1 //! The implementation is based on Dmitry Vyukov's bounded MPMC queue. 2 //! 3 //! Source: 4 //! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue> 5 6 use alloc::boxed::Box; 7 use core::cell::UnsafeCell; 8 use core::fmt; 9 use core::mem::MaybeUninit; 10 use core::sync::atomic::{self, AtomicUsize, Ordering}; 11 12 use crossbeam_utils::{Backoff, CachePadded}; 13 14 /// A slot in a queue. 15 struct Slot<T> { 16 /// The current stamp. 17 /// 18 /// If the stamp equals the tail, this node will be next written to. If it equals head + 1, 19 /// this node will be next read from. 20 stamp: AtomicUsize, 21 22 /// The value in this slot. 23 value: UnsafeCell<MaybeUninit<T>>, 24 } 25 26 /// A bounded multi-producer multi-consumer queue. 27 /// 28 /// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed 29 /// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an 30 /// element into a full queue will fail. Alternatively, [`force_push`] makes it possible for 31 /// this queue to be used as a ring-buffer. Having a buffer allocated upfront makes this queue 32 /// a bit faster than [`SegQueue`]. 33 /// 34 /// [`force_push`]: ArrayQueue::force_push 35 /// [`SegQueue`]: super::SegQueue 36 /// 37 /// # Examples 38 /// 39 /// ``` 40 /// use crossbeam_queue::ArrayQueue; 41 /// 42 /// let q = ArrayQueue::new(2); 43 /// 44 /// assert_eq!(q.push('a'), Ok(())); 45 /// assert_eq!(q.push('b'), Ok(())); 46 /// assert_eq!(q.push('c'), Err('c')); 47 /// assert_eq!(q.pop(), Some('a')); 48 /// ``` 49 pub struct ArrayQueue<T> { 50 /// The head of the queue. 51 /// 52 /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a 53 /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. 54 /// 55 /// Elements are popped from the head of the queue. 56 head: CachePadded<AtomicUsize>, 57 58 /// The tail of the queue. 59 /// 60 /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a 61 /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. 62 /// 63 /// Elements are pushed into the tail of the queue. 64 tail: CachePadded<AtomicUsize>, 65 66 /// The buffer holding slots. 67 buffer: Box<[Slot<T>]>, 68 69 /// The queue capacity. 70 cap: usize, 71 72 /// A stamp with the value of `{ lap: 1, index: 0 }`. 73 one_lap: usize, 74 } 75 76 unsafe impl<T: Send> Sync for ArrayQueue<T> {} 77 unsafe impl<T: Send> Send for ArrayQueue<T> {} 78 79 impl<T> ArrayQueue<T> { 80 /// Creates a new bounded queue with the given capacity. 81 /// 82 /// # Panics 83 /// 84 /// Panics if the capacity is zero. 85 /// 86 /// # Examples 87 /// 88 /// ``` 89 /// use crossbeam_queue::ArrayQueue; 90 /// 91 /// let q = ArrayQueue::<i32>::new(100); 92 /// ``` new(cap: usize) -> ArrayQueue<T>93 pub fn new(cap: usize) -> ArrayQueue<T> { 94 assert!(cap > 0, "capacity must be non-zero"); 95 96 // Head is initialized to `{ lap: 0, index: 0 }`. 97 // Tail is initialized to `{ lap: 0, index: 0 }`. 98 let head = 0; 99 let tail = 0; 100 101 // Allocate a buffer of `cap` slots initialized 102 // with stamps. 103 let buffer: Box<[Slot<T>]> = (0..cap) 104 .map(|i| { 105 // Set the stamp to `{ lap: 0, index: i }`. 106 Slot { 107 stamp: AtomicUsize::new(i), 108 value: UnsafeCell::new(MaybeUninit::uninit()), 109 } 110 }) 111 .collect(); 112 113 // One lap is the smallest power of two greater than `cap`. 114 let one_lap = (cap + 1).next_power_of_two(); 115 116 ArrayQueue { 117 buffer, 118 cap, 119 one_lap, 120 head: CachePadded::new(AtomicUsize::new(head)), 121 tail: CachePadded::new(AtomicUsize::new(tail)), 122 } 123 } 124 push_or_else<F>(&self, mut value: T, f: F) -> Result<(), T> where F: Fn(T, usize, usize, &Slot<T>) -> Result<T, T>,125 fn push_or_else<F>(&self, mut value: T, f: F) -> Result<(), T> 126 where 127 F: Fn(T, usize, usize, &Slot<T>) -> Result<T, T>, 128 { 129 let backoff = Backoff::new(); 130 let mut tail = self.tail.load(Ordering::Relaxed); 131 132 loop { 133 // Deconstruct the tail. 134 let index = tail & (self.one_lap - 1); 135 let lap = tail & !(self.one_lap - 1); 136 137 let new_tail = if index + 1 < self.cap { 138 // Same lap, incremented index. 139 // Set to `{ lap: lap, index: index + 1 }`. 140 tail + 1 141 } else { 142 // One lap forward, index wraps around to zero. 143 // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. 144 lap.wrapping_add(self.one_lap) 145 }; 146 147 // Inspect the corresponding slot. 148 debug_assert!(index < self.buffer.len()); 149 let slot = unsafe { self.buffer.get_unchecked(index) }; 150 let stamp = slot.stamp.load(Ordering::Acquire); 151 152 // If the tail and the stamp match, we may attempt to push. 153 if tail == stamp { 154 // Try moving the tail. 155 match self.tail.compare_exchange_weak( 156 tail, 157 new_tail, 158 Ordering::SeqCst, 159 Ordering::Relaxed, 160 ) { 161 Ok(_) => { 162 // Write the value into the slot and update the stamp. 163 unsafe { 164 slot.value.get().write(MaybeUninit::new(value)); 165 } 166 slot.stamp.store(tail + 1, Ordering::Release); 167 return Ok(()); 168 } 169 Err(t) => { 170 tail = t; 171 backoff.spin(); 172 } 173 } 174 } else if stamp.wrapping_add(self.one_lap) == tail + 1 { 175 atomic::fence(Ordering::SeqCst); 176 value = f(value, tail, new_tail, slot)?; 177 backoff.spin(); 178 tail = self.tail.load(Ordering::Relaxed); 179 } else { 180 // Snooze because we need to wait for the stamp to get updated. 181 backoff.snooze(); 182 tail = self.tail.load(Ordering::Relaxed); 183 } 184 } 185 } 186 187 /// Attempts to push an element into the queue. 188 /// 189 /// If the queue is full, the element is returned back as an error. 190 /// 191 /// # Examples 192 /// 193 /// ``` 194 /// use crossbeam_queue::ArrayQueue; 195 /// 196 /// let q = ArrayQueue::new(1); 197 /// 198 /// assert_eq!(q.push(10), Ok(())); 199 /// assert_eq!(q.push(20), Err(20)); 200 /// ``` push(&self, value: T) -> Result<(), T>201 pub fn push(&self, value: T) -> Result<(), T> { 202 self.push_or_else(value, |v, tail, _, _| { 203 let head = self.head.load(Ordering::Relaxed); 204 205 // If the head lags one lap behind the tail as well... 206 if head.wrapping_add(self.one_lap) == tail { 207 // ...then the queue is full. 208 Err(v) 209 } else { 210 Ok(v) 211 } 212 }) 213 } 214 215 /// Pushes an element into the queue, replacing the oldest element if necessary. 216 /// 217 /// If the queue is full, the oldest element is replaced and returned, 218 /// otherwise `None` is returned. 219 /// 220 /// # Examples 221 /// 222 /// ``` 223 /// use crossbeam_queue::ArrayQueue; 224 /// 225 /// let q = ArrayQueue::new(2); 226 /// 227 /// assert_eq!(q.force_push(10), None); 228 /// assert_eq!(q.force_push(20), None); 229 /// assert_eq!(q.force_push(30), Some(10)); 230 /// assert_eq!(q.pop(), Some(20)); 231 /// ``` force_push(&self, value: T) -> Option<T>232 pub fn force_push(&self, value: T) -> Option<T> { 233 self.push_or_else(value, |v, tail, new_tail, slot| { 234 let head = tail.wrapping_sub(self.one_lap); 235 let new_head = new_tail.wrapping_sub(self.one_lap); 236 237 // Try moving the head. 238 if self 239 .head 240 .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Relaxed) 241 .is_ok() 242 { 243 // Move the tail. 244 self.tail.store(new_tail, Ordering::SeqCst); 245 246 // Swap the previous value. 247 let old = unsafe { slot.value.get().replace(MaybeUninit::new(v)).assume_init() }; 248 249 // Update the stamp. 250 slot.stamp.store(tail + 1, Ordering::Release); 251 252 Err(old) 253 } else { 254 Ok(v) 255 } 256 }) 257 .err() 258 } 259 260 /// Attempts to pop an element from the queue. 261 /// 262 /// If the queue is empty, `None` is returned. 263 /// 264 /// # Examples 265 /// 266 /// ``` 267 /// use crossbeam_queue::ArrayQueue; 268 /// 269 /// let q = ArrayQueue::new(1); 270 /// assert_eq!(q.push(10), Ok(())); 271 /// 272 /// assert_eq!(q.pop(), Some(10)); 273 /// assert!(q.pop().is_none()); 274 /// ``` pop(&self) -> Option<T>275 pub fn pop(&self) -> Option<T> { 276 let backoff = Backoff::new(); 277 let mut head = self.head.load(Ordering::Relaxed); 278 279 loop { 280 // Deconstruct the head. 281 let index = head & (self.one_lap - 1); 282 let lap = head & !(self.one_lap - 1); 283 284 // Inspect the corresponding slot. 285 debug_assert!(index < self.buffer.len()); 286 let slot = unsafe { self.buffer.get_unchecked(index) }; 287 let stamp = slot.stamp.load(Ordering::Acquire); 288 289 // If the the stamp is ahead of the head by 1, we may attempt to pop. 290 if head + 1 == stamp { 291 let new = if index + 1 < self.cap { 292 // Same lap, incremented index. 293 // Set to `{ lap: lap, index: index + 1 }`. 294 head + 1 295 } else { 296 // One lap forward, index wraps around to zero. 297 // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. 298 lap.wrapping_add(self.one_lap) 299 }; 300 301 // Try moving the head. 302 match self.head.compare_exchange_weak( 303 head, 304 new, 305 Ordering::SeqCst, 306 Ordering::Relaxed, 307 ) { 308 Ok(_) => { 309 // Read the value from the slot and update the stamp. 310 let msg = unsafe { slot.value.get().read().assume_init() }; 311 slot.stamp 312 .store(head.wrapping_add(self.one_lap), Ordering::Release); 313 return Some(msg); 314 } 315 Err(h) => { 316 head = h; 317 backoff.spin(); 318 } 319 } 320 } else if stamp == head { 321 atomic::fence(Ordering::SeqCst); 322 let tail = self.tail.load(Ordering::Relaxed); 323 324 // If the tail equals the head, that means the channel is empty. 325 if tail == head { 326 return None; 327 } 328 329 backoff.spin(); 330 head = self.head.load(Ordering::Relaxed); 331 } else { 332 // Snooze because we need to wait for the stamp to get updated. 333 backoff.snooze(); 334 head = self.head.load(Ordering::Relaxed); 335 } 336 } 337 } 338 339 /// Returns the capacity of the queue. 340 /// 341 /// # Examples 342 /// 343 /// ``` 344 /// use crossbeam_queue::ArrayQueue; 345 /// 346 /// let q = ArrayQueue::<i32>::new(100); 347 /// 348 /// assert_eq!(q.capacity(), 100); 349 /// ``` capacity(&self) -> usize350 pub fn capacity(&self) -> usize { 351 self.cap 352 } 353 354 /// Returns `true` if the queue is empty. 355 /// 356 /// # Examples 357 /// 358 /// ``` 359 /// use crossbeam_queue::ArrayQueue; 360 /// 361 /// let q = ArrayQueue::new(100); 362 /// 363 /// assert!(q.is_empty()); 364 /// q.push(1).unwrap(); 365 /// assert!(!q.is_empty()); 366 /// ``` is_empty(&self) -> bool367 pub fn is_empty(&self) -> bool { 368 let head = self.head.load(Ordering::SeqCst); 369 let tail = self.tail.load(Ordering::SeqCst); 370 371 // Is the tail lagging one lap behind head? 372 // Is the tail equal to the head? 373 // 374 // Note: If the head changes just before we load the tail, that means there was a moment 375 // when the channel was not empty, so it is safe to just return `false`. 376 tail == head 377 } 378 379 /// Returns `true` if the queue is full. 380 /// 381 /// # Examples 382 /// 383 /// ``` 384 /// use crossbeam_queue::ArrayQueue; 385 /// 386 /// let q = ArrayQueue::new(1); 387 /// 388 /// assert!(!q.is_full()); 389 /// q.push(1).unwrap(); 390 /// assert!(q.is_full()); 391 /// ``` is_full(&self) -> bool392 pub fn is_full(&self) -> bool { 393 let tail = self.tail.load(Ordering::SeqCst); 394 let head = self.head.load(Ordering::SeqCst); 395 396 // Is the head lagging one lap behind tail? 397 // 398 // Note: If the tail changes just before we load the head, that means there was a moment 399 // when the queue was not full, so it is safe to just return `false`. 400 head.wrapping_add(self.one_lap) == tail 401 } 402 403 /// Returns the number of elements in the queue. 404 /// 405 /// # Examples 406 /// 407 /// ``` 408 /// use crossbeam_queue::ArrayQueue; 409 /// 410 /// let q = ArrayQueue::new(100); 411 /// assert_eq!(q.len(), 0); 412 /// 413 /// q.push(10).unwrap(); 414 /// assert_eq!(q.len(), 1); 415 /// 416 /// q.push(20).unwrap(); 417 /// assert_eq!(q.len(), 2); 418 /// ``` len(&self) -> usize419 pub fn len(&self) -> usize { 420 loop { 421 // Load the tail, then load the head. 422 let tail = self.tail.load(Ordering::SeqCst); 423 let head = self.head.load(Ordering::SeqCst); 424 425 // If the tail didn't change, we've got consistent values to work with. 426 if self.tail.load(Ordering::SeqCst) == tail { 427 let hix = head & (self.one_lap - 1); 428 let tix = tail & (self.one_lap - 1); 429 430 return if hix < tix { 431 tix - hix 432 } else if hix > tix { 433 self.cap - hix + tix 434 } else if tail == head { 435 0 436 } else { 437 self.cap 438 }; 439 } 440 } 441 } 442 } 443 444 impl<T> Drop for ArrayQueue<T> { drop(&mut self)445 fn drop(&mut self) { 446 // Get the index of the head. 447 let head = *self.head.get_mut(); 448 let tail = *self.tail.get_mut(); 449 450 let hix = head & (self.one_lap - 1); 451 let tix = tail & (self.one_lap - 1); 452 453 let len = if hix < tix { 454 tix - hix 455 } else if hix > tix { 456 self.cap - hix + tix 457 } else if tail == head { 458 0 459 } else { 460 self.cap 461 }; 462 463 // Loop over all slots that hold a message and drop them. 464 for i in 0..len { 465 // Compute the index of the next slot holding a message. 466 let index = if hix + i < self.cap { 467 hix + i 468 } else { 469 hix + i - self.cap 470 }; 471 472 unsafe { 473 debug_assert!(index < self.buffer.len()); 474 let slot = self.buffer.get_unchecked_mut(index); 475 let value = &mut *slot.value.get(); 476 value.as_mut_ptr().drop_in_place(); 477 } 478 } 479 } 480 } 481 482 impl<T> fmt::Debug for ArrayQueue<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result483 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 484 f.pad("ArrayQueue { .. }") 485 } 486 } 487 488 impl<T> IntoIterator for ArrayQueue<T> { 489 type Item = T; 490 491 type IntoIter = IntoIter<T>; 492 into_iter(self) -> Self::IntoIter493 fn into_iter(self) -> Self::IntoIter { 494 IntoIter { value: self } 495 } 496 } 497 498 #[derive(Debug)] 499 pub struct IntoIter<T> { 500 value: ArrayQueue<T>, 501 } 502 503 impl<T> Iterator for IntoIter<T> { 504 type Item = T; 505 next(&mut self) -> Option<Self::Item>506 fn next(&mut self) -> Option<Self::Item> { 507 let value = &mut self.value; 508 let head = *value.head.get_mut(); 509 if value.head.get_mut() != value.tail.get_mut() { 510 let index = head & (value.one_lap - 1); 511 let lap = head & !(value.one_lap - 1); 512 // SAFETY: We have mutable access to this, so we can read without 513 // worrying about concurrency. Furthermore, we know this is 514 // initialized because it is the value pointed at by `value.head` 515 // and this is a non-empty queue. 516 let val = unsafe { 517 debug_assert!(index < value.buffer.len()); 518 let slot = value.buffer.get_unchecked_mut(index); 519 slot.value.get().read().assume_init() 520 }; 521 let new = if index + 1 < value.cap { 522 // Same lap, incremented index. 523 // Set to `{ lap: lap, index: index + 1 }`. 524 head + 1 525 } else { 526 // One lap forward, index wraps around to zero. 527 // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. 528 lap.wrapping_add(value.one_lap) 529 }; 530 *value.head.get_mut() = new; 531 Option::Some(val) 532 } else { 533 Option::None 534 } 535 } 536 } 537