(&mut self, extend: &[u8]) {
765 let cnt = extend.len();
766 self.reserve(cnt);
767
768 unsafe {
769 let dst = self.spare_capacity_mut();
770 // Reserved above
771 debug_assert!(dst.len() >= cnt);
772
773 ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
774 }
775
776 unsafe {
777 self.advance_mut(cnt);
778 }
779 }
780
781 /// Absorbs a `BytesMut` that was previously split off.
782 ///
783 /// If the two `BytesMut` objects were previously contiguous and not mutated
784 /// in a way that causes re-allocation i.e., if `other` was created by
785 /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
786 /// that just decreases a reference count and sets a few indices.
787 /// Otherwise this method degenerates to
788 /// `self.extend_from_slice(other.as_ref())`.
789 ///
790 /// # Examples
791 ///
792 /// ```
793 /// use bytes::BytesMut;
794 ///
795 /// let mut buf = BytesMut::with_capacity(64);
796 /// buf.extend_from_slice(b"aaabbbcccddd");
797 ///
798 /// let split = buf.split_off(6);
799 /// assert_eq!(b"aaabbb", &buf[..]);
800 /// assert_eq!(b"cccddd", &split[..]);
801 ///
802 /// buf.unsplit(split);
803 /// assert_eq!(b"aaabbbcccddd", &buf[..]);
804 /// ```
unsplit(&mut self, other: BytesMut)805 pub fn unsplit(&mut self, other: BytesMut) {
806 if self.is_empty() {
807 *self = other;
808 return;
809 }
810
811 if let Err(other) = self.try_unsplit(other) {
812 self.extend_from_slice(other.as_ref());
813 }
814 }
815
816 // private
817
818 // For now, use a `Vec` to manage the memory for us, but we may want to
819 // change that in the future to some alternate allocator strategy.
820 //
821 // Thus, we don't expose an easy way to construct from a `Vec` since an
822 // internal change could make a simple pattern (`BytesMut::from(vec)`)
823 // suddenly a lot more expensive.
824 #[inline]
from_vec(mut vec: Vec<u8>) -> BytesMut825 pub(crate) fn from_vec(mut vec: Vec<u8>) -> BytesMut {
826 let ptr = vptr(vec.as_mut_ptr());
827 let len = vec.len();
828 let cap = vec.capacity();
829 mem::forget(vec);
830
831 let original_capacity_repr = original_capacity_to_repr(cap);
832 let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
833
834 BytesMut {
835 ptr,
836 len,
837 cap,
838 data: invalid_ptr(data),
839 }
840 }
841
842 #[inline]
as_slice(&self) -> &[u8]843 fn as_slice(&self) -> &[u8] {
844 unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
845 }
846
847 #[inline]
as_slice_mut(&mut self) -> &mut [u8]848 fn as_slice_mut(&mut self) -> &mut [u8] {
849 unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
850 }
851
set_start(&mut self, start: usize)852 unsafe fn set_start(&mut self, start: usize) {
853 // Setting the start to 0 is a no-op, so return early if this is the
854 // case.
855 if start == 0 {
856 return;
857 }
858
859 debug_assert!(start <= self.cap, "internal: set_start out of bounds");
860
861 let kind = self.kind();
862
863 if kind == KIND_VEC {
864 // Setting the start when in vec representation is a little more
865 // complicated. First, we have to track how far ahead the
866 // "start" of the byte buffer from the beginning of the vec. We
867 // also have to ensure that we don't exceed the maximum shift.
868 let (mut pos, prev) = self.get_vec_pos();
869 pos += start;
870
871 if pos <= MAX_VEC_POS {
872 self.set_vec_pos(pos, prev);
873 } else {
874 // The repr must be upgraded to ARC. This will never happen
875 // on 64 bit systems and will only happen on 32 bit systems
876 // when shifting past 134,217,727 bytes. As such, we don't
877 // worry too much about performance here.
878 self.promote_to_shared(/*ref_count = */ 1);
879 }
880 }
881
882 // Updating the start of the view is setting `ptr` to point to the
883 // new start and updating the `len` field to reflect the new length
884 // of the view.
885 self.ptr = vptr(self.ptr.as_ptr().add(start));
886
887 if self.len >= start {
888 self.len -= start;
889 } else {
890 self.len = 0;
891 }
892
893 self.cap -= start;
894 }
895
set_end(&mut self, end: usize)896 unsafe fn set_end(&mut self, end: usize) {
897 debug_assert_eq!(self.kind(), KIND_ARC);
898 assert!(end <= self.cap, "set_end out of bounds");
899
900 self.cap = end;
901 self.len = cmp::min(self.len, end);
902 }
903
try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut>904 fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
905 if other.capacity() == 0 {
906 return Ok(());
907 }
908
909 let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
910 if ptr == other.ptr.as_ptr()
911 && self.kind() == KIND_ARC
912 && other.kind() == KIND_ARC
913 && self.data == other.data
914 {
915 // Contiguous blocks, just combine directly
916 self.len += other.len;
917 self.cap += other.cap;
918 Ok(())
919 } else {
920 Err(other)
921 }
922 }
923
924 #[inline]
kind(&self) -> usize925 fn kind(&self) -> usize {
926 self.data as usize & KIND_MASK
927 }
928
promote_to_shared(&mut self, ref_cnt: usize)929 unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
930 debug_assert_eq!(self.kind(), KIND_VEC);
931 debug_assert!(ref_cnt == 1 || ref_cnt == 2);
932
933 let original_capacity_repr =
934 (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
935
936 // The vec offset cannot be concurrently mutated, so there
937 // should be no danger reading it.
938 let off = (self.data as usize) >> VEC_POS_OFFSET;
939
940 // First, allocate a new `Shared` instance containing the
941 // `Vec` fields. It's important to note that `ptr`, `len`,
942 // and `cap` cannot be mutated without having `&mut self`.
943 // This means that these fields will not be concurrently
944 // updated and since the buffer hasn't been promoted to an
945 // `Arc`, those three fields still are the components of the
946 // vector.
947 let shared = Box::new(Shared {
948 vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
949 original_capacity_repr,
950 ref_count: AtomicUsize::new(ref_cnt),
951 });
952
953 let shared = Box::into_raw(shared);
954
955 // The pointer should be aligned, so this assert should
956 // always succeed.
957 debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
958
959 self.data = shared;
960 }
961
962 /// Makes an exact shallow clone of `self`.
963 ///
964 /// The kind of `self` doesn't matter, but this is unsafe
965 /// because the clone will have the same offsets. You must
966 /// be sure the returned value to the user doesn't allow
967 /// two views into the same range.
968 #[inline]
shallow_clone(&mut self) -> BytesMut969 unsafe fn shallow_clone(&mut self) -> BytesMut {
970 if self.kind() == KIND_ARC {
971 increment_shared(self.data);
972 ptr::read(self)
973 } else {
974 self.promote_to_shared(/*ref_count = */ 2);
975 ptr::read(self)
976 }
977 }
978
979 #[inline]
get_vec_pos(&mut self) -> (usize, usize)980 unsafe fn get_vec_pos(&mut self) -> (usize, usize) {
981 debug_assert_eq!(self.kind(), KIND_VEC);
982
983 let prev = self.data as usize;
984 (prev >> VEC_POS_OFFSET, prev)
985 }
986
987 #[inline]
set_vec_pos(&mut self, pos: usize, prev: usize)988 unsafe fn set_vec_pos(&mut self, pos: usize, prev: usize) {
989 debug_assert_eq!(self.kind(), KIND_VEC);
990 debug_assert!(pos <= MAX_VEC_POS);
991
992 self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK));
993 }
994
995 /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
996 ///
997 /// The returned slice can be used to fill the buffer with data (e.g. by
998 /// reading from a file) before marking the data as initialized using the
999 /// [`set_len`] method.
1000 ///
1001 /// [`set_len`]: BytesMut::set_len
1002 ///
1003 /// # Examples
1004 ///
1005 /// ```
1006 /// use bytes::BytesMut;
1007 ///
1008 /// // Allocate buffer big enough for 10 bytes.
1009 /// let mut buf = BytesMut::with_capacity(10);
1010 ///
1011 /// // Fill in the first 3 elements.
1012 /// let uninit = buf.spare_capacity_mut();
1013 /// uninit[0].write(0);
1014 /// uninit[1].write(1);
1015 /// uninit[2].write(2);
1016 ///
1017 /// // Mark the first 3 bytes of the buffer as being initialized.
1018 /// unsafe {
1019 /// buf.set_len(3);
1020 /// }
1021 ///
1022 /// assert_eq!(&buf[..], &[0, 1, 2]);
1023 /// ```
1024 #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>]1025 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1026 unsafe {
1027 let ptr = self.ptr.as_ptr().add(self.len);
1028 let len = self.cap - self.len;
1029
1030 slice::from_raw_parts_mut(ptr.cast(), len)
1031 }
1032 }
1033 }
1034
1035 impl Drop for BytesMut {
drop(&mut self)1036 fn drop(&mut self) {
1037 let kind = self.kind();
1038
1039 if kind == KIND_VEC {
1040 unsafe {
1041 let (off, _) = self.get_vec_pos();
1042
1043 // Vector storage, free the vector
1044 let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
1045 }
1046 } else if kind == KIND_ARC {
1047 unsafe { release_shared(self.data) };
1048 }
1049 }
1050 }
1051
1052 impl Buf for BytesMut {
1053 #[inline]
remaining(&self) -> usize1054 fn remaining(&self) -> usize {
1055 self.len()
1056 }
1057
1058 #[inline]
chunk(&self) -> &[u8]1059 fn chunk(&self) -> &[u8] {
1060 self.as_slice()
1061 }
1062
1063 #[inline]
advance(&mut self, cnt: usize)1064 fn advance(&mut self, cnt: usize) {
1065 assert!(
1066 cnt <= self.remaining(),
1067 "cannot advance past `remaining`: {:?} <= {:?}",
1068 cnt,
1069 self.remaining(),
1070 );
1071 unsafe {
1072 self.set_start(cnt);
1073 }
1074 }
1075
copy_to_bytes(&mut self, len: usize) -> crate::Bytes1076 fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
1077 self.split_to(len).freeze()
1078 }
1079 }
1080
1081 unsafe impl BufMut for BytesMut {
1082 #[inline]
remaining_mut(&self) -> usize1083 fn remaining_mut(&self) -> usize {
1084 usize::MAX - self.len()
1085 }
1086
1087 #[inline]
advance_mut(&mut self, cnt: usize)1088 unsafe fn advance_mut(&mut self, cnt: usize) {
1089 let new_len = self.len() + cnt;
1090 assert!(
1091 new_len <= self.cap,
1092 "new_len = {}; capacity = {}",
1093 new_len,
1094 self.cap
1095 );
1096 self.len = new_len;
1097 }
1098
1099 #[inline]
chunk_mut(&mut self) -> &mut UninitSlice1100 fn chunk_mut(&mut self) -> &mut UninitSlice {
1101 if self.capacity() == self.len() {
1102 self.reserve(64);
1103 }
1104 UninitSlice::from_slice(self.spare_capacity_mut())
1105 }
1106
1107 // Specialize these methods so they can skip checking `remaining_mut`
1108 // and `advance_mut`.
1109
put<T: crate::Buf>(&mut self, mut src: T) where Self: Sized,1110 fn put<T: crate::Buf>(&mut self, mut src: T)
1111 where
1112 Self: Sized,
1113 {
1114 while src.has_remaining() {
1115 let s = src.chunk();
1116 let l = s.len();
1117 self.extend_from_slice(s);
1118 src.advance(l);
1119 }
1120 }
1121
put_slice(&mut self, src: &[u8])1122 fn put_slice(&mut self, src: &[u8]) {
1123 self.extend_from_slice(src);
1124 }
1125
put_bytes(&mut self, val: u8, cnt: usize)1126 fn put_bytes(&mut self, val: u8, cnt: usize) {
1127 self.reserve(cnt);
1128 unsafe {
1129 let dst = self.spare_capacity_mut();
1130 // Reserved above
1131 debug_assert!(dst.len() >= cnt);
1132
1133 ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
1134
1135 self.advance_mut(cnt);
1136 }
1137 }
1138 }
1139
1140 impl AsRef<[u8]> for BytesMut {
1141 #[inline]
as_ref(&self) -> &[u8]1142 fn as_ref(&self) -> &[u8] {
1143 self.as_slice()
1144 }
1145 }
1146
1147 impl Deref for BytesMut {
1148 type Target = [u8];
1149
1150 #[inline]
deref(&self) -> &[u8]1151 fn deref(&self) -> &[u8] {
1152 self.as_ref()
1153 }
1154 }
1155
1156 impl AsMut<[u8]> for BytesMut {
1157 #[inline]
as_mut(&mut self) -> &mut [u8]1158 fn as_mut(&mut self) -> &mut [u8] {
1159 self.as_slice_mut()
1160 }
1161 }
1162
1163 impl DerefMut for BytesMut {
1164 #[inline]
deref_mut(&mut self) -> &mut [u8]1165 fn deref_mut(&mut self) -> &mut [u8] {
1166 self.as_mut()
1167 }
1168 }
1169
1170 impl<'a> From<&'a [u8]> for BytesMut {
from(src: &'a [u8]) -> BytesMut1171 fn from(src: &'a [u8]) -> BytesMut {
1172 BytesMut::from_vec(src.to_vec())
1173 }
1174 }
1175
1176 impl<'a> From<&'a str> for BytesMut {
from(src: &'a str) -> BytesMut1177 fn from(src: &'a str) -> BytesMut {
1178 BytesMut::from(src.as_bytes())
1179 }
1180 }
1181
1182 impl From<BytesMut> for Bytes {
from(src: BytesMut) -> Bytes1183 fn from(src: BytesMut) -> Bytes {
1184 src.freeze()
1185 }
1186 }
1187
1188 impl PartialEq for BytesMut {
eq(&self, other: &BytesMut) -> bool1189 fn eq(&self, other: &BytesMut) -> bool {
1190 self.as_slice() == other.as_slice()
1191 }
1192 }
1193
1194 impl PartialOrd for BytesMut {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1195 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1196 self.as_slice().partial_cmp(other.as_slice())
1197 }
1198 }
1199
1200 impl Ord for BytesMut {
cmp(&self, other: &BytesMut) -> cmp::Ordering1201 fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
1202 self.as_slice().cmp(other.as_slice())
1203 }
1204 }
1205
1206 impl Eq for BytesMut {}
1207
1208 impl Default for BytesMut {
1209 #[inline]
default() -> BytesMut1210 fn default() -> BytesMut {
1211 BytesMut::new()
1212 }
1213 }
1214
1215 impl hash::Hash for BytesMut {
hash<H>(&self, state: &mut H) where H: hash::Hasher,1216 fn hash<H>(&self, state: &mut H)
1217 where
1218 H: hash::Hasher,
1219 {
1220 let s: &[u8] = self.as_ref();
1221 s.hash(state);
1222 }
1223 }
1224
1225 impl Borrow<[u8]> for BytesMut {
borrow(&self) -> &[u8]1226 fn borrow(&self) -> &[u8] {
1227 self.as_ref()
1228 }
1229 }
1230
1231 impl BorrowMut<[u8]> for BytesMut {
borrow_mut(&mut self) -> &mut [u8]1232 fn borrow_mut(&mut self) -> &mut [u8] {
1233 self.as_mut()
1234 }
1235 }
1236
1237 impl fmt::Write for BytesMut {
1238 #[inline]
write_str(&mut self, s: &str) -> fmt::Result1239 fn write_str(&mut self, s: &str) -> fmt::Result {
1240 if self.remaining_mut() >= s.len() {
1241 self.put_slice(s.as_bytes());
1242 Ok(())
1243 } else {
1244 Err(fmt::Error)
1245 }
1246 }
1247
1248 #[inline]
write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result1249 fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
1250 fmt::write(self, args)
1251 }
1252 }
1253
1254 impl Clone for BytesMut {
clone(&self) -> BytesMut1255 fn clone(&self) -> BytesMut {
1256 BytesMut::from(&self[..])
1257 }
1258 }
1259
1260 impl IntoIterator for BytesMut {
1261 type Item = u8;
1262 type IntoIter = IntoIter<BytesMut>;
1263
into_iter(self) -> Self::IntoIter1264 fn into_iter(self) -> Self::IntoIter {
1265 IntoIter::new(self)
1266 }
1267 }
1268
1269 impl<'a> IntoIterator for &'a BytesMut {
1270 type Item = &'a u8;
1271 type IntoIter = core::slice::Iter<'a, u8>;
1272
into_iter(self) -> Self::IntoIter1273 fn into_iter(self) -> Self::IntoIter {
1274 self.as_ref().iter()
1275 }
1276 }
1277
1278 impl Extend<u8> for BytesMut {
extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8>,1279 fn extend<T>(&mut self, iter: T)
1280 where
1281 T: IntoIterator<Item = u8>,
1282 {
1283 let iter = iter.into_iter();
1284
1285 let (lower, _) = iter.size_hint();
1286 self.reserve(lower);
1287
1288 // TODO: optimize
1289 // 1. If self.kind() == KIND_VEC, use Vec::extend
1290 // 2. Make `reserve` inline-able
1291 for b in iter {
1292 self.reserve(1);
1293 self.put_u8(b);
1294 }
1295 }
1296 }
1297
1298 impl<'a> Extend<&'a u8> for BytesMut {
extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8>,1299 fn extend<T>(&mut self, iter: T)
1300 where
1301 T: IntoIterator<Item = &'a u8>,
1302 {
1303 self.extend(iter.into_iter().copied())
1304 }
1305 }
1306
1307 impl Extend<Bytes> for BytesMut {
extend<T>(&mut self, iter: T) where T: IntoIterator<Item = Bytes>,1308 fn extend<T>(&mut self, iter: T)
1309 where
1310 T: IntoIterator<Item = Bytes>,
1311 {
1312 for bytes in iter {
1313 self.extend_from_slice(&bytes)
1314 }
1315 }
1316 }
1317
1318 impl FromIterator<u8> for BytesMut {
from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self1319 fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
1320 BytesMut::from_vec(Vec::from_iter(into_iter))
1321 }
1322 }
1323
1324 impl<'a> FromIterator<&'a u8> for BytesMut {
from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self1325 fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
1326 BytesMut::from_iter(into_iter.into_iter().copied())
1327 }
1328 }
1329
1330 /*
1331 *
1332 * ===== Inner =====
1333 *
1334 */
1335
increment_shared(ptr: *mut Shared)1336 unsafe fn increment_shared(ptr: *mut Shared) {
1337 let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
1338
1339 if old_size > isize::MAX as usize {
1340 crate::abort();
1341 }
1342 }
1343
release_shared(ptr: *mut Shared)1344 unsafe fn release_shared(ptr: *mut Shared) {
1345 // `Shared` storage... follow the drop steps from Arc.
1346 if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
1347 return;
1348 }
1349
1350 // This fence is needed to prevent reordering of use of the data and
1351 // deletion of the data. Because it is marked `Release`, the decreasing
1352 // of the reference count synchronizes with this `Acquire` fence. This
1353 // means that use of the data happens before decreasing the reference
1354 // count, which happens before this fence, which happens before the
1355 // deletion of the data.
1356 //
1357 // As explained in the [Boost documentation][1],
1358 //
1359 // > It is important to enforce any possible access to the object in one
1360 // > thread (through an existing reference) to *happen before* deleting
1361 // > the object in a different thread. This is achieved by a "release"
1362 // > operation after dropping a reference (any access to the object
1363 // > through this reference must obviously happened before), and an
1364 // > "acquire" operation before deleting the object.
1365 //
1366 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1367 //
1368 // Thread sanitizer does not support atomic fences. Use an atomic load
1369 // instead.
1370 (*ptr).ref_count.load(Ordering::Acquire);
1371
1372 // Drop the data
1373 drop(Box::from_raw(ptr));
1374 }
1375
1376 impl Shared {
is_unique(&self) -> bool1377 fn is_unique(&self) -> bool {
1378 // The goal is to check if the current handle is the only handle
1379 // that currently has access to the buffer. This is done by
1380 // checking if the `ref_count` is currently 1.
1381 //
1382 // The `Acquire` ordering synchronizes with the `Release` as
1383 // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
1384 // operation guarantees that any mutations done in other threads
1385 // are ordered before the `ref_count` is decremented. As such,
1386 // this `Acquire` will guarantee that those mutations are
1387 // visible to the current thread.
1388 self.ref_count.load(Ordering::Acquire) == 1
1389 }
1390 }
1391
1392 #[inline]
original_capacity_to_repr(cap: usize) -> usize1393 fn original_capacity_to_repr(cap: usize) -> usize {
1394 let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
1395 cmp::min(
1396 width,
1397 MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
1398 )
1399 }
1400
original_capacity_from_repr(repr: usize) -> usize1401 fn original_capacity_from_repr(repr: usize) -> usize {
1402 if repr == 0 {
1403 return 0;
1404 }
1405
1406 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
1407 }
1408
1409 /*
1410 #[test]
1411 fn test_original_capacity_to_repr() {
1412 assert_eq!(original_capacity_to_repr(0), 0);
1413
1414 let max_width = 32;
1415
1416 for width in 1..(max_width + 1) {
1417 let cap = 1 << width - 1;
1418
1419 let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
1420 0
1421 } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
1422 width - MIN_ORIGINAL_CAPACITY_WIDTH
1423 } else {
1424 MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
1425 };
1426
1427 assert_eq!(original_capacity_to_repr(cap), expected);
1428
1429 if width > 1 {
1430 assert_eq!(original_capacity_to_repr(cap + 1), expected);
1431 }
1432
1433 // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
1434 if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
1435 assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
1436 assert_eq!(original_capacity_to_repr(cap + 76), expected);
1437 } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
1438 assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
1439 assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
1440 }
1441 }
1442 }
1443
1444 #[test]
1445 fn test_original_capacity_from_repr() {
1446 assert_eq!(0, original_capacity_from_repr(0));
1447
1448 let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
1449
1450 assert_eq!(min_cap, original_capacity_from_repr(1));
1451 assert_eq!(min_cap * 2, original_capacity_from_repr(2));
1452 assert_eq!(min_cap * 4, original_capacity_from_repr(3));
1453 assert_eq!(min_cap * 8, original_capacity_from_repr(4));
1454 assert_eq!(min_cap * 16, original_capacity_from_repr(5));
1455 assert_eq!(min_cap * 32, original_capacity_from_repr(6));
1456 assert_eq!(min_cap * 64, original_capacity_from_repr(7));
1457 }
1458 */
1459
1460 unsafe impl Send for BytesMut {}
1461 unsafe impl Sync for BytesMut {}
1462
1463 /*
1464 *
1465 * ===== PartialEq / PartialOrd =====
1466 *
1467 */
1468
1469 impl PartialEq<[u8]> for BytesMut {
eq(&self, other: &[u8]) -> bool1470 fn eq(&self, other: &[u8]) -> bool {
1471 &**self == other
1472 }
1473 }
1474
1475 impl PartialOrd<[u8]> for BytesMut {
partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering>1476 fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
1477 (**self).partial_cmp(other)
1478 }
1479 }
1480
1481 impl PartialEq<BytesMut> for [u8] {
eq(&self, other: &BytesMut) -> bool1482 fn eq(&self, other: &BytesMut) -> bool {
1483 *other == *self
1484 }
1485 }
1486
1487 impl PartialOrd<BytesMut> for [u8] {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1488 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1489 <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1490 }
1491 }
1492
1493 impl PartialEq<str> for BytesMut {
eq(&self, other: &str) -> bool1494 fn eq(&self, other: &str) -> bool {
1495 &**self == other.as_bytes()
1496 }
1497 }
1498
1499 impl PartialOrd<str> for BytesMut {
partial_cmp(&self, other: &str) -> Option<cmp::Ordering>1500 fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
1501 (**self).partial_cmp(other.as_bytes())
1502 }
1503 }
1504
1505 impl PartialEq<BytesMut> for str {
eq(&self, other: &BytesMut) -> bool1506 fn eq(&self, other: &BytesMut) -> bool {
1507 *other == *self
1508 }
1509 }
1510
1511 impl PartialOrd<BytesMut> for str {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1512 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1513 <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1514 }
1515 }
1516
1517 impl PartialEq<Vec<u8>> for BytesMut {
eq(&self, other: &Vec<u8>) -> bool1518 fn eq(&self, other: &Vec<u8>) -> bool {
1519 *self == other[..]
1520 }
1521 }
1522
1523 impl PartialOrd<Vec<u8>> for BytesMut {
partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering>1524 fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
1525 (**self).partial_cmp(&other[..])
1526 }
1527 }
1528
1529 impl PartialEq<BytesMut> for Vec<u8> {
eq(&self, other: &BytesMut) -> bool1530 fn eq(&self, other: &BytesMut) -> bool {
1531 *other == *self
1532 }
1533 }
1534
1535 impl PartialOrd<BytesMut> for Vec<u8> {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1536 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1537 other.partial_cmp(self)
1538 }
1539 }
1540
1541 impl PartialEq<String> for BytesMut {
eq(&self, other: &String) -> bool1542 fn eq(&self, other: &String) -> bool {
1543 *self == other[..]
1544 }
1545 }
1546
1547 impl PartialOrd<String> for BytesMut {
partial_cmp(&self, other: &String) -> Option<cmp::Ordering>1548 fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
1549 (**self).partial_cmp(other.as_bytes())
1550 }
1551 }
1552
1553 impl PartialEq<BytesMut> for String {
eq(&self, other: &BytesMut) -> bool1554 fn eq(&self, other: &BytesMut) -> bool {
1555 *other == *self
1556 }
1557 }
1558
1559 impl PartialOrd<BytesMut> for String {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1560 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1561 <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1562 }
1563 }
1564
1565 impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
1566 where
1567 BytesMut: PartialEq<T>,
1568 {
eq(&self, other: &&'a T) -> bool1569 fn eq(&self, other: &&'a T) -> bool {
1570 *self == **other
1571 }
1572 }
1573
1574 impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
1575 where
1576 BytesMut: PartialOrd<T>,
1577 {
partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering>1578 fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
1579 self.partial_cmp(*other)
1580 }
1581 }
1582
1583 impl PartialEq<BytesMut> for &[u8] {
eq(&self, other: &BytesMut) -> bool1584 fn eq(&self, other: &BytesMut) -> bool {
1585 *other == *self
1586 }
1587 }
1588
1589 impl PartialOrd<BytesMut> for &[u8] {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1590 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1591 <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1592 }
1593 }
1594
1595 impl PartialEq<BytesMut> for &str {
eq(&self, other: &BytesMut) -> bool1596 fn eq(&self, other: &BytesMut) -> bool {
1597 *other == *self
1598 }
1599 }
1600
1601 impl PartialOrd<BytesMut> for &str {
partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering>1602 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1603 other.partial_cmp(self)
1604 }
1605 }
1606
1607 impl PartialEq<BytesMut> for Bytes {
eq(&self, other: &BytesMut) -> bool1608 fn eq(&self, other: &BytesMut) -> bool {
1609 other[..] == self[..]
1610 }
1611 }
1612
1613 impl PartialEq<Bytes> for BytesMut {
eq(&self, other: &Bytes) -> bool1614 fn eq(&self, other: &Bytes) -> bool {
1615 other[..] == self[..]
1616 }
1617 }
1618
1619 impl From<BytesMut> for Vec<u8> {
from(mut bytes: BytesMut) -> Self1620 fn from(mut bytes: BytesMut) -> Self {
1621 let kind = bytes.kind();
1622
1623 let mut vec = if kind == KIND_VEC {
1624 unsafe {
1625 let (off, _) = bytes.get_vec_pos();
1626 rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
1627 }
1628 } else if kind == KIND_ARC {
1629 let shared = bytes.data as *mut Shared;
1630
1631 if unsafe { (*shared).is_unique() } {
1632 let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
1633
1634 unsafe { release_shared(shared) };
1635
1636 vec
1637 } else {
1638 return bytes.deref().to_vec();
1639 }
1640 } else {
1641 return bytes.deref().to_vec();
1642 };
1643
1644 let len = bytes.len;
1645
1646 unsafe {
1647 ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
1648 vec.set_len(len);
1649 }
1650
1651 mem::forget(bytes);
1652
1653 vec
1654 }
1655 }
1656
1657 #[inline]
vptr(ptr: *mut u8) -> NonNull<u8>1658 fn vptr(ptr: *mut u8) -> NonNull<u8> {
1659 if cfg!(debug_assertions) {
1660 NonNull::new(ptr).expect("Vec pointer should be non-null")
1661 } else {
1662 unsafe { NonNull::new_unchecked(ptr) }
1663 }
1664 }
1665
1666 /// Returns a dangling pointer with the given address. This is used to store
1667 /// integer data in pointer fields.
1668 ///
1669 /// It is equivalent to `addr as *mut T`, but this fails on miri when strict
1670 /// provenance checking is enabled.
1671 #[inline]
invalid_ptr<T>(addr: usize) -> *mut T1672 fn invalid_ptr<T>(addr: usize) -> *mut T {
1673 let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
1674 debug_assert_eq!(ptr as usize, addr);
1675 ptr.cast::<T>()
1676 }
1677
1678 /// Precondition: dst >= original
1679 ///
1680 /// The following line is equivalent to:
1681 ///
1682 /// ```rust,ignore
1683 /// self.ptr.as_ptr().offset_from(ptr) as usize;
1684 /// ```
1685 ///
1686 /// But due to min rust is 1.39 and it is only stablised
1687 /// in 1.47, we cannot use it.
1688 #[inline]
offset_from(dst: *mut u8, original: *mut u8) -> usize1689 fn offset_from(dst: *mut u8, original: *mut u8) -> usize {
1690 debug_assert!(dst >= original);
1691
1692 dst as usize - original as usize
1693 }
1694
rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8>1695 unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
1696 let ptr = ptr.offset(-(off as isize));
1697 len += off;
1698 cap += off;
1699
1700 Vec::from_raw_parts(ptr, len, cap)
1701 }
1702
1703 // ===== impl SharedVtable =====
1704
1705 static SHARED_VTABLE: Vtable = Vtable {
1706 clone: shared_v_clone,
1707 to_vec: shared_v_to_vec,
1708 drop: shared_v_drop,
1709 };
1710
shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes1711 unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
1712 let shared = data.load(Ordering::Relaxed) as *mut Shared;
1713 increment_shared(shared);
1714
1715 let data = AtomicPtr::new(shared as *mut ());
1716 Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
1717 }
1718
shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8>1719 unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
1720 let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1721
1722 if (*shared).is_unique() {
1723 let shared = &mut *shared;
1724
1725 // Drop shared
1726 let mut vec = mem::replace(&mut shared.vec, Vec::new());
1727 release_shared(shared);
1728
1729 // Copy back buffer
1730 ptr::copy(ptr, vec.as_mut_ptr(), len);
1731 vec.set_len(len);
1732
1733 vec
1734 } else {
1735 let v = slice::from_raw_parts(ptr, len).to_vec();
1736 release_shared(shared);
1737 v
1738 }
1739 }
1740
shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize)1741 unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
1742 data.with_mut(|shared| {
1743 release_shared(*shared as *mut Shared);
1744 });
1745 }
1746
1747 // compile-fails
1748
1749 /// ```compile_fail
1750 /// use bytes::BytesMut;
1751 /// #[deny(unused_must_use)]
1752 /// {
1753 /// let mut b1 = BytesMut::from("hello world");
1754 /// b1.split_to(6);
1755 /// }
1756 /// ```
_split_to_must_use()1757 fn _split_to_must_use() {}
1758
1759 /// ```compile_fail
1760 /// use bytes::BytesMut;
1761 /// #[deny(unused_must_use)]
1762 /// {
1763 /// let mut b1 = BytesMut::from("hello world");
1764 /// b1.split_off(6);
1765 /// }
1766 /// ```
_split_off_must_use()1767 fn _split_off_must_use() {}
1768
1769 /// ```compile_fail
1770 /// use bytes::BytesMut;
1771 /// #[deny(unused_must_use)]
1772 /// {
1773 /// let mut b1 = BytesMut::from("hello world");
1774 /// b1.split();
1775 /// }
1776 /// ```
_split_must_use()1777 fn _split_must_use() {}
1778
1779 // fuzz tests
1780 #[cfg(all(test, loom))]
1781 mod fuzz {
1782 use loom::sync::Arc;
1783 use loom::thread;
1784
1785 use super::BytesMut;
1786 use crate::Bytes;
1787
1788 #[test]
bytes_mut_cloning_frozen()1789 fn bytes_mut_cloning_frozen() {
1790 loom::model(|| {
1791 let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
1792 let addr = a.as_ptr() as usize;
1793
1794 // test the Bytes::clone is Sync by putting it in an Arc
1795 let a1 = Arc::new(a);
1796 let a2 = a1.clone();
1797
1798 let t1 = thread::spawn(move || {
1799 let b: Bytes = (*a1).clone();
1800 assert_eq!(b.as_ptr() as usize, addr);
1801 });
1802
1803 let t2 = thread::spawn(move || {
1804 let b: Bytes = (*a2).clone();
1805 assert_eq!(b.as_ptr() as usize, addr);
1806 });
1807
1808 t1.join().unwrap();
1809 t2.join().unwrap();
1810 });
1811 }
1812 }
1813